ग्राफिकल मॉडल

From Vigyanwiki

एक आलेखीय मॉडल या प्रायिकतात्मक आलेखीय मॉडल (पीजीएम) या संरचित प्रायिकतात्मक मॉडल वह मॉडल है जिसके लिए एक आलेख (असतत गणित) यादृच्छिक चर के बीच प्रतिबंधात्मक निर्भरता के संरचना को व्यक्त करता है। वे सामान्यतः प्रायिकतात्मकता सिद्धांत, सांख्यिकी-विशेष रूप से बायेसियन सांख्यिकी और मशीन अधिगम में उपयोग किए जाते हैं।

आलेखीय मॉडल के प्रकार

सामान्यतः, प्रायिकतात्मक आलेखीय मॉडल एक आलेख-आधारित प्रतिनिधित्व का उपयोग एक बहु-आयामी स्थान पर वितरण को कोडित करने के लिए आधार के रूप में करते हैं और एक आलेख जो विशिष्ट वितरण में होने वाली अभिकलनों के एक समुच्चय का सघन या आकारिकी आलेख को प्रतिनिधित्व करता है। वितरण के आलेखीय प्रतिनिधित्व की दो शाखाओं का सामान्यतः उपयोग किया जाता है, ये दो शाखाएं बायेसियन नेटवर्क और मार्कोव अनियमित क्षेत्र हैं। दोनों समूह गुणनखंड और अभिकलन के गुणों को सम्मिलित करते हैं, लेकिन वे उन अभिकलनों के समुच्चय में भिन्न होते हैं जिन्हें वे सांकेतिक रूप से प्रयोग कर सकते हैं और वे वितरण के गुणनखंड को प्रेरित करते हैं।[1]


अप्रत्यक्ष आलेखीय मॉडल

An undirected graph with four vertices.
चार शीर्षों वाला एक अप्रत्यक्ष आलेख ।

दिखाए गए अप्रत्यक्ष आलेख कई व्याख्याओं में से एक हो सकती है; सामान्य विशेषता यह है कि सीमाओं की उपस्थिति का तात्पर्य संगत यादृच्छिक चर के बीच किसी प्रकार की निर्भरता से है। इस आलेख से हम यह अनुमान लगा सकते हैं कि एक बार सभी परस्पर स्वतंत्र हैं, एक बार ज्ञात होने पर परिणामतः (समकक्ष रूप से इस सन्दर्भ में) यह कहा जा सकता है कि

कुछ गैर-नकारात्मक फलन के लिए होता है।

बायेसियन नेटवर्क

Example of a directed acyclic graph on four vertices.
चार शीर्षों पर निर्देशित एसाइक्लिक आलेख का उदाहरण।

यदि मॉडल की नेटवर्क संरचना एक निर्देशित अचक्रीय आलेख है, तो मॉडल सभी यादृच्छिक चरों की संयुक्त संभावना के गुणनखंड का प्रतिनिधित्व करता है। यदि अधिक निर्धारित, घटनाएं हैं तब संयुक्त संभावना संतुष्ट होती है।

जहाँ नोड (किनारों के साथ नोड्स की ओर निर्देशित ) के मूल प्रमुख का समुच्चय है। दूसरे शब्दों में, प्रतिबंधात्मक वितरण के उत्पाद में संयुक्त वितरण आकारिकी का समुच्चय है। उदाहरण के लिए, चित्र में दिखाए गए निर्देशित चक्रीय आलेख में यह गुणनखंड होगा।

.

कोई भी दो नोड अपने मूल प्रमुख के मानों को देखते हुए प्रतिबंधात्मक रूप से स्वतंत्र हैं | सामान्यतः, नोड्स के किसी भी दो समुच्चय प्रतिबंधात्मक रूप से स्वतंत्र होते हैं, यदि डी-पृथक्करण नामक एक मानदंड आलेख में रहता है। बायेसियन नेटवर्क में स्थानीय अभिकलन और वैश्विक अभिकलन समान हैं।

इस प्रकार के आलेखीय मॉडल को निर्देशित आलेखीय मॉडल, बायेसियन नेटवर्क या पूर्वोत्तरपद नेटवर्क के रूप में जाना जाता है। प्रथम श्रेणी का मशीन लर्निंग मॉडल जैसे छिपे हुए मार्कोव मॉडल, तंत्रिकीय - तंत्र और नए मॉडल जैसे चर-क्रम मार्कोव मॉडल को बायेसियन नेटवर्क के विशेष सन्दर्भ माना जा सकता है।

सबसे सरल बायेसियन नेटवर्क में से एक अनुभवहीन बेज़ वर्गीकरण है।

चक्रीय निर्देशित आलेखीय मॉडल

An example of a directed graphical model.
निर्देशित, चक्रीय आलेखीय मॉडल का एक उदाहरण। प्रत्येक तीर एक निर्भरता को इंगित करता है। इस उदाहरण में: D, A, B और C पर निर्भर करता है; और C, B और D पर निर्भर करता है; जबकि A और B प्रत्येक स्वतंत्र हैं।

अगला आंकड़ा एक चक्र के साथ एक आलेखीय मॉडल को दर्शाता है। इसकी व्याख्या किसी न किसी रूप में इसके मूल प्रमुख के मानों के 'आधार' पर प्रत्येक चर के संदर्भ में की जा सकती है।

दिखाया गया विशेष आलेख एक संयुक्त प्रायिकतात्मकता घनत्व का सुझाव देता है जो आकारिकी के रूप में होता है।

,

लेकिन अन्य व्याख्याएं भी संभव हैं।[2]


अन्य प्रकार

प्रवाल डेटासमुच्चय के लिए टैन मॉडल।
  • लक्षित बायेसियन नेटवर्क लर्निंग (टीबीएनएल)
    कोरल डेटासमुच्चय के लिए टीबीएनएल मॉडल
    *एक आकारिकी आलेख एक अप्रत्यक्ष द्विदलीय आलेख है जो चर और आकारिकी को जोड़ता है। प्रत्येक आकारिकी उन चरों पर एक फलन का प्रतिनिधित्व करता है जिनसे यह जुड़ा हुआ है। पूर्वोत्तरपद प्रसारण को समझने और लागू करने के लिए यह एक उपयोगी प्रतिनिधित्व है। निर्भरता नेटवर्क (आलेखीय मॉडल) जहां चक्रों की अनुमति है।
  • एक क्लिक ट्री या जंक्शन ट्री, गुट (आलेख सिद्धांत) का एक वृक्ष (आलेख सिद्धांत) है, जिसका उपयोग जंक्शन ट्री कलन विधि में किया जाता है।
  • एक श्रृंखला आलेख एक ऐसा आलेख है जिसमें निर्देशित और अप्रत्यक्ष दोनों सीमाएं हो सकते हैं, लेकिन बिना किसी निर्देशित चक्र के (अर्थात यदि हम किसी शीर्ष पर प्रारम्भ करते हैं और किसी भी तीर की दिशाओं का सम्मान करते हुए आलेख के साथ आगे बढ़ते हैं, तो हम उस शीर्ष पर वापस नहीं लौट सकते हैं जहां से हमने प्रारम्भ किया था) यदि हमने एक तीर स्वीकार्य किया है। निर्देशित चक्रीय रेखांकन और अप्रत्यक्ष रेखांकन दोनों श्रृंखला रेखांकन के विशेष सन्दर्भ हैं, जो बायेसियन और मार्कोव नेटवर्क को एकीकृत और सामान्य बनाने का एक तरीका प्रदान कर सकते हैं।[3]
  • पूर्वज संबंधी आलेख एक अन्य विस्तार है, जिसमें निर्देशित, द्विदिश और अप्रत्यक्ष सीमाओं हैं।[4]
  • यादृच्छिक क्षेत्र तकनीकें मार्कोव यादृच्छिक क्षेत्र, जिसे मार्कोव नेटवर्क के रूप में भी जाना जाता है, एक अप्रत्यक्ष आलेख पर एक मॉडल है। कई दोहराई गई उप इकाई के साथ एक आलेखीय मॉडल को एकलविमीय अंकन के साथ प्रदर्शित किया जा सकता है।
  • एक प्रतिबंधात्मक यादृच्छिक क्षेत्र एक भेदभावपूर्ण मॉडल है जो एक अप्रत्यक्ष आलेख पर निर्दिष्ट है।
  • एक प्रतिबंधित बोल्ट्जमैन मशीन एक द्विदलीय आलेख जनरेटिव मॉडल है जो एक अप्रत्यक्ष आलेख पर निर्दिष्ट है।

अनुप्रयोग

मॉडल का प्रारूप, जो जटिल वितरण में संरचना की खोज और विश्लेषण के लिए उन्हें संक्षिप्त रूप से वर्णन करने और असंरचित जानकारी निकालने के लिए कलन विधि को प्रदान करता है, वह उन्हें प्रभावी ढंग से निर्मित और उपयोग करने की अनुमति देता है।[1]आलेखीय मॉडल के अनुप्रयोगों में कारण अनुमान, सूचना निष्कर्षण, भाषण मान्यता, कंप्यूटर दृष्टि, कम घनत्व समानता-जांच कोड का डिकोडिंग, जीन नियामक नेटवर्क का मॉडलिंग, जीन खोज और रोगों का निदान, और प्रोटीन संरचना के लिए आलेखीय मॉडल सम्मिलित हैं।

यह भी देखें

टिप्पणियाँ

  1. 1.0 1.1 Koller, D.; Friedman, N. (2009). Probabilistic Graphical Models. Massachusetts: MIT Press. p. 1208. ISBN 978-0-262-01319-2. Archived from the original on 2014-04-27.
  2. Richardson, Thomas (1996). "A discovery algorithm for directed cyclic graphs". Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence. ISBN 978-1-55860-412-4.
  3. Frydenberg, Morten (1990). "चेन ग्राफ मार्कोव संपत्ति". Scandinavian Journal of Statistics. 17 (4): 333–353. JSTOR 4616181. MR 1096723.
  4. Richardson, Thomas; Spirtes, Peter (2002). "Ancestral graph Markov models". Annals of Statistics. 30 (4): 962–1030. CiteSeerX 10.1.1.33.4906. doi:10.1214/aos/1031689015. MR 1926166. Zbl 1033.60008.


अग्रिम पठन

पुस्तकें और पुस्तक अध्याय

  • Barber, David (2012). बायेसियन रीजनिंग एंड मशीन लर्निंग. Cambridge University Press. ISBN 978-0-521-51814-7.

जर्नल लेख

अन्य

बाहरी संबंध