दीर्घ वृत्ताकार फिल्टर

From Vigyanwiki

एक अण्डाकार फ़िल्टर (जिसे काउर फ़िल्टर के रूप में भी जाना जाता है, जिसका नाम विल्हेम काउरे के नाम पर रखा गया है, या ईगोर ज़ोलोटारेव के बाद ज़ोलोटेरेव फ़िल्टर के रूप में) पासबैंड और बंद करो बंद करो दोनों में समान तरंग (फ़िल्टर) (इक्विरिपल) व्यवहार के साथ एक फ़िल्टर (सिग्नल प्रोसेसिंग) है। . प्रत्येक बैंड में लहर की मात्रा स्वतंत्र रूप से समायोज्य है, और समान क्रम के किसी अन्य फ़िल्टर में पासबैंड और स्टॉपबैंड के बीच लाभ (इलेक्ट्रॉनिक्स) में तेजी से संक्रमण नहीं हो सकता है, लहर के दिए गए मूल्यों के लिए (चाहे लहर बराबर है या नहीं) .[citation needed] वैकल्पिक रूप से, कोई पासबैंड और स्टॉपबैंड रिपल को स्वतंत्र रूप से समायोजित करने की क्षमता छोड़ सकता है, और इसके बजाय एक फ़िल्टर डिज़ाइन कर सकता है जो घटक विविधताओं के लिए अधिकतम असंवेदनशील है।

जैसे ही स्टॉपबैंड में तरंग शून्य के करीब पहुंचती है, फ़िल्टर एक प्रकार I चेबीशेव फ़िल्टर बन जाता है। जैसे ही पासबैंड में रिपल शून्य के करीब पहुंचता है, फिल्टर एक टाइप II चेबीशेव फिल्टर बन जाता है और अंत में, जैसे ही दोनों रिपल वैल्यू शून्य के करीब पहुंचते हैं, फिल्टर बटरवर्थ फ़िल्टर बन जाता है।

कोणीय आवृत्ति के एक कार्य के रूप में एक कम उत्तीर्ण अण्डाकार फिल्टर का लाभ किसके द्वारा दिया जाता है:

जहां आरn nवें क्रम का अण्डाकार परिमेय फलन है (कभी-कभी चेबीशेव परिमेय फलन के रूप में जाना जाता है) और

कटऑफ आवृत्ति है
तरंग कारक है
चयनात्मकता कारक है

रिपल फैक्टर का मान पासबैंड रिपल को निर्दिष्ट करता है, जबकि रिपल फैक्टर और सेलेक्टिविटी फैक्टर का संयोजन स्टॉपबैंड रिपल को निर्दिष्ट करता है।

गुण

 = 0.5 और ξ = 1.05 के साथ चौथे क्रम के अण्डाकार कम-पास फ़िल्टर की आवृत्ति प्रतिक्रिया। पासबैंड में न्यूनतम लाभ और स्टॉपबैंड में अधिकतम लाभ, और सामान्यीकृत आवृत्ति 1 और के बीच संक्रमण क्षेत्र भी दिखाया गया है
उपरोक्त भूखंड के संक्रमण क्षेत्र का एक क्लोजअप।
  • पासबैंड में, अण्डाकार तर्कसंगत कार्य शून्य और एकता के बीच भिन्न होता है। इसलिए पासबैंड का लाभ 1 और . के बीच भिन्न होगा .
  • स्टॉपबैंड में, अण्डाकार तर्कसंगत कार्य अनंत और भेदभाव कारक के बीच भिन्न होता है जिसे इस प्रकार परिभाषित किया गया है:
स्टॉपबैंड का लाभ इसलिए 0 और . के बीच भिन्न होगा .
  • की सीमा में अण्डाकार तर्कसंगत कार्य एक चेबीशेव बहुपद बन जाता है, और इसलिए फ़िल्टर एक चेबीशेव फ़िल्टर बन जाता है, जिसमें तरंग कारक
  • चूंकि बटरवर्थ फिल्टर चेबीशेव फिल्टर का एक सीमित रूप है, यह इस प्रकार है कि . की सीमा में , तथा ऐसा है कि फ़िल्टर बटरवर्थ फ़िल्टर बन जाता है
  • की सीमा में , तथा ऐसा है कि तथा , फ़िल्टर लाभ के साथ चेबीशेव फ़िल्टर बन जाता है


डंडे और शून्य

= 0.5, = 1.05 और के साथ जटिल आवृत्ति स्थान (s = + jω) में 8वें क्रम के अण्डाकार फ़िल्टर के लाभ के निरपेक्ष मान का लॉग0 = 1. सफेद धब्बे ध्रुव होते हैं और काले धब्बे शून्य होते हैं। कुल 16 ध्रुव और 8 दोहरे शून्य हैं। संक्रमण क्षेत्र के पास जो एक एकल ध्रुव और शून्य प्रतीत होता है वह वास्तव में चार ध्रुव और दो दोहरे शून्य हैं जैसा कि नीचे विस्तृत दृश्य में दिखाया गया है। इस छवि में, काला 0.0001 या उससे कम के लाभ से मेल खाता है और सफेद 10 या अधिक के लाभ से मेल खाता है।
उपरोक्त छवि के संक्रमण क्षेत्र में एक विस्तारित दृश्य, चार ध्रुवों और दो दोहरे शून्य को हल करता है।

एक अण्डाकार फिल्टर के लाभ के शून्य अण्डाकार तर्कसंगत कार्य के ध्रुवों के साथ मेल खाएंगे, जो कि अण्डाकार तर्कसंगत कार्यों पर लेख में प्राप्त किए गए हैं।

एक अण्डाकार फिल्टर के लाभ के ध्रुवों को एक प्रकार I चेबीशेव फिल्टर के लाभ के ध्रुवों की व्युत्पत्ति के समान ही प्राप्त किया जा सकता है। सादगी के लिए, मान लें कि कटऑफ आवृत्ति एकता के बराबर है। ध्रुव अण्डाकार फिल्टर के लाभ का लाभ के हर के शून्य होंगे। जटिल आवृत्ति का उपयोग करना इस का मतलब है कि:

परिभाषित जहाँ cd() जैकोबी अण्डाकार फलन है और अण्डाकार परिमेय फलनों की परिभाषा का उपयोग करने से उपज प्राप्त होती है:

कहाँ पे तथा . w . के लिए हल करना

जहां व्युत्क्रम cd () फ़ंक्शन के कई मान पूर्णांक सूचकांक m का उपयोग करके स्पष्ट किए जाते हैं।

अण्डाकार लाभ समारोह के ध्रुव तब हैं:

जैसा कि चेबीशेव बहुपद के मामले में है, इसे स्पष्ट रूप से जटिल रूप में व्यक्त किया जा सकता है (Lutovac & et al. 2001, § 12.8)

कहाँ पे का एक कार्य है तथा तथा अण्डाकार परिमेय फलन के शून्यक हैं। जैकोबी अण्डाकार कार्यों के संदर्भ में, या कुछ आदेशों के लिए बीजगणितीय रूप से, विशेष रूप से 1,2, और 3 ऑर्डर के लिए सभी के लिए व्यक्त किया जा सकता है। ऑर्डर 1 और 2 के लिए हमारे पास है

कहाँ पे

के लिए बीजीय व्यंजक बल्कि शामिल है (देखें Lutovac & et al. (2001, § 12.8.1))

अण्डाकार तर्कसंगत कार्यों की नेस्टिंग संपत्ति का उपयोग उच्च क्रम के भावों के निर्माण के लिए किया जा सकता है :

कहाँ पे .

न्यूनतम क्यू-कारक अण्डाकार फिल्टर

तरंग कारक के कार्य के रूप में = 1.1 के साथ 8-वें क्रम के अण्डाकार फ़िल्टर के ध्रुवों के सामान्यीकृत क्यू-कारक। प्रत्येक वक्र चार ध्रुवों का प्रतिनिधित्व करता है, क्योंकि जटिल संयुग्म ध्रुव जोड़े और सकारात्मक-नकारात्मक ध्रुव जोड़े में समान क्यू-कारक होता है। (नीला और सियान वक्र लगभग मेल खाते हैं)। सभी ध्रुवों के क्यू-कारक को एक साथ ε . पर कम से कम किया जाता हैQmin = 1 / Ln = 0.02323...

देखना Lutovac & et al. (2001, § 12.11, 13.14).

अण्डाकार फिल्टर आमतौर पर पासबैंड रिपल, स्टॉपबैंड रिपल और कटऑफ के तीखेपन के लिए एक विशेष मूल्य की आवश्यकता के द्वारा निर्दिष्ट किए जाते हैं। यह आमतौर पर फ़िल्टर ऑर्डर का न्यूनतम मान निर्दिष्ट करेगा जिसका उपयोग किया जाना चाहिए। एक अन्य डिज़ाइन विचार फ़िल्टर बनाने के लिए उपयोग किए जाने वाले इलेक्ट्रॉनिक घटकों के मूल्यों के लिए लाभ फ़ंक्शन की संवेदनशीलता है। यह संवेदनशीलता फिल्टर के स्थानांतरण समारोह के ध्रुवों के गुणवत्ता कारक (क्यू-कारक) के विपरीत आनुपातिक है। ध्रुव के क्यू-कारक को इस प्रकार परिभाषित किया गया है:

और लाभ फलन पर ध्रुव के प्रभाव का एक माप है। एक अण्डाकार फिल्टर के लिए, ऐसा होता है कि, किसी दिए गए क्रम के लिए, तरंग कारक और चयनात्मकता कारक के बीच एक संबंध मौजूद होता है जो एक साथ स्थानांतरण फ़ंक्शन में सभी ध्रुवों के क्यू-कारक को कम करता है:

इसका परिणाम एक फ़िल्टर में होता है जो घटक विविधताओं के लिए अधिकतम रूप से असंवेदनशील होता है, लेकिन पासबैंड और स्टॉपबैंड तरंगों को स्वतंत्र रूप से निर्दिष्ट करने की क्षमता खो जाएगी। ऐसे फिल्टर के लिए, जैसे-जैसे ऑर्डर बढ़ता है, दोनों बैंडों में तरंग कम हो जाएगी और कटऑफ की दर बढ़ जाएगी। यदि कोई कटऑफ की एक विशेष दर के साथ फिल्टर बैंड में एक विशेष न्यूनतम तरंग को प्राप्त करने के लिए न्यूनतम-क्यू अण्डाकार फिल्टर का उपयोग करने का निर्णय लेता है, तो आवश्यक ऑर्डर आम तौर पर उस ऑर्डर से अधिक होगा जिसकी आवश्यकता न्यूनतम-क्यू के बिना होगी। प्रतिबंध लाभ के निरपेक्ष मूल्य की एक छवि पिछले खंड की छवि की तरह ही दिखेगी, सिवाय इसके कि ध्रुवों को एक दीर्घवृत्त के बजाय एक वृत्त में व्यवस्थित किया जाता है। वे समान रूप से दूरी पर नहीं होंगे और बटरवर्थ फिल्टर के विपरीत, अक्ष पर शून्य होंगे, जिनके ध्रुव बिना शून्य वाले समान दूरी वाले सर्कल में व्यवस्थित होते हैं।

अन्य रैखिक फिल्टर के साथ तुलना

यहाँ एक छवि है जो समान गुणांक के साथ प्राप्त अन्य सामान्य प्रकार के फ़िल्टर के बगल में अण्डाकार फ़िल्टर दिखा रही है:

सीधा = 3.6 जैसा कि छवि से स्पष्ट है, अण्डाकार फिल्टर अन्य सभी की तुलना में तेज होते हैं, लेकिन वे पूरे बैंडविड्थ पर तरंग दिखाते हैं।

संदर्भ

  • Daniels, Richard W. (1974). Approximation Methods for Electronic Filter Design. New York: McGraw-Hill. ISBN 0-07-015308-6.
  • Lutovac, Miroslav D.; Tosic, Dejan V.; Evans, Brian L. (2001). Filter Design for Signal Processing using MATLAB and Mathematica. New Jersey, USA: Prentice Hall. ISBN 0-201-36130-2.


==