निकल-कैडमियम बैटरी

From Vigyanwiki
Revision as of 09:35, 31 May 2023 by alpha>Arnikapal
निकल-कैडमियम बैटरी
NiCd various.jpg
From top to bottom: "Gumstick", AA, and AAA Ni-Cd batteries
Specific energy40–60 W·h/kg
Energy density50–150 W·h/L
Specific power150 W/kg
Charge/discharge efficiency70–90%[1]
Self-discharge rate10%/month
Cycle durability2,000 cycles
Nominal cell voltage1.2 V

निकेल-कैडमियम बैटरी एक प्रकार की रिचार्जेबल बैटरी है जो विद्युतद्वार के रूप में निकल ऑक्साइड हाइड्रोक्साइड और धातु कैडमियम का उपयोग करते है। संक्षिप्त नाम Ni-Cd निकल और कैडमियम के रासायनिक प्रतीकों से लिया गया है: संक्षिप्त नाम निकैड SAFT संस्था का एक पंजीकृत चिह्न है चूंकि इस ब्रांड नाम का उपयोग सामान्यतः सभी Ni-Cd बैटरियों का वर्णन करने के लिए किया जाता है।

वेट-सेल निकल-कैडमियम बैटरी का आविष्कार 1899 में किया गया था। एक Ni-Cd बैटरी में लगभग 1.2 वोल्ट के डिस्चार्ज के समय एक सीमान्त वोल्टेज होता है जो लगभग डिस्चार्ज के अंत तक कम हो जाता है। Ni-Cd सेल द्वारा प्रदान किया जाने वाला अधिकतम वैद्युतवाहक बल Ni-Cd बैटरियों को आकार और क्षमताओं की एक विस्तृत श्रृंखला में बनाया जाता है, कार्बन-जिंक शुष्क कोशिकाओं के साथ विनिमेय सुवाह्य सील प्रकार से, आपातोपयोगी शक्‍ति के लिए उपयोग किए जाने वाले बड़े हवादार सेल के लिए और प्रेरक शक्ति अन्य प्रकार के रिचार्जेबल सेल की तुलना में वे उचित क्षमता के साथ कम तापमान पर अच्छा चक्र जीवन और प्रदर्शन प्रदान करते हैं परंतु उनका महत्वपूर्ण लाभ उच्च निर्वहन दर पर व्यावहारिक रूप से उनकी पूर्ण निर्धारित प्रदान करने की क्षमता है। चूंकि, सामग्री लीड-एसिड बैटरी की तुलना में अधिक महंगी होती है, और कोशिकाओं में उच्च स्व-निर्वहन दर होती है।

सीलबंद Ni-Cd सेल एक समय में पोर्टेबल पावर टूल्स, फोटोग्राफी उपकरण,फ्लैश लाइट्स, इमरजेंसी लाइटिंग, हॉबी रेडियो नियंत्रण (RC) और पोर्टेबल इलेक्ट्रॉनिक उपकरणों में व्यापक रूप से उपयोग किए जाते थे। निकेल-धातु हाइड्राइड बैटरियों की बेहतर क्षमता और हाल की कम लागत ने बड़े पैमाने पर Ni-Cd के उपयोग की जगह ले ली है। इसके अतिरिक्त, जहरीली धातु कैडमियम के निपटान के पर्यावरणीय प्रभाव ने उनके उपयोग में कमी लाने में उचित योगदान दिया है। यूरोपीय संघ के अन्दर, Ni-Cd बैटरियों की आपूर्ति अब केवल प्रतिस्थापन उद्देश्यों या कुछ प्रकार के नए उपकरणों जैसे संसाधन उपकरणों के लिए की जा सकती है।[2] बड़े हवादार वेट सेल Ni-Cd बैटरियों का उपयोग आपातकालीन प्रकाश व्यवस्था, अतिरिक्त क्षमता, औरअबाधित विद्युत आपूर्ति और अन्य अनुप्रयोगों में किया जाता है।

इतिहास

पहली Ni-Cd बैटरी 1899 में स्वीडन के वाल्डेमार जुंगनर द्वारा बनाई गई थी। उस समय, एकमात्र प्रत्यक्ष प्रतियोगी लेड-एसिड बैटरी थी, जो शारीरिक और रासायनिक रूप से कम प्रभावशाली थी। पहले प्राथमिक अवस्था में अवयस्क सुधार के साथ, प्राथमिक बैटरी की तुलना में ऊर्जा घनत्व तेजी से बढ़कर लगभग आधा हो गया, और लीड-एसिड बैटरी की तुलना में काफी अधिक हो गया। जुंगनर ने अलग-अलग मात्रा में कैडमियम के लिए लोहे के प्रतिस्थापन के साथ प्रयोग किया, परंतु लोहे के योगों को वांछित पाया गया था। संयुक्त राज्य अमेरिका में जुंगनर का काम काफी हद तक अज्ञात था। थॉमस एडिसन ने 1902 में एक निकेल- या कोबाल्ट-कैडमियम बैटरी का पेटेंट कराया, [3] और बैटरी डिज़ाइन को अनुकूलित किया जब उन्होंने जंगनर के निर्माण के दो साल बाद अमेरिका में निकल-लौह बैटरी उपस्थित की। 1906 में, जुंगनर ने फ्लडेड डिज़ाइन Ni-Cd बैटरियों का उत्पादन करने के लिए स्वीडन के ऑस्करशमन के पास एक फैक्ट्री की स्थापना की।

1932 में छिद्रित निकल-प्लेटेड इलेक्ट्रोड के अंदर सक्रिय सामग्री जमा की गई और 15 साल बाद एक सीलबंद निकल-कैडमियम बैटरी पर काम प्रारंभ हुआ।

संयुक्त राज्य अमेरिका में पहला उत्पादन 1946 में प्रारंभ हुआ। इस बिंदु तक, बैटरी "पॉकेट प्रकार" की थीं, जो निकेल और कैडमियम सक्रिय सामग्री वाले निकल-प्लेटेड स्टील पॉकेट से बनी थीं। बीसवीं शताब्दी के मध्य के आसपास, सिंटरिंग-प्लेट Ni-Cd बैटरियां तेजी से लोकप्रिय हो गईं। उच्च दबावों का उपयोग करके अपने गलनांक से काफी नीचे के तापमान पर निकेल पाउडर को मिलाने से निसादित प्लेटें बनती हैं। इस प्रकार बनी प्लेटें अत्यधिक छिद्रित होती हैं, आयतन की गणना से लगभग 80 प्रतिशत धनात्मक और ऋणात्मक प्लेटें क्रमशः निकेल- और कैडमियम-सक्रिय सामग्रियों में निकल प्लेटों को भिगोने से उत्पन्न होती हैं। निसादित प्लेटें सामान्यतः पॉकेट प्रकार की तुलना में बहुत पतली होती हैं, जिसके परिणामस्वरूप प्रति वॉल्यूम अधिक सतह क्षेत्र और उच्च धाराएं होती हैं। सामान्य तौर पर, बैटरी में प्रतिक्रियाशील सामग्री की सतह का क्षेत्रफल जितना अधिक होता है, उसका आंतरिक प्रतिरोध उतना ही कम होता है।

2000 के दशक से, सभी उपभोक्ता Ni-Cd बैटरी जेली रोल समाकृति का उपयोग करती हैं।[citation needed]

विशेषताएं

Ni-Cd बैटरी के लिए अधिकतम डिस्चार्ज दर आकार के अनुसार भिन्न होती है। एक सामान्य AA-आकार के सेल के लिए, अधिकतम डिस्चार्ज दर लगभग 1.8 एम्पीयर है; D आकार की बैटरी के लिए डिस्चार्ज दर 3.5 एम्पीयर जितनी अधिक हो सकती है।[citation needed]

मॉडल-एयरक्राफ्ट या -बोट बिल्डर्स अधिकांशतः विशेष रूप से निर्मित Ni-Cd बैटरियों से लगभग सौ एम्पियर तक की बड़ी धाराएँ लेते हैं, जिनका उपयोग मुख्य मोटरों को चलाने के लिए किया जाता है। काफी छोटी बैटरियों से 5-6 मिनट का मॉडल ऑपरेशन आसानी से प्राप्त किया जा सकता है, इसलिए एक यथोचित उच्च शक्ति-से-भार का आंकड़ा प्राप्त किया जाता है, जो आंतरिक दहन मोटर्स की तुलना में कम अवधि का होता है। इसमें, चूंकि, उन्हें लिथियम बहुलक और लिथियम आयरन फॉस्फेट बैटरियों द्वारा बड़े पैमाने पर हटा दिया गया है, जो उच्च ऊर्जा घनत्व भी प्रदान कर सकते हैं।

वोल्टेज

Ni-Cd सेलों की नाममात्र क्षमता 1.2 वोल्ट (V) होती है। यह क्षारीय और जस्ता-कार्बन प्राथमिक कोशिकाओं के 1.5 V से कम है, और इसके परिणामस्वरूप वे सभी अनुप्रयोगों में प्रतिस्थापन के रूप में उपयुक्त नहीं हैं। चूंकि, एक प्राथमिक क्षारीय सेल का 1.5 V औसत, वोल्टेज के अतिरिक्त इसके प्रारंभिक को संदर्भित करता है। क्षारीय और जस्ता-कार्बन प्राथमिक कोशिकाओं के विपरीत, Ni-Cd सेल का टर्मिनल वोल्टेज डिस्चार्ज होने पर केवल थोड़ा ही बदलता है। चूंकि कई इलेक्ट्रॉनिक उपकरणों को प्राथमिक कोशिकाओं के साथ काम करने के लिए डिज़ाइन किया गया है जो प्रति सेल 0.90 से 1.0 V तक कम हो सकता है, Ni-Cd सेल का अपेक्षाकृत स्थिर 1.2 V ऑपरेशन की अनुमति देने के लिए पर्याप्त है। कुछ लोग निकट-स्थिर वोल्टेज मे एक कमी मानेंगे चूंकि बैटरी चार्ज कम होने पर इसका पता लगाना मुश्किल हो जाता है।

Ni-Cd बैटरियों का उपयोग 9 V बैटरियों को बदलने के लिए किया जाता है, सामान्यतः 7.2 वोल्ट के टर्मिनल वोल्टेज के लिए केवल 6 सेल होते हैं। जबकि अधिकांश पॉकेट रेडियो इस वोल्टेज पर संतोषजनक ढंग से काम करेंगे, वार्ता जैसे कुछ निर्माताओं ने अधिक महत्वपूर्ण अनुप्रयोगों के लिए 7 सेल वाली 8.4 वोल्ट बैटरी बनाई है।

चार्जिंग

Ni-Cd बैटरियों को कई अलग-अलग दरों पर चार्ज किया जा सकता है, यह इस बात पर निर्भर करता है कि सेल का निर्माण कैसे किया गया था। चार्ज दर को amp-घंटे की क्षमता के प्रतिशत के आधार पर मापा जाता है, चार्ज की अवधि के दौरान बैटरी को स्थिर करंट के रूप में खिलाया जाता है। चार्ज की गति के बावजूद, चार्ज करने के दौरान ऊर्जा हानि के लिए बैटरी को इसकी वास्तविक क्षमता से अधिक ऊर्जा की आपूर्ति की जानी चाहिए, तेज चार्ज अधिक कुशल होने के साथ। उदाहरण के लिए, एक "रातोंरात" चार्ज में 14-16 घंटे के लिए एम्पीयर-घंटे रेटिंग (C/10) के दसवें हिस्से के बराबर करंट की आपूर्ति शामिल हो सकती है; यानी, 100 mAh की बैटरी 14 घंटे के लिए 10 mA लेती है, इस दर पर कुल 140 mAh चार्ज होती है। रैपिड-चार्ज दर पर, 1 घंटे (1C) में बैटरी की रेटेड क्षमता के 100% पर किया जाता है, बैटरी लगभग 80% चार्ज रखती है, इसलिए 100 mAh की बैटरी चार्ज होने में 125 mAh लेती है (अर्थात, लगभग) 1 घंटा और पंद्रह मिनट)। कुछ विशिष्ट बैटरियों को 4C या 6C चार्ज दर पर 10-15 मिनट में चार्ज किया जा सकता है, लेकिन यह बहुत ही असामान्य है। यह आंतरिक अति-दबाव की स्थिति के कारण कोशिकाओं के गर्म होने और बाहर निकलने के जोखिम को भी बहुत बढ़ा देता है: सेल की तापमान वृद्धि की दर इसके आंतरिक प्रतिरोध और चार्जिंग दर के वर्ग द्वारा नियंत्रित होती है। 4C दर पर, सेल में उत्पन्न ऊष्मा की मात्रा 1C दर पर ऊष्मा की तुलना में सोलह गुना अधिक होती है। तेजी से चार्ज करने का नकारात्मक पक्ष ओवरचार्जिंग का उच्च जोखिम है, जो बैटरी को नुकसान पहुंचा सकता है। और बढ़े हुए तापमान को सेल को सहना पड़ता है (जो संभावित रूप से उसके जीवन को छोटा कर देता है)।

उपयोग में होने पर सुरक्षित तापमान सीमा -20 डिग्री सेल्सियस और 45 डिग्री सेल्सियस के बीच होती है। चार्ज करने के दौरान, बैटरी का तापमान आम तौर पर परिवेश के तापमान (चार्जिंग प्रतिक्रिया ऊर्जा को अवशोषित करता है) के समान ही कम रहता है, लेकिन जैसे-जैसे बैटरी पूर्ण चार्ज के करीब आती है, तापमान 45-50 डिग्री सेल्सियस तक बढ़ जाएगा। कुछ बैटरी चार्जर चार्जिंग को बंद करने और ओवर-चार्जिंग को रोकने के लिए इस तापमान वृद्धि का पता लगाते हैं।

लोड या चार्ज के तहत नहीं होने पर, Ni-Cd बैटरी 20 डिग्री सेल्सियस पर लगभग 10% प्रति माह स्व-निर्वहन करेगी, उच्च तापमान पर प्रति माह 20% तक। टिप्पणी; वर्ष 2022, पूर्ववर्ती वाक्य निश्चित रूप से सच था जब NiCad पेश किया गया था और यहां तक ​​कि 50 साल पहले भी। हालाँकि, लगभग 40 साल पहले देखे गए सुधारों में प्रति माह 5% की वृद्धि हुई है और आज NiCad बैटरियों में 1% या 2% प्रति माह के क्रम में स्व-निर्वहन काफी कम है। इस निर्वहन दर को ऑफसेट करने के लिए पर्याप्त उच्च स्तर पर ट्रिकल चार्ज करना संभव है; बैटरी को पूरी तरह चार्ज रखने के लिए। हालाँकि, यदि बैटरी को लंबे समय तक अप्रयुक्त रखा जाना है, तो इसे अधिकतम 40% क्षमता तक डिस्चार्ज किया जाना चाहिए (कुछ निर्माता एक बार पूरी तरह से डिस्चार्ज होने और यहां तक ​​कि शॉर्ट-सर्किट करने की सलाह देते हैं।[citation needed]), और एक ठंडे, शुष्क वातावरण में संग्रहीत।

ओवरचार्जिंग

सीलबंद नी-सीडी कोशिकाओं में एक दबाव पोत होता है जिसमें ऑक्सीजन और हाइड्रोजन गैसों की किसी भी पीढ़ी को तब तक समाहित किया जाता है जब तक कि वे पानी में वापस नहीं आ जाते। ऐसी पीढ़ी आम तौर पर तेजी से चार्ज और डिस्चार्ज के दौरान होती है, और अत्यधिक ओवरचार्ज स्थिति में होती है। यदि दबाव सुरक्षा वाल्व की सीमा से अधिक हो जाता है, तो गैस के रूप में पानी खो जाता है। चूंकि पोत को इलेक्ट्रोलाइट की सटीक मात्रा रखने के लिए डिज़ाइन किया गया है, इसलिए यह नुकसान तेजी से सेल की क्षमता और वर्तमान प्राप्त करने और वितरित करने की क्षमता को प्रभावित करेगा। ओवरचार्ज की सभी स्थितियों का पता लगाने के लिए चार्जिंग सर्किट से महान परिष्कार की आवश्यकता होती है और एक सस्ता चार्जर अंततः सर्वोत्तम गुणवत्ता वाली कोशिकाओं को भी नुकसान पहुँचाएगा।[4]


इलेक्ट्रोकैमिस्ट्री

एक पूरी तरह से चार्ज Ni-Cd सेल में शामिल हैं:

Ni-Cd बैटरियों में आमतौर पर एक सीलिंग प्लेट के साथ एक धातु का मामला होता है जो एक सेल्फ-सीलिंग सुरक्षा वाल्व से सुसज्जित होता है। सकारात्मक और नकारात्मक इलेक्ट्रोड प्लेटें, विभाजक द्वारा एक दूसरे से पृथक, मामले के अंदर एक सर्पिल आकार में घुमाए जाते हैं। इसे जेली-रोल डिज़ाइन के रूप में जाना जाता है और एक Ni-Cd सेल को समतुल्य आकार के क्षारीय सेल की तुलना में बहुत अधिक अधिकतम करंट देने की अनुमति देता है। क्षारीय कोशिकाओं में एक बोबिन निर्माण होता है जहां सेल आवरण इलेक्ट्रोलाइट से भर जाता है और इसमें एक ग्रेफाइट रॉड होता है जो सकारात्मक इलेक्ट्रोड के रूप में कार्य करता है। चूंकि इलेक्ट्रोड का एक अपेक्षाकृत छोटा क्षेत्र इलेक्ट्रोलाइट के संपर्क में होता है (जेली-रोल डिज़ाइन के विपरीत), एक समान आकार के क्षारीय सेल के लिए आंतरिक प्रतिरोध अधिक होता है जो अधिकतम प्रवाह को सीमित करता है जिसे वितरित किया जा सकता है।

निर्वहन के दौरान कैडमियम इलेक्ट्रोड पर रासायनिक प्रतिक्रियाएं हैं:

निकल ऑक्साइड इलेक्ट्रोड पर प्रतिक्रियाएँ हैं:

निर्वहन के दौरान शुद्ध प्रतिक्रिया है

रिचार्ज के दौरान, प्रतिक्रियाएं दाएं से बाएं ओर जाती हैं। इस प्रतिक्रिया में क्षारीय इलेक्ट्रोलाइट (आमतौर पर KOH) का सेवन नहीं किया जाता है और इसलिए इसका विशिष्ट गुरुत्व, लेड-एसिड बैटरी के विपरीत, इसके आवेश की स्थिति के लिए एक मार्गदर्शक नहीं है।

जब जुंगनर ने पहली Ni-Cd बैटरियों का निर्माण किया, तो उन्होंने धनात्मक इलेक्ट्रोड में निकेल ऑक्साइड और नकारात्मक में आयरन और कैडमियम सामग्री का उपयोग किया। बाद में शुद्ध कैडमियम धातु और निकल हाइड्रॉक्साइड का उपयोग नहीं किया गया था। लगभग 1960 तक, रासायनिक अभिक्रिया को पूरी तरह से समझा नहीं जा सका था। प्रतिक्रिया उत्पादों के बारे में कई अटकलें थीं। बहस को अंततः इन्फ्रारेड स्पेक्ट्रोस्कोपी द्वारा सुलझाया गया, जिससे कैडमियम हाइड्रॉक्साइड और निकल हाइड्रॉक्साइड का पता चला।

बुनियादी नी-सीडी सेल पर एक और ऐतिहासिक रूप से महत्वपूर्ण भिन्नता पोटेशियम हाइड्रॉक्साइड इलेक्ट्रोलाइट में लिथियम हाइड्रॉक्साइड का योग है। ऐसा माना जाता था[by whom?] सेल को विद्युत दुरुपयोग के लिए अधिक प्रतिरोधी बनाकर सेवा जीवन को लम्बा करना। Ni-Cd बैटरी अपने आधुनिक रूप में वैसे भी बिजली के दुरुपयोग के लिए बेहद प्रतिरोधी है, इसलिए इस प्रथा को बंद कर दिया गया है।

वेंटेड सेल बैटरी

बड़ी क्षमता और उच्च निर्वहन दर की आवश्यकता होने पर वेंटेड सेल (वेट सेल, फ्लड सेल) NiCd बैटरी का उपयोग किया जाता है।पारंपरिक NiCd बैटरियां सील प्रकार की होती हैं, जिसका अर्थ है कि चार्ज गैस सामान्य रूप से पुनर्संयोजित होती है और जब तक अत्यधिक चार्ज नहीं होती या कोई खराबी नहीं आती है, तब तक वे कोई गैस नहीं छोड़ती हैं। सामान्य एनआईसीडी कोशिकाओं के विपरीत, जो सीलबंद हैं, वेंटेड कोशिकाओं में एक वेंट या कम दबाव रिलीज वाल्व होता है जो अत्यधिक चार्ज या डिस्चार्ज होने पर उत्पन्न ऑक्सीजन और हाइड्रोजन गैसों को छोड़ देता है। चूंकि बैटरी एक दबाव पोत नहीं है, यह सुरक्षित है, इसका वजन कम है, और इसकी एक सरल और अधिक किफायती संरचना है। इसका मतलब यह भी है कि ओवरचार्ज, डिस्चार्ज या नेगेटिव चार्ज की अत्यधिक दरों से बैटरी सामान्य रूप से क्षतिग्रस्त नहीं होती है।

उनका उपयोग विमानन, रेल और जन परिवहन, टेलीकॉम के लिए बैकअप पावर, बैकअप टर्बाइन के लिए, इंजन स्टार्टिंग आदि में किया जाता है। वेंटेड सेल NiCd बैटरियों के उपयोग से अन्य प्रकार की बैटरियों की तुलना में आकार, वजन और रखरखाव आवश्यकताओं में कमी आती है। वेंटेड सेल NiCd बैटरियों की उम्र लंबी होती है (प्रकार के आधार पर 20 साल या उससे अधिक तक) और अत्यधिक तापमान (−40 से 70 °C तक) पर काम करती हैं।

एक स्टील बैटरी बॉक्स में वांछित वोल्टेज (1.2 वी प्रति सेल नाममात्र) प्राप्त करने के लिए श्रृंखला में जुड़े सेल होते हैं। सेल आमतौर पर एक हल्के और टिकाऊ पॉलियामाइड (नायलॉन) से बने होते हैं, जिसमें प्रत्येक इलेक्ट्रोड के अंदर कई निकल-कैडमियम प्लेटें एक साथ वेल्डेड होती हैं। सिलिकॉन रबर से बना एक विभाजक या लाइनर इलेक्ट्रोड के बीच एक इन्सुलेटर और गैस बाधा के रूप में कार्य करता है। कोशिकाओं को पोटेशियम हाइड्रॉक्साइड के 30% जलीय घोल के इलेक्ट्रोलाइट से भर दिया जाता है। इलेक्ट्रोलाइट का विशिष्ट गुरुत्व यह नहीं बताता है कि बैटरी डिस्चार्ज है या पूरी तरह से चार्ज है लेकिन मुख्य रूप से पानी के वाष्पीकरण के साथ बदलता है। सेल के शीर्ष में अतिरिक्त इलेक्ट्रोलाइट और एक दबाव रिलीज वेंट के लिए जगह होती है। बड़े निकेल-प्लेटेड कॉपर स्टड और मोटे इंटरकनेक्टिंग लिंक बैटरी के लिए न्यूनतम समतुल्य श्रृंखला प्रतिरोध सुनिश्चित करते हैं।

गैसों के निकलने का मतलब है कि बैटरी या तो उच्च दर पर डिस्चार्ज हो रही है या नाममात्र दर से अधिक पर रिचार्ज हो रही है। इसका मतलब यह भी है कि वेंटिंग के दौरान खो जाने वाले इलेक्ट्रोलाइट को समय-समय पर नियमित रखरखाव के माध्यम से बदला जाना चाहिए। चार्ज-डिस्चार्ज चक्र और बैटरी के प्रकार के आधार पर इसका मतलब कुछ महीनों से लेकर एक साल तक की रखरखाव अवधि हो सकती है।

वेंटेड सेल वोल्टेज चार्ज के अंत में तेजी से बढ़ता है जिससे बहुत ही सरल चार्जर सर्किट्री का उपयोग किया जा सकता है। आमतौर पर एक बैटरी 1 सीए दर पर निरंतर चालू चार्ज होती है जब तक कि सभी सेल कम से कम 1.55 वी तक नहीं पहुंच जाते। एक और चार्ज चक्र 0.1 सीए दर पर फिर से चलता है, जब तक कि सभी सेल 1.55 वी तक नहीं पहुंच जाते। चार्ज एक बराबर या शीर्ष के साथ समाप्त हो जाता है- अप चार्ज, आमतौर पर 0.1 सीए दर पर 4 घंटे से कम नहीं। ओवर-चार्ज का उद्देश्य इलेक्ट्रोड पर एकत्रित गैसों, ऋणात्मक पर हाइड्रोजन और धनात्मक पर ऑक्सीजन के रूप में अधिक (यदि सभी नहीं) को बाहर निकालना है, और इनमें से कुछ गैसें पानी बनाने के लिए पुन: संयोजित होती हैं जो बदले में बढ़ा देंगी इलेक्ट्रोलाइट स्तर अपने उच्चतम स्तर पर जिसके बाद इलेक्ट्रोलाइट स्तरों को समायोजित करना सुरक्षित है। ओवर-चार्ज या टॉप-अप चार्ज के दौरान, सेल वोल्टेज 1.6 वी से आगे बढ़ जाएगा और फिर धीरे-धीरे कम होना शुरू हो जाएगा। कोई भी सेल 1.71 V (ड्राई सेल) से ऊपर नहीं उठना चाहिए या 1.55 V से नीचे नहीं गिरना चाहिए (गैस बैरियर टूटा हुआ है)[citation needed]

फ़्लोटिंग बैटरी इलेक्ट्रिकल सिस्टम के साथ एक विमान स्थापना में नियामक वोल्टेज बैटरी को निरंतर संभावित चार्ज (आमतौर पर 14 या 28 वी) पर चार्ज करने के लिए सेट किया जाता है। यदि यह वोल्टेज बहुत अधिक सेट है तो इसका परिणाम तेजी से इलेक्ट्रोलाइट हानि होगा। एक विफल चार्ज रेगुलेटर चार्ज वोल्टेज को इस मान से काफी ऊपर उठने की अनुमति दे सकता है, जिससे इलेक्ट्रोलाइट के उबलने के साथ बड़े पैमाने पर ओवरचार्ज हो सकता है[citation needed]

अनुप्रयोग

सीलबंद Ni-Cd सेल को व्यक्तिगत रूप से इस्तेमाल किया जा सकता है,या दो या अधिक सेल वाले बैटरी पैक में इकट्ठा किया जा सकता है। छोटी कोशिकाओं का उपयोग पोर्टेबल इलेक्ट्रानिक्स और खिलौनों (जैसे सौर उद्यान रोशनी) के लिए किया जाता है, अक्सर प्राथमिक कोशिकाओं के समान आकार में निर्मित कोशिकाओं का उपयोग किया जाता है। जब Ni-Cd बैटरियों को प्राथमिक सेल के स्थान पर प्रतिस्थापित किया जाता है, तो प्राथमिक सेल की तुलना में कम टर्मिनल वोल्टेज और कम एम्पीयर-घंटे की क्षमता प्रदर्शन को कम कर सकती है। लघु बटन कोशिकाओं का उपयोग कभी-कभी फोटोग्राफिक उपकरण, हाथ से पकड़े जाने वाले लैंप (टॉर्च या टॉर्च), कंप्यूटर-मेमोरी स्टैंडबाय, खिलौने और नवीनता में किया जाता है।

विशेषता Ni-Cd बैटरियों का उपयोग कॉर्डलेस और वायरलेस टेलीफोन, आपातकालीन प्रकाश व्यवस्था और अन्य अनुप्रयोगों में किया जाता है। अपेक्षाकृत कम आंतरिक प्रतिरोध के साथ, वे उच्च सर्ज धाराओं की आपूर्ति कर सकते हैं। यह उन्हें रिमोट-नियंत्रित इलेक्ट्रिक मॉडल हवाई जहाज, नाव और कारों के साथ-साथ ताररहित बिजली उपकरण और कैमरा फ्लैश इकाइयों के लिए एक अनुकूल विकल्प बनाता है।

बड़े फ्लडेड सेल का उपयोग एयरक्राफ्ट स्टार्टिंग, इलेक्ट्रिक वाहनों और स्टैंडबाय पावर के लिए किया जाता है।

लोकप्रियता

बीसवीं शताब्दी के उत्तरार्ध में बैटरी-निर्माण प्रौद्योगिकियों में हुई प्रगति ने बैटरी को उत्पादन के लिए तेजी से सस्ता बना दिया है। सामान्य रूप से बैटरी चालित उपकरणों की लोकप्रियता में वृद्धि हुई है। 2000 तक, लगभग 1.5 1000000000 (संख्या) Ni-Cd बैटरियों का वार्षिक उत्पादन किया गया था।[5] 1990 के दशक के मध्य तक, घरेलू इलेक्ट्रॉनिक्स में रिचार्जेबल बैटरी के लिए Ni-Cd बैटरियों की बाजार हिस्सेदारी में भारी बहुमत था।

एक समय पर, Ni-Cd बैटरियों का यूरोपीय संघ में सभी पोर्टेबल सेकेंडरी (रिचार्जेबल) बैटरी की बिक्री में 8%, और यूके में 9.2% (निपटान) और स्विट्जरलैंड में सभी पोर्टेबल बैटरी की बिक्री का 1.3% हिस्सा था।[6][7][8] यूरोपीय संघ में 2006 के बैटरी निर्देश ने पोर्टेबल उपकरणों के लिए उपभोक्ताओं को Ni-Cd बैटरियों की बिक्री को प्रतिबंधित कर दिया।

उपलब्धता

Ni-Cd सेल, AAA से D तक, अल्कलाइन बैटरी के समान आकार में उपलब्ध हैं, साथ ही कई मल्टी-सेल आकार में, जिसमें 9-वोल्ट बैटरी के समतुल्य भी शामिल है। एक पूरी तरह चार्ज एकल Ni-Cd सेल, बिना लोड के, 1.25 और 1.35 वोल्ट के बीच का संभावित अंतर रखता है, जो बैटरी के डिस्चार्ज होने पर अपेक्षाकृत स्थिर रहता है। चूंकि एक क्षारीय बैटरी पूरी तरह से डिस्चार्ज होने के बाद अपने वोल्टेज को 0.9 वोल्ट तक कम कर सकती है, Ni-Cd सेल और क्षारीय सेल आमतौर पर अधिकांश अनुप्रयोगों के लिए विनिमेय होते हैं।

सिंगल सेल के अलावा, ऐसी बैटरी मौजूद हैं जिनमें 300 सेल (आमतौर पर 360 वोल्ट, वास्तविक वोल्टेज बिना लोड के 380 और 420 वोल्ट के बीच) होते हैं। यह मल्टी-सेल डिज़ाइन ज्यादातर ऑटोमोटिव और हेवी-ड्यूटी औद्योगिक अनुप्रयोगों में उपयोग किया जाता है। पोर्टेबल अनुप्रयोगों के लिए, कोशिकाओं की संख्या सामान्य रूप से 18 कोशिकाओं (24 वी) से कम होती है। औद्योगिक आकार की फ्लडेड बैटरियां 12.5 एएच से लेकर कई सौ एएच तक की क्षमता के साथ उपलब्ध हैं।

अन्य बैटरियों के साथ तुलना

हाल ही में, निकेल-मेटल हाइड्राइड और लिथियम-आयन बैटरी व्यावसायिक रूप से उपलब्ध और सस्ती हो गई हैं, पूर्व प्रकार अब लागत में Ni-Cd बैटरी को टक्कर दे रही है। जहां ऊर्जा घनत्व महत्वपूर्ण है, निकल-मेटल हाइड्राइड और लिथियम-आयन बैटरी की तुलना में नी-सीडी बैटरी अब नुकसान में हैं। हालाँकि, Ni-Cd बैटरी अभी भी बहुत अधिक स्व निर्वहन दरों की आवश्यकता वाले अनुप्रयोगों में बहुत उपयोगी है क्योंकि यह बिना किसी नुकसान या क्षमता के नुकसान के ऐसे डिस्चार्ज को सहन कर सकती है।

रिचार्जेबल बैटरी के अन्य रूपों की तुलना में, Ni-Cd बैटरी के कई विशिष्ट लाभ हैं:

  • अन्य बैटरियों की तुलना में बैटरियों को नुकसान पहुँचाना अधिक कठिन होता है, लंबी अवधि के लिए गहरे निर्वहन को सहन करना। वास्तव में, लंबी अवधि के भंडारण में Ni-Cd बैटरियों को आमतौर पर पूरी तरह से डिस्चार्ज किया जाता है। यह इसके विपरीत है, उदाहरण के लिए, लिथियम आयन बैटरी के लिए, जो कम स्थिर हैं और न्यूनतम वोल्टेज से नीचे डिस्चार्ज होने पर स्थायी रूप से क्षतिग्रस्त हो जाएंगी।
  • बैटरी खराब परिस्थितियों में बहुत अच्छा प्रदर्शन करती है, पोर्टेबल उपकरणों में उपयोग के लिए एकदम सही है।
  • Ni-Cd बैटरियां आमतौर पर चार्ज/डिस्चार्ज चक्रों की संख्या के मामले में अन्य रिचार्जेबल बैटरियों जैसे लेड/एसिड बैटरियों की तुलना में अधिक समय तक चलती हैं।
  • लेड-एसिड बैटरियों की तुलना में Ni-Cd बैटरियों में ऊर्जा घनत्व बहुत अधिक होता है। एक Ni-Cd बैटरी तुलनीय लेड-एसिड बैटरी की तुलना में छोटी और हल्की होती है, लेकिन तुलनीय NiMH या Li-ion बैटरी नहीं होती है। ऐसे मामलों में जहां आकार और वजन महत्वपूर्ण विचार हैं (उदाहरण के लिए, विमान), सस्ती लीड-एसिड बैटरियों की तुलना में Ni-Cd बैटरियों को प्राथमिकता दी जाती है।
  • उपभोक्ता अनुप्रयोगों में, Ni-Cd बैटरियां सीधे क्षारीय बैटरियों से प्रतिस्पर्धा करती हैं। एक Ni-Cd सेल की समतुल्य क्षारीय सेल की तुलना में कम क्षमता होती है, और लागत अधिक होती है। हालांकि, चूंकि क्षारीय बैटरी की रासायनिक प्रतिक्रिया प्रतिवर्ती नहीं होती है, एक पुन: प्रयोज्य Ni-Cd बैटरी का जीवनकाल काफी लंबा होता है। रिचार्जेबल एल्कलाइन बैटरी बनाने के प्रयास किए गए हैं, या सिंगल-यूज़ एल्कलाइन बैटरी चार्ज करने के लिए विशेष बैटरी चार्जर बनाए गए हैं, लेकिन किसी का भी व्यापक उपयोग नहीं हुआ है।
  • Ni-Cd बैटरी का टर्मिनल वोल्टेज कार्बन-जिंक बैटरी की तुलना में अधिक धीमी गति से घटता है क्योंकि यह डिस्चार्ज होता है। चूंकि एक क्षारीय बैटरी का वोल्टेज काफी कम हो जाता है क्योंकि चार्ज कम हो जाता है, इसलिए अधिकांश उपभोक्ता एप्लिकेशन थोड़ा कम Ni-Cd सेल वोल्टेज से निपटने के लिए अच्छी तरह से सुसज्जित होते हैं, जिसमें प्रदर्शन का कोई ध्यान देने योग्य नुकसान नहीं होता है।
  • Ni-Cd बैटरी की क्षमता बहुत अधिक डिस्चार्ज करंट से महत्वपूर्ण रूप से प्रभावित नहीं होती है। यहां तक ​​कि 50C तक की उच्च निर्वहन दर के साथ, Ni-Cd बैटरी अपनी रेटेड क्षमता के बहुत करीब प्रदान करेगी। इसके विपरीत, एक लीड एसिड बैटरी अपेक्षाकृत मामूली 1.5C पर डिस्चार्जहोने पर अपनी रेटेड क्षमता का लगभग आधा ही प्रदान करेगी।
  • NiCd बैटरी का अधिकतम निरंतर करंट ड्रेन आमतौर पर लगभग 15C होता है। NiMH बैटरी की तुलना में जहां प्रयोग करने योग्य अधिकतम निरंतर करंट ड्रेन 5C से अधिक नहीं है।
  • निकेल-मेटल हाइड्राइड (NiMH) बैटरियां Ni-Cd बैटरियों की सबसे नई और सबसे समान प्रतिस्पर्धी हैं। Ni-Cd बैटरियों की तुलना में, NiMH बैटरियों की क्षमता अधिक होती है और ये कम विषैली होती हैं, और अब अधिक लागत प्रभावी हैं। हालांकि, Ni-Cd बैटरी में कम स्व-निर्वहन दर होती है (उदाहरण के लिए, Ni-Cd बैटरी के लिए प्रति माह 20%, समान परिस्थितियों में पारंपरिक NiMH के लिए 30% प्रति माह), हालांकि कम स्व-निर्वहन (" एलएसडी") एनआईएमएच बैटरी अब उपलब्ध हैं, जिनमें नी-सीडी या पारंपरिक एनआईएमएच बैटरी की तुलना में काफी कम स्व-निर्वहन होता है। इसका परिणाम उन अनुप्रयोगों में गैर-एलएसडी एनआईएमएच बैटरी पर एनआई-सीडी के लिए वरीयता में होता है जहां बैटरी पर वर्तमान ड्रॉ बैटरी की स्वयं-निर्वहन दर (उदाहरण के लिए, टेलीविजन रिमोट कंट्रोल) से कम है। दोनों प्रकार के सेल में, स्व-निर्वहन दर पूर्ण चार्ज अवस्था के लिए उच्चतम होती है और निम्न चार्ज अवस्थाओं के लिए कुछ हद तक कम हो जाती है। अंत में, एक समान आकार की Ni-Cd बैटरी में थोड़ा कम आंतरिक प्रतिरोध होता है, और इस प्रकार एक उच्च अधिकतम डिस्चार्ज दर प्राप्त कर सकती है (जो कि बिजली उपकरणों जैसे अनुप्रयोगों के लिए महत्वपूर्ण हो सकती है)

Ni-Cd बैटरियों के साथ प्राथमिक समझौता उनकी उच्च लागत और कैडमियम का उपयोग है। यह भारी धातु एक पर्यावरणीय खतरा है, और जीवन के सभी उच्च रूपों के लिए अत्यधिक विषैला है। वे लेड-एसिड बैटरी से भी अधिक महंगे हैं क्योंकि निकल और कैडमियम की कीमत अधिक होती है। सबसे बड़ी कमियों में से एक यह है कि बैटरी एक बहुत ही चिह्नित नकारात्मक तापमान गुणांक प्रदर्शित करती है। इसका मतलब है कि जैसे ही सेल का तापमान बढ़ता है, आंतरिक प्रतिरोध गिर जाता है। यह विशेष रूप से लीड-एसिड प्रकार की बैटरी के लिए नियोजित अपेक्षाकृत सरल चार्जिंग सिस्टम के साथ चार्जिंग की काफी समस्याएँ पैदा कर सकता है। जबकि लेड-एसिड बैटरियों को केवल डाइनेमो से जोड़कर चार्ज किया जा सकता है, डायनेमो स्थिर होने या ओवर-करंट होने पर एक साधारण विद्युत चुम्बकीय कट-आउट सिस्टम के साथ, इसी तरह की चार्जिंग योजना के तहत Ni-Cd बैटरी थर्मल प्रदर्शित करेगी। भगोड़ा, जहां चार्जिंग करंट तब तक बढ़ता रहेगा जब तक कि ओवर-करंट कट-आउट संचालित नहीं हो जाता या बैटरी खुद नष्ट नहीं हो जाती। यह प्रमुख कारक है जो इंजन-प्रारंभिक बैटरी के रूप में इसके उपयोग को रोकता है। आज सॉलिड-स्टेट रेगुलेटर के साथ अल्टरनेटर-आधारित चार्जिंग सिस्टम के साथ, एक उपयुक्त चार्जिंग सिस्टम का निर्माण अपेक्षाकृत सरल होगा, लेकिन कार निर्माता जांची-परखी तकनीक को छोड़ने के लिए अनिच्छुक हैं।[9]


स्मृति प्रभाव

Ni-Cd बैटरियां "स्मृति प्रभाव" से पीड़ित हो सकती हैं यदि उन्हें सैकड़ों बार एक ही चार्ज स्थिति में डिस्चार्ज और रिचार्ज किया जाता है। स्पष्ट लक्षण यह है कि बैटरी अपने निर्वहन चक्र में उस बिंदु को "याद" करती है जहां रिचार्जिंग शुरू हुई थी और बाद के उपयोग के दौरान उस बिंदु पर वोल्टेज में अचानक गिरावट आती है, जैसे कि बैटरी को छुट्टी दे दी गई हो। बैटरी की क्षमता वास्तव में काफी कम नहीं हुई है। नी-सीडी बैटरी द्वारा संचालित होने के लिए डिज़ाइन किए गए कुछ इलेक्ट्रॉनिक्स इस कम वोल्टेज को लंबे समय तक झेलने में सक्षम हैं ताकि वोल्टेज सामान्य हो जाए। हालांकि, यदि उपकरण घटी हुई वोल्टेज की इस अवधि के दौरान काम करने में असमर्थ है, तो यह बैटरी से पर्याप्त ऊर्जा प्राप्त करने में असमर्थ होगा, और सभी व्यावहारिक उद्देश्यों के लिए, बैटरी सामान्य से पहले "मृत" दिखाई देती है।

इस बात के सबूत हैं कि स्मृति प्रभाव की कहानी परिक्रमा करने वाले उपग्रहों से उत्पन्न हुई, जहां वे इसी तरह कई वर्षों की अवधि में पृथ्वी के चारों ओर हर कक्षा के साथ चार्ज और डिस्चार्ज हो रहे थे।[10]इस समय के बाद, यह पाया गया कि बैटरियों की क्षमता में काफी गिरावट आई थी, लेकिन वे अभी भी उपयोग के लिए फिट थीं। यह संभावना नहीं है कि यह सटीक दोहराव वाला चार्ज (उदाहरण के लिए, 2% से कम परिवर्तनशीलता के साथ 1,000 चार्ज/डिस्चार्ज) कभी भी बिजली के सामान का उपयोग करने वाले व्यक्तियों द्वारा पुन: उत्पन्न किया जा सकता है। स्मृति प्रभाव का वर्णन करने वाला मूल पेपर जीई के वैज्ञानिकों द्वारा गेन्सविले, फ्लोरिडा में उनके बैटरी व्यवसाय विभाग में लिखा गया था, और बाद में उनके द्वारा वापस ले लिया गया था, लेकिन नुकसान हो चुका था।[11]

बैटरी हजारों चार्ज/डिस्चार्ज चक्रों में जीवित रहती है। बैटरी को महीने में लगभग एक बार पूरी तरह से डिस्चार्ज करके मेमोरी प्रभाव को कम करना भी संभव है।[citation needed] इस तरह जाहिर तौर पर बैटरी अपने चार्ज चक्र में बिंदु को याद नहीं रखती है।

स्मृति प्रभाव के समान लक्षणों वाला एक प्रभाव तथाकथित वोल्टेज अवसाद या आलसी बैटरी प्रभाव है। यह बार-बार ओवरचार्जिंग का परिणाम है; लक्षण यह है कि बैटरी पूरी तरह से चार्ज प्रतीत होती है लेकिन ऑपरेशन की एक संक्षिप्त अवधि के बाद जल्दी से डिस्चार्ज हो जाती है। दुर्लभ मामलों में, कुछ डीप-डिस्चार्ज चक्रों द्वारा खोई गई अधिकांश क्षमता को पुनः प्राप्त किया जा सकता है, यह कार्य अक्सर स्वचालित बैटरी चार्जर द्वारा प्रदान किया जाता है। हालांकि, यह प्रक्रिया बैटरी के शेल्फ जीवन को कम कर सकती है।[citation needed] यदि अच्छी तरह से व्यवहार किया जाता है, तो एक Ni-Cd बैटरी 1,000 चक्रों या उससे अधिक समय तक चल सकती है, इससे पहले कि इसकी क्षमता इसकी मूल क्षमता के आधे से कम हो जाए। कई होम चार्जर स्मार्ट चार्जर होने का दावा करते हैं जो बंद हो जाएंगे और बैटरी को नुकसान नहीं पहुंचाएंगे, लेकिन यह एक आम समस्या लगती है।[citation needed]

पर्यावरणीय प्रभाव

Ni-Cd बैटरियों में 6% (औद्योगिक बैटरियों के लिए) और 18% (वाणिज्यिक बैटरियों के लिए) कैडमियम होता है, जो एक जहरीली भारी धातु है और इसलिए बैटरी के निपटान के दौरान विशेष देखभाल की आवश्यकता होती है।

संयुक्त राज्य अमेरिका में, अपेक्षित बैटरी पुनर्चक्रण लागत (सेवा जीवनकाल के अंत में उचित निपटान के लिए उपयोग की जाने वाली) को बैटरी खरीद मूल्य में शामिल किया जाता है।

तथाकथित बैटरी निर्देश (2006/66/EC) के तहत, चिकित्सा उपयोग को छोड़कर उपभोक्ता Ni-Cd बैटरी की बिक्री अब यूरोपीय संघ के भीतर प्रतिबंधित कर दी गई है; अलार्म सिस्टम; आपातकालीन प्रकाश; और पोर्टेबल बिजली उपकरण। इस अंतिम श्रेणी को 2016 से प्रभावी रूप से प्रतिबंधित कर दिया गया है।[12] उसी यूरोपीय संघ के निर्देश के तहत, समर्पित सुविधाओं में पुनर्नवीनीकरण करने के लिए प्रयुक्त औद्योगिक Ni-Cd बैटरियों को उनके उत्पादकों द्वारा एकत्र किया जाना चाहिए।

यह भी देखें

संदर्भ

  1. Valøen, Lars Ole and Shoesmith, Mark I. (2007). The effect of PHEV and HEV duty cycles on battery and battery pack performance (PDF). 2007 Plug-in Highway Electric Vehicle Conference: Proceedings. Retrieved 11 June 2010.
  2. "बैटरी - पर्यावरण - यूरोपीय आयोग". ec.europa.eu. Retrieved 18 October 2014.
  3. US Patent 0692507
  4. "GP Nickel Cadmium Technical Handbook" (PDF). Archived from the original (PDF) on 27 September 2007.
  5. "सोलूकॉर्प ने अंतरराष्ट्रीय बाजारों में प्रदूषण की रोकथाम, स्व-उपचारात्मक नी-सीडी बैटरी का अनावरण किया". Business Wire. 2006-10-19. Retrieved 2008-08-01.
  6. "बैटरी अपशिष्ट प्रबंधन" (PDF). DEFRA. 2006. Archived from the original (PDF) on 2013-10-08.
  7. "इनोबैट आँकड़े" (PDF). 2008. Archived from the original (PDF) on 2012-03-25.
  8. "ईपीबीए सांख्यिकी". 2000. Archived from the original on 2012-03-21.
  9. Linden, David; Reddy, Thomas B. (2001). "chapters 27 and 28". बैटरी की पुस्तिका (3rd ed.). McGraw-Hill. ISBN 0-07-135978-8.
  10. Goodman, Marty (1997-10-13). "Lead-Acid or NiCd Batteries?". Articles about Bicycle Commuting and Lighting. Harris Cyclery. Retrieved 2009-02-18.
  11. Repair FAQ, quoting GE tech note Davolio, G., & Soragni, E. (1998). Journal of Applied Electrochemistry, 28(12), 1313–1319. doi:10.1023/a:1003452327919
  12. "MEPs पावर टूल बैटरियों से कैडमियम और बटन सेल से पारा प्रतिबंधित करते हैं". European Parliament. 10 October 2013.


अग्रिम पठन

  • Bergstrom, Sven. "Nickel-Cadmium Batteries — Pocket Type". Journal of the Electrochemical Society, September 1952. 1952 The Electrochemical Society.
  • Ellis, G. B., Mandel, H., and Linden, D. "Sintered Plate Nickel-Cadmium Batteries". Journal of the Electrochemical Society, The Electrochemical Society, September 1952.
  • General Electric, "Nickel-Cadmium Battery Application Engineering Handbook", 1971
  • Marathon Battery Company, "Care and Maintenance of Nickel-Cadmium Batteries"
  • SAFT, "NiCd Aircraft Batteries, Operating and Maintenance Manual (OMM)", 2002


बाहरी संबंध