प्रीओन

From Vigyanwiki
Revision as of 15:09, 18 May 2023 by alpha>Indicwiki (Created page with "{{Short description|Theoretical subatomic particle}} {{for multi|the infectious proteins|Prion|the chemical pollutants|Chlorofluorocarbon}} कण भौतिकी म...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

कण भौतिकी में, प्रीऑन बिंदु कण होते हैं, जिन्हें क्वार्क और लेपटोन के उप-घटक के रूप में माना जाता है।[1] यह शब्द 1974 में जोगेश पति और नमस्ते अब्दुस द्वारा गढ़ा गया था। प्रीऑन मॉडल में रुचि 1980 के दशक में चरम पर थी, लेकिन धीमी हो गई, क्योंकि कण भौतिकी का मानक मॉडल ज्यादातर सफलतापूर्वक भौतिकी का वर्णन करना जारी रखता है, और लेप्टान और क्वार्क समग्रता के लिए कोई प्रत्यक्ष प्रायोगिक साक्ष्य नहीं है। मिल गया है। प्रीऑन्स चार किस्मों में आते हैं, प्लस, एंटी-प्लस, जीरो और एंटी-जीरो। W बोसोन में छह प्रीऑन होते हैं, और क्वार्क और लेप्टॉन में केवल तीन होते हैं।

हैड्रान क्षेत्र में, मानक मॉडल के भीतर कुछ प्रभावों को विसंगतियों के रूप में माना जाता है। उदाहरण के लिए, प्रोटॉन स्पिन संकट, EMC प्रभाव, न्यूक्लियॉन के अंदर विद्युत आवेशों का वितरण, जैसा कि 1956 में रॉबर्ट हॉफस्टाटर द्वारा पाया गया था,[2][3] और तदर्थ सीकेएम मैट्रिक्स तत्व। जब प्रायन शब्द गढ़ा गया था, यह मुख्य रूप से स्पिन के दो परिवारों की व्याख्या करने के लिए था-1/2 fermions: क्वार्क और लेप्टान। अधिक हाल के प्रीऑन मॉडल भी स्पिन-1 बोसोन के लिए खाते हैं, और अभी भी प्रीऑन कहलाते हैं। प्रीऑन मॉडल में से प्रत्येक मानक मॉडल की तुलना में कम मौलिक कणों के एक सेट को एक साथ रखता है, साथ ही उन मूलभूत कणों को कैसे संयोजित और इंटरैक्ट करता है, इसे नियंत्रित करने वाले नियमों के साथ। इन नियमों के आधार पर, प्रीऑन मॉडल मानक मॉडल की व्याख्या करने की कोशिश करते हैं, अक्सर इस मॉडल के साथ छोटी विसंगतियों की भविष्यवाणी करते हैं और नए कणों और कुछ घटनाओं को उत्पन्न करते हैं, जो मानक मॉडल से संबंधित नहीं होते हैं।

प्रीऑन मॉडल के लक्ष्य

Preon अनुसंधान निम्नलिखित की इच्छा से प्रेरित है:

  • कणों की बड़ी संख्या को कम करें, बहुत से जो केवल आवेश में भिन्न होते हैं, अधिक मौलिक कणों की एक छोटी संख्या तक। उदाहरण के लिए, डाउन क्वार्क और ऊपर क्वार्क चार्ज को छोड़कर लगभग समान हैं, और द्रव्यमान में मामूली अंतर है; प्रीऑन अनुसंधान यह समझाने से प्रेरित है कि क्वार्क समान प्रीऑन से बने होते हैं, वृद्धिशील अंतर चार्ज के लिए लेखांकन के साथ। उम्मीद है कि तत्वों की आवर्त सारणी और मेसन और बेरोन के क्वार्क मॉडल के लिए काम करने वाली न्यूनीकरणवादी रणनीति को पुन: पेश किया जा सके।
  • फरमिओन्स की तीन पीढ़ी (कण भौतिकी) होने का कारण स्पष्ट करें।
  • पैरामीटर की गणना करें जो वर्तमान में मानक मॉडल द्वारा अस्पष्टीकृत हैं, जैसे कि एस.एम. का द्रव्यमान। मौलिक फर्मन, उनके विद्युत आवेश और रंग आवेश; असल में, मानक मॉडल द्वारा आवश्यक संख्या से मॉडल-आवश्यक प्रयोगात्मक इनपुट पैरामीटर की संख्या कम करें।
  • इलेक्ट्रॉन न्यूट्रिनो से लेकर शीर्ष क्वार्क तक कथित रूप से मौलिक कणों में देखी गई द्रव्यमान-ऊर्जा की बहुत बड़ी रेंज के लिए कारण प्रदान करें।
  • हिग्स फील्ड को लागू किए बिना विद्युत कमजोर समरूपता को तोड़ने के लिए वैकल्पिक स्पष्टीकरण प्रदान करें, जिसे संभवतः हिग्स फील्ड से जुड़ी सैद्धांतिक समस्याओं को ठीक करने के लिए सुपरसिमेट्री की जरूरत है;[which?] (आगे, अब तक प्रस्तावित सुपरसिमेट्रिक सिद्धांतों की अपनी स्वयं की सैद्धांतिक और अवलोकन संबंधी समस्याएं हैं[which?]).
  • न्यूट्रिनो दोलन और जाहिरा तौर पर न्यूट्रिनो#neutrino_mass_anchor के लिए खाता।
  • नई, गैर-दोहराव वाली भविष्यवाणियां करें, जैसे ठंडा काला पदार्थ वाले उम्मीदवारों को प्रदान करना।
  • व्याख्या करें कि केवल देखी गई कण प्रजातियों की विविधता क्यों मौजूद है, और केवल इन देखे गए कणों के उत्पादन के कारणों के साथ एक मॉडल दें (चूंकि गैर-अवलोकित कणों की भविष्यवाणी कई मौजूदा मॉडलों के साथ एक समस्या है, जैसे कि सुपरसिमेट्री)।

पृष्ठभूमि

1970 के दशक में मानक मॉडल विकसित होने से पहले (मानक मॉडल के प्रमुख तत्व जिन्हें क्वार्क के रूप में जाना जाता है, 1964 में मरे गेल-मान और जॉर्ज ज़्विग द्वारा प्रस्तावित किए गए थे), भौतिकविदों ने कण त्वरक में सैकड़ों विभिन्न प्रकार के कणों का अवलोकन किया। इन्हें उनके भौतिक गुणों पर संबंधों में बड़े पैमाने पर पदानुक्रम की तदर्थ प्रणाली में व्यवस्थित किया गया था, पूरी तरह से वर्गीकरण (जीव विज्ञान) के जानवरों को उनकी भौतिक विशेषताओं के आधार पर समूहीकृत करने के तरीके के विपरीत नहीं था। आश्चर्य की बात नहीं, कणों की विशाल संख्या को कण चिड़ियाघर कहा जाता था।

मानक मॉडल, जो अब कण भौतिकी का प्रचलित मॉडल है, ने नाटकीय रूप से इस तस्वीर को यह दिखाते हुए सरल बना दिया कि देखे गए अधिकांश कण मेसन थे, जो दो क्वार्कों के संयोजन हैं, या बेरिऑन जो तीन क्वार्कों के संयोजन हैं, साथ ही कुछ मुट्ठी भर अन्य कण। सिद्धांत के अनुसार, हमेशा से अधिक शक्तिशाली त्वरक में देखे जा रहे कण आमतौर पर इन क्वार्कों के संयोजन से ज्यादा कुछ नहीं थे।

क्वार्क, लेप्टान और बोसॉन की तुलना

मानक मॉडल के भीतर, कणों की सूची होती है। इनमें से एक, क्वार्क, छह प्रकार के होते हैं, जिनमें से प्रत्येक में तीन किस्में होती हैं (डब कलर चार्ज, लाल, हरा और नीला, जो क्वांटम क्रोमोडायनामिक्स को जन्म देते हैं)।

इसके अतिरिक्त, छह अलग-अलग प्रकार हैं जिन्हें लेप्टान के रूप में जाना जाता है। इन छह लेप्टानों में से तीन आवेशित कण हैं: इलेक्ट्रॉन, म्यूऑन और ताऊ (कण)। न्युट्रीनो में अन्य तीन लेप्टान होते हैं, और प्रत्येक न्यूट्रिनो जोड़े में तीन आवेशित लेप्टान होते हैं।

मानक मॉडल में, फोटॉन और ग्लून्स सहित बोसोन भी होते हैं; डब्ल्यू और जेड बोसोन | डब्ल्यू+, में, और जेड बोसोन; और हिग्स बॉसन; और गुरुत्वाकर्षण के लिए एक खुला स्थान छोड़ दिया। इनमें से लगभग सभी कण बाएं हाथ और दाएं हाथ के संस्करणों में आते हैं (चिरलिटी (भौतिकी) देखें)। क्वार्क, लेप्टान और डब्ल्यू बोसोन सभी में विपरीत विद्युत आवेश वाले एंटीपार्टिकल्स होते हैं (या न्यूट्रिनो के मामले में, कमजोर आइसोस्पिन के विपरीत)।

मानक मॉडल के साथ अनसुलझी समस्याएं

स्टैंडर्ड मॉडल में भी कई समस्याएं हैं जो पूरी तरह से हल नहीं हुई हैं। विशेष रूप से, कण सिद्धांत पर आधारित गुरुत्वाकर्षण का कोई सफल सिद्धांत अभी तक प्रस्तावित नहीं किया गया है। हालांकि मॉडल एक गुरुत्वाकर्षण के अस्तित्व को मानता है, उनके आधार पर एक सुसंगत सिद्धांत तैयार करने के सभी प्रयास विफल रहे हैं।

कलमन[4] दावा करता है कि, परमाणुवाद की अवधारणा के अनुसार, प्रकृति के मूलभूत निर्माण खंड पदार्थ के अविभाज्य टुकड़े हैं जो अनिर्मित और अविनाशी हैं। न तो लेप्टान और न ही क्वार्क वास्तव में अविनाशी हैं, क्योंकि कुछ लेप्टान अन्य लेप्टान में क्षय कर सकते हैं, कुछ क्वार्क अन्य क्वार्क में। इस प्रकार, मौलिक आधारों पर, क्वार्क स्वयं मूलभूत निर्माण खंड नहीं हैं, बल्कि अन्य, मौलिक मात्राओं - प्रीऑन्स से बना होना चाहिए। हालांकि प्रत्येक क्रमिक कण का द्रव्यमान कुछ पैटर्न का पालन करता है, अधिकांश कणों के शेष द्रव्यमान की भविष्यवाणी सटीक रूप से नहीं की जा सकती है, लगभग सभी बेरोनों के द्रव्यमान को छोड़कर जिन्हें डी सूजा (2010) द्वारा अच्छी तरह से प्रतिरूपित किया गया है।[5] मानक मॉडल में ब्रह्मांड की बड़े पैमाने की संरचना की भविष्यवाणी करने में भी समस्याएँ हैं। उदाहरण के लिए, एसएम आमतौर पर ब्रह्मांड में समान मात्रा में पदार्थ और antimatter की भविष्यवाणी करता है। विभिन्न तंत्रों के माध्यम से इसे ठीक करने के लिए कई प्रयास किए गए हैं, लेकिन आज तक किसी को भी व्यापक समर्थन नहीं मिला है। इसी तरह, मॉडल के बुनियादी अनुकूलन प्रोटॉन क्षय की उपस्थिति का सुझाव देते हैं, जो अभी तक नहीं देखा गया है।

प्रीऑन मॉडल के लिए प्रेरणा

काल्पनिक मूल कण घटकों के लिए पार्टन (कण भौतिकी) या प्रीऑन जैसे नामों का उपयोग करके प्रायोगिक और सैद्धांतिक कण भौतिकी में परिणामों की अधिक मौलिक व्याख्या प्रदान करने के प्रयास में कई मॉडल प्रस्तावित किए गए हैं।

प्रीओन सिद्धांत रसायन विज्ञान में आवर्त सारणी की उपलब्धियों को कण भौतिकी में दोहराने की इच्छा से प्रेरित है, जिसने 94 प्राकृतिक रूप से पाए जाने वाले तत्वों को केवल तीन बिल्डिंग-ब्लॉक (प्रोटॉन, न्यूट्रॉन, इलेक्ट्रॉन) के संयोजन में घटा दिया। इसी तरह, मानक मॉडल ने बाद में कई दर्जन कणों को संयोजन के लिए (पहले) सिर्फ तीन क्वार्क के एक अधिक मौलिक स्तर पर कम करके हैड्रोन के कण चिड़ियाघर का आयोजन किया, जिसके परिणामस्वरूप बीसवीं सदी के मध्य कण भौतिकी में बड़ी संख्या में मनमाना स्थिरांक कम हो गए। मानक मॉडल और क्वांटम क्रोमोडायनामिक्स के लिए।

हालांकि, नीचे चर्चा किए गए विशेष प्रीऑन मॉडल ने कण भौतिकी समुदाय के बीच आज तक तुलनात्मक रूप से बहुत कम रुचि को आकर्षित किया है, क्योंकि कोलाइडर प्रयोगों में अब तक कोई सबूत प्राप्त नहीं हुआ है, यह दिखाने के लिए कि मानक मॉडल के फर्मन समग्र हैं।

प्रयास

कई भौतिकविदों ने मानक मॉडल के कई हिस्सों को सैद्धांतिक रूप से न्यायोचित ठहराने के प्रयास में प्री-क्वार्क (जिससे नाम प्रीऑन निकला है) के सिद्धांत को विकसित करने का प्रयास किया है, जो केवल प्रयोगात्मक डेटा के माध्यम से जाना जाता है। अन्य नाम जिनका उपयोग इन प्रस्तावित मौलिक कणों (या सबसे मौलिक कणों और मानक मॉडल में देखे गए कणों के बीच मध्यवर्ती) के लिए किया गया है, उनमें प्रीक्वार्क्स, सबक्वार्क्स, मेन्स, शामिल हैं।[6] अल्फोंस, क्विंक्स, ली सुंग मोड, ट्वीडल्स, हेलन्स, हैप्लॉन्स, वाई-पार्टिकल्स,[7] और प्राइमन्स।[8] भौतिकी समुदाय में प्रीऑन अग्रणी नाम है।

भौतिक समीक्षा में पति और सलाम के पेपर के साथ कम से कम 1974 तक एक सबस्ट्रक्चर डेट विकसित करने का प्रयास।[9] अन्य प्रयासों में टेराज़वा, चिकाशिगे और अकामा द्वारा 1977 का एक पेपर शामिल है,[10] समान, लेकिन स्वतंत्र, 1979 पेपर नीमैन द्वारा,[11] हरारी,[12] और शुपे,[13] 1981 में फ्रिट्ज और मैंडेलबौम का एक पेपर,[14] और 1992 में डिसूजा और कलमन की एक किताब।[1]इनमें से किसी को भी भौतिकी की दुनिया में व्यापक स्वीकृति नहीं मिली है। हालाँकि, हाल के एक काम में[15] डी सूजा ने दिखाया है कि उनका मॉडल हैड्रॉन के सभी कमजोर क्षयों का अच्छी तरह से वर्णन करता है, चयन नियमों के अनुसार उनके समग्रता मॉडल से प्राप्त क्वांटम संख्या द्वारा निर्धारित होता है। उनके मॉडल में लेप्टान प्राथमिक कण होते हैं और प्रत्येक क्वार्क दो प्राइमोन से बना होता है, और इस प्रकार, सभी क्वार्क चार प्राइमॉन द्वारा वर्णित होते हैं। इसलिए, मानक मॉडल हिग्स बोसोन की कोई आवश्यकता नहीं है और प्रत्येक क्वार्क द्रव्यमान तीन हिग्स-जैसे बोसोन के माध्यम से प्रत्येक जोड़ी प्राइमॉन के बीच की बातचीत से प्राप्त होता है।

अपने 1989 के नोबेल पुरस्कार स्वीकृति व्याख्यान में, हंस जॉर्ज डेहमेल्ट ने निश्चित गुणों के साथ एक सबसे मौलिक प्राथमिक कण का वर्णन किया, जिसे उन्होंने तेजी से अधिक प्राथमिक कणों की एक लंबी लेकिन परिमित श्रृंखला के संभावित परिणाम के रूप में ब्रह्मांड कहा।[16]


समग्र हिग्स

कई प्रीऑन मॉडल या तो हिग्स बोसोन के लिए जिम्मेदार नहीं हैं या इसे खारिज करते हैं, और प्रस्तावित करते हैं कि इलेक्ट्रो-कमजोर समरूपता स्केलर हिग्स क्षेत्र से नहीं बल्कि समग्र प्रीऑन द्वारा तोड़ी जाती है।[17] उदाहरण के लिए, फ्रेडरिकसन प्रीऑन सिद्धांत को हिग्स बोसोन की आवश्यकता नहीं है, और इलेक्ट्रो-कमजोर ब्रेकिंग को हिग्स-मध्यस्थ क्षेत्र के बजाय प्रीऑन्स की पुनर्व्यवस्था के रूप में समझाता है। वास्तव में, फ्रेडरिकसन प्रीऑन मॉडल और डी सूजा मॉडल भविष्यवाणी करते हैं कि मानक मॉडल हिग्स बोसॉन मौजूद नहीं है।

रिशोन भी l

रिशोन मॉडल (आरएम) कण भौतिकी के मानक मॉडल (एसएम) में दिखाई देने वाली घटना की व्याख्या करने के लिए प्रीऑन मॉडल विकसित करने का सबसे पहला प्रयास (1979) है। यह पहली बार हैं हरारी और माइकल ए शुपे (एक दूसरे से स्वतंत्र) द्वारा विकसित किया गया था, और बाद में हरारी और उनके तत्कालीन छात्र नाथन सीबर्ग द्वारा विस्तारित किया गया था।[18] मॉडल में दो प्रकार के मूलभूत कण होते हैं जिन्हें रिशोन (ראשונים) कहा जाता है (जिसका अर्थ यहूदी में सबसे पहले होता है)। वे हैं टी (तीसरा चूंकि इसमें ⅓ प्रारंभिक आवेश|e, या तोहू (תוהו) का विद्युत आवेश होता है जिसका अर्थ है तोहू वा बोहु| कैओस) और वी (गायब हो जाता है, क्योंकि यह विद्युत रूप से तटस्थ है, या वोहू जिसका अर्थ है खालीपन )। क्वार्क के सभी लेप्टान और सभी स्वाद (कण भौतिकी) तीन-रिशॉन आदेशित त्रिक हैं। तीन रिशों के इन समूहों में स्पिन-आधा है।

रिशोन मॉडल इस क्षेत्र में कुछ विशिष्ट प्रयासों को दिखाता है। कई प्रीऑन मॉडल सिद्धांत देते हैं कि ब्रह्मांड में पदार्थ और एंटीमैटर का स्पष्ट असंतुलन वास्तव में भ्रामक है, बड़ी मात्रा में प्रीऑन-स्तर एंटीमैटर अधिक जटिल संरचनाओं के भीतर सीमित है।

आलोचना

द्रव्यमान विरोधाभास

एक प्रीऑन मॉडल 1994 के आसपास फर्मिलैब (सीडीएफ) में कोलाइडर डिटेक्टर में एक आंतरिक पेपर के रूप में शुरू हुआ था। 1992-1993 की रनिंग अवधि में 200 इलेक्ट्रॉन वोल्ट से अधिक ऊर्जा वाले जेट के अप्रत्याशित और अकथनीय अतिरिक्त होने के बाद पेपर लिखा गया था। हालांकि, प्रकीर्णन प्रयोगों से पता चला है कि क्वार्क और लेप्टान, से कम की दूरी के पैमानों पर बिंदु की तरह हैं 10−18 मी (या 11000 एक प्रोटॉन व्यास का)। इस आकार के एक बॉक्स तक सीमित एक प्रीऑन (जो भी द्रव्यमान हो) की गति अनिश्चितता लगभग 200 GeV/c है, जो अप-क्वार्क के बाकी द्रव्यमान (मॉडल पर निर्भर) से 50,000 गुना बड़ा है, और 400,000 गुना बड़ा है। एक इलेक्ट्रॉन का शेष द्रव्यमान।

हाइजेनबर्ग का अनिश्चितता सिद्धांत कहता है कि और इस प्रकार कुछ भी एक बॉक्स से छोटे तक ही सीमित है एक गति अनिश्चितता आनुपातिक रूप से अधिक होगी। इस प्रकार, गति अनिश्चितता के बाद से प्रीऑन मॉडल ने प्राथमिक कणों की तुलना में छोटे कणों को प्रस्तावित किया स्वयं कणों से बड़ा होना चाहिए।

तो प्रीऑन मॉडल एक बड़े पैमाने पर विरोधाभास का प्रतिनिधित्व करता है: क्वार्क या इलेक्ट्रॉन छोटे कणों से कैसे बने हो सकते हैं जिनके विशाल गति से उत्पन्न होने वाली अधिक द्रव्यमान-ऊर्जा के परिमाण के कई आदेश होंगे? इस विरोधाभास को हल करने का एक तरीका यह है कि प्रीओन्स के बीच एक बड़ी बाध्यकारी शक्ति का अनुमान लगाया जाए जो उनकी द्रव्यमान-ऊर्जा को रद्द कर दे।[citation needed]

देखी गई भौतिकी के साथ संघर्ष

Preon मॉडल प्राथमिक कणों के देखे गए गुणों के लिए अतिरिक्त अनदेखे बलों या गतिकी का प्रस्ताव करते हैं, जो अवलोकन के साथ संघर्ष में निहितार्थ हो सकते हैं। उदाहरण के लिए, अब जबकि हिग्स बोसोन के लार्ज हैड्रान कोलाइडर के अवलोकन की पुष्टि हो गई है, अवलोकन कई प्रीऑन मॉडलों की भविष्यवाणियों का खंडन करता है जिन्होंने इसे बाहर रखा था।[citation needed]

प्रीओन सिद्धांतों के लिए क्वार्क और लेप्टॉन का एक परिमित आकार होना आवश्यक है। यह संभव है कि लार्ज हैड्रोन कोलाइडर उच्च ऊर्जा में अपग्रेड होने के बाद इसका निरीक्षण करेगा।[citation needed]

लोकप्रिय संस्कृति में

  • 1948 में अपने 1930 के उपन्यास अंतरिक्ष का स्काईलार्क के पुनर्मुद्रण/संपादन में, ई. ई. स्मिथ ने 'पहले और दूसरे प्रकार के सबइलेक्ट्रॉन' की एक श्रृंखला की परिकल्पना की, जिसमें बाद वाले मौलिक कण थे जो गुरुत्वाकर्षण बल से जुड़े थे। हालांकि यह मूल उपन्यास का एक तत्व नहीं हो सकता है (श्रृंखला के कुछ अन्य उपन्यासों का वैज्ञानिक आधार अतिरिक्त अठारह वर्षों के वैज्ञानिक विकास के कारण बड़े पैमाने पर संशोधित किया गया था), यहां तक ​​कि संपादित प्रकाशन भी पहला या एक हो सकता है। पहले में, इस संभावना का उल्लेख है कि इलेक्ट्रॉन मौलिक कण नहीं हैं।
  • 1982 की मोशन पिक्चर स्टार ट्रेक II: द रैथ ऑफ खान, दुष्ट मैकइंटायर द्वारा लिखित, के उपन्यास संस्करण में, डॉ। कैरोल मार्कस की उत्पत्ति परियोजना टीम के दो, वेंस मैडिसन और डेल्विन मार्च ने उप-प्राथमिक कणों का अध्ययन किया है boojums और snarks नाम के एक क्षेत्र में वे मजाक में किंडरगार्टन भौतिकी कहते हैं क्योंकि यह प्राथमिक (स्कूल स्तर के अनुरूप) से कम है।
  • जेम्स पी. होगन (लेखक) | जेम्स पी. होगन के 1982 के उपन्यास गुजरे जमाने की यात्रा में प्रीऑन्स (जिन्हें ट्वीडल्स कहा जाता है) पर चर्चा की गई, जिसकी भौतिकी कथानक का केंद्र बन गई।

यह भी देखें

संदर्भ

  1. 1.0 1.1 D'Souza, I.A.; Kalman, C.S. (1992). Preons: Models of Leptons, Quarks and Gauge Bosons as Composite Objects. World Scientific. ISBN 978-981-02-1019-9.
  2. Hofstadter, Robert (1 July 1956). "इलेक्ट्रॉन बिखराव और परमाणु संरचना". Reviews of Modern Physics. 28 (3): 214–254. Bibcode:1956RvMP...28..214H. doi:10.1103/RevModPhys.28.214.
  3. Hofstadter, R.; Bumiller, F.; Yearian, M.R. (1 April 1958). "प्रोटॉन और न्यूट्रॉन की विद्युत चुम्बकीय संरचना" (PDF). Reviews of Modern Physics. 30 (2): 482–497. Bibcode:1958RvMP...30..482H. doi:10.1103/RevModPhys.30.482. Archived (PDF) from the original on 2018-02-23.
  4. Kalman, C.S. (2005). "क्वार्क मूलभूत कण क्यों नहीं हो सकते". Nuclear Physics B: Proceedings Supplements. 142: 235–237. arXiv:hep-ph/0411313. Bibcode:2005NuPhS.142..235K. doi:10.1016/j.nuclphysbps.2005.01.042. S2CID 119394495.
  5. de Souza, Mario Everaldo (2010). "बेरियनों के लगभग सभी ऊर्जा स्तरों की गणना". Papers in Physics. 3: 030003–1. doi:10.4279/PIP.030003.
  6. Overbye, D. (5 December 2006). "China pursues major role in particle physics". The New York Times. Retrieved 2011-09-12.
  7. Yershov, V.N. (2005). "Equilibrium configurations of tripolar charges". Few-Body Systems. 37 (1–2): 79–106. arXiv:physics/0609185. Bibcode:2005FBS....37...79Y. doi:10.1007/s00601-004-0070-2. S2CID 119474883.
  8. de Souza, M.E. (2005). "The ultimate division of matter". Scientia Plena. 1 (4): 83.
  9. Pati, J.C.; Salam, A. (1974). "Lepton number as the fourth "color"" (PDF). Physical Review D. 10 (1): 275–289. Bibcode:1974PhRvD..10..275P. doi:10.1103/PhysRevD.10.275. S2CID 17349483. Archived from the original (PDF) on 2019-02-20.
    Erratum: Pati, J.C.; Salam, A. (1975). "Erratum: Lepton number as the fourth "color"". Physical Review D. 11 (3): 703. Bibcode:1975PhRvD..11..703P. doi:10.1103/PhysRevD.11.703.2.
  10. Terazawa, H.; Chikashige, Y.; Akama, K. (1977). "Unified model of the Nambu-Jona-Lasinio type for all elementary particles". Physical Review D. 15 (2): 480–487. Bibcode:1977PhRvD..15..480T. doi:10.1103/PhysRevD.15.480.
  11. Ne'eman, Y. (1979). "Irreducible gauge theory of a consolidated Weinberg-Salam model". Physics Letters B. 81 (2): 190–194. Bibcode:1979PhLB...81..190N. doi:10.1016/0370-2693(79)90521-5. OSTI 6534180.
  12. Harari, H. (1979). "A schematic model of quarks and leptons" (PDF). Physics Letters B. 86 (1): 83–86. Bibcode:1979PhLB...86...83H. doi:10.1016/0370-2693(79)90626-9. OSTI 1447265.
  13. Shupe, M.A. (1979). "A composite model of leptons and quarks". Physics Letters B. 86 (1): 87–92. Bibcode:1979PhLB...86...87S. doi:10.1016/0370-2693(79)90627-0.
  14. Fritzsch, H.; Mandelbaum, G. (1981). "Weak interactions as manifestations of the substructure of leptons and quarks". Physics Letters B. 102 (5): 319. Bibcode:1981PhLB..102..319F. doi:10.1016/0370-2693(81)90626-2.
  15. de Souza, M.E. (2008). "Weak decays of hadrons reveal compositeness of quarks". Scientia Plena. 4 (6): 064801–1.
  16. Dehmelt, H.G. (1989). "Experiments with an isolated subatomic particle at rest". Nobel lecture. The Nobel Foundation. See also references therein.
  17. Dugne, J.-J.; Fredriksson, S.; Hansson, J.; Predazzi, E. (1997). "Higgs pain? Take a preon!". arXiv:hep-ph/9709227.
  18. Harari, Haim; Seiberg, Nathan (1982). "The Rishon model" (PDF). Nuclear Physics B. North-Holland Publishing. 204 (1): 141–167. Bibcode:1982NuPhB.204..141H. doi:10.1016/0550-3213(82)90426-6. Retrieved 2018-06-02.


अग्रिम पठन