कॉपर इंटरकनेक्ट

From Vigyanwiki

सेमीकंडक्टर में कॉपर इंटरकनेक्ट कॉपर से बने इंटरकनेक्ट (एकीकृत परिपथ ) होते हैं। प्रसार देरी और बिजली की खपत को कम करने के लिए उनका उपयोग सिलिकॉन एकीकृत सर्किट (आईसी) में किया जाता है। चूंकि तांबा अल्युमीनियम की तुलना में एक बेहतर कंडक्टर है, आईसी अपने इंटरकनेक्ट्स के लिए तांबे का उपयोग कर संकरे आयामों के साथ इंटरकनेक्ट (एकीकृत सर्किट) हैं, और उनके माध्यम से बिजली पारित करने के लिए कम ऊर्जा का उपयोग कर सकते हैं। साथ में, ये प्रभाव आईसी को बेहतर प्रदर्शन की ओर ले जाते हैं। उन्हें पहली बार 1997 में MOTOROLA की सहायता से आईबीएम द्वारा पेश किया गया था।[1] एल्युमिनियम से कॉपर में संक्रमण के लिए निर्माण (अर्धचालक) तकनीकों में महत्वपूर्ण विकास की आवश्यकता होती है, जिसमें धातु के पैटर्न के साथ-साथ सिलिकॉन को संभावित रूप से नुकसान पहुँचाने वाले तांबे के परमाणुओं से अलग करने के लिए बैरियर मेटल लेयर्स की शुरुआत के लिए मौलिक रूप से अलग-अलग तरीके शामिल हैं।

हालांकि सुपरकॉन्फॉर्मल कॉपर इलेक्ट्रोडपोस्टियन के तरीकों को 1960 के अंत से जाना जाता था, स्केल (जैसे माइक्रोचिप्स में) के माध्यम से (उप) माइक्रोन पर उनका आवेदन केवल 1988-1995 में शुरू हुआ (आंकड़ा देखें)। वर्ष 2002 तक यह एक परिपक्व तकनीक बन गई और इस क्षेत्र में अनुसंधान और विकास के प्रयास कम होने लगे।

पैटर्निंग

हालांकि 1947 के बाद से वाष्पशील तांबे के यौगिक के कुछ रूप मौजूद हैं,[2] शताब्दी बढ़ने के साथ और अधिक खोजे जाने के साथ,[3] कोई भी औद्योगिक उपयोग में नहीं था, इसलिए तांबे को फोटोलिथोग्राफी और प्लाज्मा नक़्क़ाशी की पिछली तकनीकों द्वारा प्रतिरूपित नहीं किया जा सकता था, जिसका उपयोग एल्यूमीनियम के साथ बड़ी सफलता के साथ किया गया था। प्लाज़्मा ईच कॉपर की अक्षमता के कारण धातु पैटर्निंग प्रक्रिया पर भारी पुनर्विचार करना पड़ा और इस पुनर्विचार का परिणाम एक ऐसी प्रक्रिया थी जिसे एडिटिव पैटर्निंग के रूप में संदर्भित किया गया, जिसे डैमस्किंग के रूप में भी जाना जाता है। दमिश्क या दोहरी-दमिश्की प्रक्रिया धातु जड़ने की एक पारंपरिक तकनीक के अनुरूप है।[citation needed]

इस प्रक्रिया में, अंतर्निहित सिलिकॉन ऑक्साइड इन्सुलेट परत खुली खाइयों के साथ प्रतिरूपित होती है जहां कंडक्टर होना चाहिए। तांबे की एक मोटी परत जो खाइयों को काफी हद तक भर देती है, इन्सुलेटर पर जमा हो जाती है, और रासायनिक-यांत्रिक समतलीकरण (CMP) का उपयोग तांबे को हटाने के लिए किया जाता है (जिसे ओवरबर्डन के रूप में जाना जाता है) जो इन्सुलेट परत के ऊपर से ऊपर तक फैला होता है। इंसुलेटिंग लेयर की खाइयों के भीतर धंसा हुआ कॉपर हटाया नहीं जाता है और पैटर्न वाला कंडक्टर बन जाता है। दमिस्सीन प्रक्रियाएं आम तौर पर प्रति दमिश्क चरण तांबे के साथ एक एकल विशेषता बनाती हैं और भरती हैं। दोहरे दमिश्क प्रक्रियाएं आम तौर पर एक साथ तांबे के साथ दो विशेषताएं बनाती हैं और भरती हैं, उदाहरण के लिए, एक खाई (इलेक्ट्रॉनिक्स) के ऊपर से गुजरने वाली खाई दोनों को दोहरे दमिश्क का उपयोग करके एक एकल तांबे के जमाव से भरा जा सकता है।[citation needed]

इन्सुलेटर और तांबे की क्रमिक परतों के साथ, एक बहुपरत इंटरकनेक्ट संरचना बनाई जाती है। परतों की संख्या आईसी के कार्य पर निर्भर करती है, 10 या अधिक धातु परतें संभव हैं। एक प्लानर और समान फैशन में तांबे की कोटिंग को हटाने के लिए सीएमपी की क्षमता के बिना, और तांबे-इन्सुलेटर इंटरफ़ेस पर बार-बार रोकने के लिए सीएमपी प्रक्रिया की क्षमता के बिना, यह तकनीक वसूली योग्य नहीं होगी।[citation needed]

बैरियर मेटल

तांबे के सभी इंटरकनेक्ट को एक बाधा धातु की परत से पूरी तरह से घेरना चाहिए, क्योंकि आसपास की सामग्रियों में तांबे का प्रसार उनके गुणों को कम कर देगा। उदाहरण के लिए, सिलिकॉन तांबे के साथ डोपिंग (सेमीकंडक्टर) करते समय गहरे स्तर के जाल बनाता है। जैसा कि नाम से पता चलता है, एक बाधा धातु को तांबे के प्रसार को पर्याप्त रूप से नीचे सिलिकॉन से तांबे के कंडक्टर को रासायनिक रूप से अलग करने के लिए सीमित करना चाहिए, फिर भी एक अच्छा इलेक्ट्रॉनिक संपर्क बनाए रखने के लिए उच्च विद्युत चालकता होनी चाहिए।

बैरियर फिल्म की मोटाई भी काफी महत्वपूर्ण है; बहुत पतली परत के साथ, तांबे के संपर्क उन उपकरणों को जहर देते हैं जिनसे वे जुड़ते हैं; बहुत मोटी परत के साथ, दो बाधा धातु फिल्मों के ढेर और तांबे के कंडक्टर में एल्यूमीनियम इंटरकनेक्ट की तुलना में अधिक कुल प्रतिरोध होता है, जिससे कोई लाभ नहीं होता है।

पहले के एल्युमिनियम से तांबे पर आधारित कंडक्टरों में जाने में चालकता में सुधार मामूली था, और उतना अच्छा नहीं था जितना कि एल्यूमीनियम और तांबे की थोक चालकता की एक साधारण तुलना से उम्मीद की जा सकती है। कॉपर कंडक्टर के चारों तरफ बैरियर मेटल्स को जोड़ने से कंडक्टर का क्रॉस-सेक्शनल क्षेत्र काफी कम हो जाता है जो शुद्ध, कम प्रतिरोध वाले तांबे से बना होता है। सिलिकॉन या एल्यूमीनियम परतों से सीधे संपर्क करते समय कम ओमिक प्रतिरोध को बढ़ावा देने के लिए एल्यूमीनियम को एक पतली अवरोधक धातु की आवश्यकता होती है, जबकि आसपास के सिलिकॉन ऑक्साइड इंसुलेटर से एल्यूमीनियम को अलग करने के लिए धातु लाइनों के किनारों पर बाधा धातुओं की आवश्यकता नहीं होती है। इसलिए वैज्ञानिक बफर परत का उपयोग किए बिना सिलिकॉन सबस्ट्रेट्स में तांबे के प्रसार को कम करने के नए तरीकों की तलाश कर रहे हैं। एक विधि तांबे-जर्मेनियम मिश्र धातु को इंटरकनेक्ट सामग्री के रूप में उपयोग करना है ताकि बफर परत (जैसे टाइटेनियम नाइट्राइड) की अब आवश्यकता न हो। एपिटैक्सियल क्यू3Ge परत को क्रमशः 6 ± 1 μΩ सेमी की औसत प्रतिरोधकता और ~4.47 ± 0.02 eV के कार्य समारोह के साथ गढ़ा गया है,[4] तांबे के एक अच्छे विकल्प के रूप में इसकी योग्यता।

विद्युत प्रवासन

इलेक्ट्रोमाइग्रेशन का प्रतिरोध, वह प्रक्रिया जिसके द्वारा धातु कंडक्टर इसके माध्यम से बहने वाले विद्युत प्रवाह के प्रभाव में आकार बदलता है और जो अंततः कंडक्टर को तोड़ने की ओर जाता है, तांबे के साथ एल्यूमीनियम की तुलना में काफी बेहतर है। इलेक्ट्रोमाइग्रेशन प्रतिरोध में यह सुधार एल्यूमीनियम की तुलना में दिए गए आकार के कॉपर कंडक्टर के माध्यम से उच्च धाराओं को प्रवाहित करने की अनुमति देता है। इलेक्ट्रोमाइग्रेशन प्रतिरोध में इस सुधार के साथ-साथ चालकता में मामूली वृद्धि का संयोजन अत्यधिक आकर्षक साबित हुआ था। इन प्रदर्शन सुधारों से प्राप्त समग्र लाभ अंततः उच्च प्रदर्शन अर्धचालक उपकरणों के लिए तांबे-आधारित प्रौद्योगिकियों और निर्माण विधियों में पूर्ण पैमाने पर निवेश करने के लिए पर्याप्त थे, और तांबे-आधारित प्रक्रियाएं आज अर्धचालक उद्योग के लिए कला की स्थिति बनी हुई हैं।

कॉपर का सुपरकॉन्फॉर्मल इलेक्ट्रोडपोजिशन

लॉग (एन + 1) प्रति वर्ष पेटेंट परिवारों (दुनिया भर में) और गैर-पेटेंट प्रकाशनों की संख्या सुपरकॉन्फॉर्मल कॉपर इलेक्ट्रोडपोजिशन के बारे में
इलेक्ट्रोप्लेटिंग में विभिन्न परिदृश्यों को दर्शाने वाली योजनाबद्ध। (ए) शीर्ष पर तेजी से जमा दर, (बी) समान जमा दर और (सी) तल पर तेज जमा दर (सुपरफिल)।

पिछले वर्षों में ऑन-चिप ट्रांजिस्टर आकार में लगातार कमी के कारण 2005 के आसपास प्रोसेसर आवृत्ति 3 गीगाहर्ट्ज तक पहुंच गई। इस बिंदु पर, इंटरकनेक्ट्स का कैपेसिटिव आरसी कपलिंग गति (आवृत्ति) -लिमिटिंग कारक बन गया।[5]

R और C दोनों को कम करने की प्रक्रिया 1990 के दशक के अंत में शुरू हुई, जब Al (एल्यूमीनियम) को कम R के लिए Cu (तांबा) से बदल दिया गया, और SiO2 को कम C के लिए कम-k डाइलेक्ट्रिक्स से बदल दिया गया। Cu को प्रतिस्थापन के रूप में चुना गया अल, क्योंकि यह कमरे के तापमान पर कम लागत वाली सामग्रियों के बीच सबसे कम इलेक्ट्रॉनिक प्रतिरोध है, और क्योंकि क्यूई अल की तुलना में धीमी इलेक्ट्रोमाइग्रेशन दिखाता है। उल्लेखनीय रूप से, अल इंटरकनेक्ट्स के मामले में पैटर्निंग प्रक्रिया में अनकोटेड क्षेत्रों में चयनात्मक अल नक़्क़ाशी (यानी घटिया निर्माण प्रक्रिया) शामिल है, जिसके बाद एक ढांकता हुआ जमाव होता है। चूंकि तांबे के स्थानिक-चयनात्मक नक़्क़ाशी की कोई विधि ज्ञात नहीं थी, इसके बजाय ढांकता हुआ नक़्क़ाशी (पैटर्निंग) लागू की गई थी। Cu डिपोजिशन (यानी एक एडिटिव मैन्युफैक्चरिंग प्रोसेस) के लिए, IBM टीम ने 1990 के दशक के अंत में इलेक्ट्रोप्लेटिंग का चयन किया। इसने सेमीकंडक्टर/माइक्रोचिप उद्योग में 'तांबा क्रांति' की शुरुआत की।

तांबा चढ़ाना एक सुरक्षात्मक परत (टा, टाएन, एसआईएन या सीआईसी) के माध्यम से दीवारों को कोटिंग के साथ शुरू होता है, जो सिलिकॉन में क्यू प्रसार को रोकता है। फिर, दीवारों के माध्यम से एक पतली बीज Cu परत का भौतिक वाष्प जमाव किया जाता है। [6] इलेक्ट्रोडपोजिशन के अगले चरण के लिए प्रमोटर के रूप में यह "बीज परत" सर्वर। आम तौर पर, Cu2+ आयन के धीमे जन-परिवहन के कारण, विद्युत लेपन व्यास के भीतर गहरा धीमा होता है। ऐसी स्थिति में भरने से भीतर शून्य का निर्माण होता है। इस तरह के दोषों से बचने के लिए, जैसा कि चित्र ए में दिखाया गया है, बॉटम-अप फिलिंग (या सुपरकॉन्फॉर्मल) फिलिंग की आवश्यकता होती है।

सुपरकॉन्फॉर्मल कॉपर इलेक्ट्रोप्लेटिंग के लिए तरल समाधान में आमतौर पर एमएम सांद्रता में कई योजक शामिल होते हैं: क्लोराइड आयन, एक दबानेवाला यंत्र (जैसे पॉलीथीन ग्लाइकॉल), एक त्वरक (जैसे बीआईएस (3-सल्फोप्रोपाइल) डाइसल्फ़ाइड) और एक लेवलिंग एजेंट (जैसे जानूस ग्रीन बी)। [7] सुपरकॉन्फॉर्मल मेटल इलेक्ट्रोप्लेटिंग के लिए दो मुख्य मॉडल प्रस्तावित किए गए हैं:

1) कर्वेचर एन्हांस्ड एडसोर्बेट कंसंट्रेशन (CEAC) मॉडल से पता चलता है कि जैसे-जैसे थ्रू के तल पर तांबे की परत की वक्रता बढ़ती है, और सोखने वाले त्वरक की सतह का कवरेज भी बढ़ता है, इन क्षेत्रों में काइनेटिक रूप से सीमित Cu जमाव की सुविधा होती है। यह मॉडल त्वरक की भूमिका पर जोर देता है।

2) एस-आकार का नकारात्मक अंतर प्रतिरोध (एस-एनडीआर) मॉडल इसके बजाय दावा करता है, कि मुख्य प्रभाव दबानेवाला यंत्र से आता है, जो अपने उच्च आणविक भार / धीमी गति से प्रसार के माध्यम से नीचे तक नहीं पहुंचता है और अधिमान्य रूप से शीर्ष पर सोखता है के माध्यम से, जहां यह Cu चढ़ाना को रोकता है।

किसी भी मॉडल का समर्थन करने के लिए प्रायोगिक साक्ष्य हैं। सामंजस्यपूर्ण राय यह है कि तल पर Cu चढ़ाना की उच्च दर को भरने के माध्यम से नीचे-ऊपर के शुरुआती चरणों में वहाँ PEG दबानेवाला यंत्र अणुओं की कमी के कारण होता है (तेजी से पर्याप्त द्रव्यमान प्रदान करने के लिए उनका प्रसार गुणांक बहुत कम है- परिवहन)। त्वरक, जो एक छोटा और तेजी से फैलने वाला अणु है, के माध्यम से नीचे तक पहुंचता है, जहां दबानेवाला यंत्र के बिना Cu चढ़ाना की दर को तेज करता है। चढ़ाना के अंत में, त्वरक चढ़ाए गए तांबे की सतह पर उच्च सांद्रता में रहता है, जिससे अंतिम टक्कर बनती है।

यह भी देखें

संदर्भ

  1. "IBM100 - Copper Interconnects: The Evolution of Microprocessors". 7 March 2012. Retrieved 17 October 2012.
  2. Kőrösy, F.; Misler, G (1947). "कॉपर का एक वाष्पशील यौगिक". Nature. 160 (4053): 21. Bibcode:1947Natur.160...21K. doi:10.1038/160021a0. PMID 20250932. S2CID 43410902.
  3. Jeffries, Patrick M.; Wilson, Scott R.; Girolami, Gregory S. (1992). "वाष्पशील मोनोमेरिक कॉपर (II) फ्लोरोआल्कॉक्साइड्स का संश्लेषण और लक्षण वर्णन". Inorganic Chemistry. 31 (22): 4503. doi:10.1021/ic00048a013.
  4. Wu, Fan; Cai, Wei; Gao, Jia; Loo, Yueh-Lin; Yao, Nan (2016-07-01). "Nanoscale electrical properties of epitaxial Cu3Ge film". Scientific Reports (in English). 6: 28818. Bibcode:2016NatSR...628818W. doi:10.1038/srep28818. ISSN 2045-2322. PMC 4929471. PMID 27363582.
  5. Haumesser, 2016, 10.1016/b978-1-78548-092-8.50004-5
  6. Kim, 2022, 10.3390/electronics11182914
  7. Burkett, 2020, 10.1116/6.0000026