रैंप फंक्शन

From Vigyanwiki
Revision as of 16:02, 29 June 2023 by alpha>S Diwedi
रैम्प फलनके एक फलनका ग्राफ़

रैम्प फलन एक एकात्मक फलन वास्तविक फलन है, जिसका का ग्राफ़ रैम्प के आकार का होता है। इसे कई परिभाषाओं द्वारा व्यक्त किया जा सकता है, उदाहरण के लिए ऋणात्मक इनपुट के लिए 0, आउटपुट गैर-ऋणात्मक इ नपुट के लिए इनपुट के बराबर है। रैम्प शब्द का उपयोग स्केलिंग और स्थानांतरण द्वारा प्राप्त अन्य कार्यों के लिए भी किया जा सकता है, और इस लेख में फलन यूनिट रैम्प फलन (ढलान 1, 0 से प्रारम्भ) है।

गणित में, 'रैम्प'' फलन को धनात्मक भाग के रूप में भी जाना जाता है।

यंत्र अधिगम में, इसे सामान्यतः रेक्टिफायर_(न्यूरल_नेटवर्क्स) 'ReLU सक्रियण फलन के रूप में जाना जाता है[1][2] या विद्युत अभियन्त्रण में अर्ध तरंग दिष्टकरण के अनुरूप एक रेक्टिफायर (परिशोधक) है। आँकड़ों में (जब संभाविता फलन के रूप में उपयोग किया जाता है) इसे टोबिट मॉडल के रूप में जाना जाता है।

इस फलन में गणित और इंजीनियरिंग में कई अनुप्रयोग हैं, और संदर्भ के आधार पर विभिन्न नामों से जाना जाता है। रैम्प फलन के परिशोधक_ (तंत्रिका_नेटवर्क) # अन्य_गैर-रैखिक_वेरिएंट हैं।

परिभाषाएँ

रैम्प फलन (R(x) : RR0+) विश्लेषणात्मक रूप से कई तरीकों से परिभाषित किया जा सकता है। संभावित परिभाषाएँ हैं:

  • खंडशः फलन
  • मैक्सिमा और मिनिमा: अधिकतम फलन
  • एक स्वतंत्र चर और उसके निरपेक्ष मूल्य का अंकगणितीय माध्य (एकता ढाल और उसके मापांक के साथ एक सीधी रेखा है):
    यह निम्नलिखित परिभाषा को ध्यान में रखते हुए प्राप्त किया जा सकता है max(a, b),
    जिसके लिए a = x और b = 0
  • हैवीसाइड स्टेप फलन को एकता ग्रेडिएंट के साथ एक सीधी रेखा से गुणा किया जाता है:
  • खुद के साथ हीविसाइड स्टेप फलन का कनवल्शन:
  • हैविसाइड स्टेप फलन का अभिन्न अंग:[3]
  • मैकाले कोष्ठक:
  • पहचान फलन के ऋणात्मक और ऋणात्मक भाग:

अनुप्रयोग

रैम्प फलनमें इंजीनियरिंग में कई अनुप्रयोग हैं, जैसे किअंकीय संकेत प्रक्रिया के सिद्धांत में हैं।

अदायगी और कॉल विकल्प खरीदने से मुनाफा।

वित्त में, कॉल विकल्प का भुगतान एक रैम्प (स्ट्राइक प्राइस द्वारा स्थानांतरित) है। रैम्प को क्षैतिज रूप से फ़्लिप करने से एक पुट विकल्प प्राप्त होता है, जबकि लंबवत रूप से फ़्लिप करना (ऋणात्मक लेना) एक विकल्प को बेचने या ''छोटा'' करने से मेल खाता है। वित्त में, आकार को ''हाँकी स्टिक'' ]] के समान होने के कारण व्यापक रूप से आइस हॉकी स्टिक कहा जाता है।

x=3.1 पर एक गांठ के साथ बहुभिन्नरूपी अनुकूली प्रतिगमन स्प्लाइन#हिंज फ़ंक्शंस की एक मिरर की गई जोड़ी

आँकड़ों में, बहुभिन्नरूपी अनुकूली प्रतिगमन splines # बहुभिन्नरूपी अनुकूली प्रतिगमन splines (MARS) के काज कार्य रैम्प हैं, और प्रतिगमन मॉडल बनाने के लिए उपयोग किए जाते हैं।

विश्लेषणात्मक गुण

गैर-नकारात्मकता

किसी फलन के पूरे क्षेत्र में फलन गैर-ऋणात्मक होता है, इसलिए इसका निरपेक्ष मान स्वयं ही होता है, अर्थात

और

Proof

by the mean of definition 2, it is non-negative in the first quarter, and zero in the second; so everywhere it is non-negative.

व्युत्पन्न

इसका व्युत्पन्न हीविसाइड स्टेप फंक्शन है:


दूसरा व्युत्पन्न

रैम्प फलनअंतर समीकरण को संतुष्ट करता है:

कहाँ δ(x) डिराक डेल्टा है। इस का मतलब है कि R(x) दूसरे डेरिवेटिव ऑपरेटर के लिए ग्रीन का कार्य है। इस प्रकार, कोई भी कार्य, f(x), एक पूर्णांक द्वितीय व्युत्पन्न के साथ, f″(x), समीकरण को संतुष्ट करेगा:


फूरियर रूपांतरण

कहाँ δ(x) डिराक डेल्टा है (इस सूत्र में, इसका व्युत्पन्न प्रकट होता है)।

लाप्लास रूपांतरण

एक तरफा लाप्लास का रूपांतरण R(x) इस प्रकार दिया गया है,[4]


बीजगणितीय गुण

पुनरावृत्ति आक्रमण

रैम्प मैपिंग का प्रत्येक पुनरावृत्त कार्य स्वयं ही है

Proof

This applies the non-negative property.

यह भी देखें

  • टोबिट मॉडल


संदर्भ

  1. Brownlee, Jason (8 January 2019). "परिशोधित रेखीय इकाई (ReLU) का एक सौम्य परिचय". Machine Learning Mastery. Retrieved 8 April 2021.
  2. Liu, Danqing (30 November 2017). "ReLU के लिए एक प्रैक्टिकल गाइड". Medium (in English). Retrieved 8 April 2021.
  3. Weisstein, Eric W. "Ramp Function". MathWorld.
  4. "कार्यों का लाप्लास रूपांतरण". lpsa.swarthmore.edu. Retrieved 2019-04-05.