कार्यात्मक समीकरण (L- फलन)

From Vigyanwiki
Revision as of 17:54, 26 May 2023 by Manidh (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

गणित में, संख्या सिद्धांत के L- फलन से कई विशिष्ट गुण होने की उम्मीद की जाती है, जिनमें से एक यह है कि वे कुछ कार्यात्मक समीकरणों को संतुष्ट करते हैं। इन समीकरणों को क्या होना चाहिए, इसका एक विस्तृत सिद्धांत है, जिनमें से अधिकांश अभी भी अनुमानित हैं।

परिचय

एक प्रोटोटाइपिकल उदाहरण, रीमैन जीटा फलन का एक कार्यात्मक समीकरण है जो सम्मिश्र संख्या s पर इसके मान को 1 − s पर इसके मान से संबंधित करता है। हर मामले में यह कुछ मूल्य ζ(s) से संबंधित है जो केवल अनंत श्रृंखला परिभाषा से विश्लेषणात्मक निरंतरता द्वारा परिभाषित किया गया है। यानी लिखना – जैसा कि पारंपरिक है – σ s के वास्तविक भाग के लिए, कार्यात्मक समीकरण स्थितियो से संबंधित है

σ > 1 और σ < 0,

और इसके साथ स्थिति भी बदलता है

0 <σ <1

क्रिटिकल स्ट्रिप में ऐसे दूसरे स्थितियो में, लाइन σ = ½ में परिलक्षित होता है। इसलिए, पूरे जटिल विमान में जीटा-फलन का अध्ययन करने के लिए कार्यात्मक समीकरण का उपयोग बुनियादी है।

रीमैन ज़ेटा फलन के लिए विचाराधीन कार्यात्मक समीकरण सरल रूप लेता है

जहाँ Z(s) ζ(s) को गामा- गुणन से गुणा किया जाता है, जिसमें गामा फलन सम्मिलित होता है। इसे अब जीटा-फलन के लिए यूलर उत्पाद में एक 'अतिरिक्त' कारक के रूप में पढ़ा जाता है, जो अनंत प्राइम के अनुरूप है। कार्यात्मक समीकरण का एक ही आकार एक उपयुक्त गामा-कारक के साथ एक संख्या क्षेत्र K के डेडेकाइंड जीटा फलन के लिए है, जो केवल K के एम्बेडिंग पर निर्भर करता है (बीजगणितीय शब्दों में, वास्तविक संख्या के साथ K के क्षेत्रों के टेंसर उत्पाद पर) ).

डिरिचलेट एल-फलन के लिए एक समान समीकरण है, लेकिन इस बार उन्हें जोड़े में संबंधित:[1]

χ के साथ एक आदिम डिरिचलेट वर्ण, χ* इसका जटिल संयुग्म, Λ एल-फलन को गामा-कारक से गुणा किया जाता है, और ε आकार के निरपेक्ष मान 1 की एक जटिल संख्या

जहाँ G(χ) χ से बना गॉस योग है। इस समीकरण का दोनों पक्षों में समान कार्य है यदि और केवल यदि χ एक वास्तविक वर्ण है, {0,1,−1} में मान ले रहा है। तब ε 1 या −1 होना चाहिए, और मान −1 का स्थिति s = ½ पर Λ(s) का एक शून्य होगा। गॉस राशियों के सिद्धांत (प्रभाव में गॉस के) के अनुसार, मान हमेशा 1 होता है, इसलिए ऐसा कोई साधारण शून्य उपस्थित नहीं हो सकता है (फलन बिंदु के बारे में भी है)।

कार्यात्मक समीकरणों का सिद्धांत

इस तरह के कार्यात्मक समीकरणों का एक एकीकृत सिद्धांत एरिक हेके द्वारा दिया गया था, और सिद्धांत को जॉन टेट (गणितज्ञ) द्वारा टेट की थीसिस में फिर से लिया गया था। हेके ने संख्या क्षेत्रों के सामान्यीकृत वर्ण पाए, जिन्हें अब हेके वर्ण कहा जाता है, जिसके लिए उनके प्रमाण (थीटा कार्यों पर आधारित) ने भी काम किया। इन पात्रों और उनके संबद्ध एल-फ़ंक्शंस को अब जटिल गुणन से सख्ती से संबंधित समझा जाता है, क्योंकि डिरिक्लेट वर्ण साइक्लोटोमिक क्षेत्रों के लिए हैं।

स्थानीय ज़ेटा-फलन के लिए कार्यात्मक समीकरण भी हैं, जो ईटेल कोहोलॉजी में पोंकारे द्वैत के (एनालॉग) के लिए एक मौलिक स्तर पर उत्पन्न होते हैं। स्थानीय जेटा-फलन प्राप्त करने के लिए मॉडुलो प्राइम आदर्शों को कम करके गठित संख्या क्षेत्र K पर एक बीजगणितीय किस्म V के लिए हस्से-वेल ज़ेटा-फलन के यूलर उत्पाद, एक वैश्विक कार्यात्मक समीकरण होने का अनुमान लगाया गया है; लेकिन यह वर्तमान में विशेष स्थितियो को छोड़कर पहुंच से बाहर माना जाता है। परिभाषा को फिर से ईटेल कोहोलॉजी सिद्धांत से सीधे पढ़ा जा सकता है; लेकिन सामान्य तौर पर ऑटोमोर्फिक प्रतिनिधित्व सिद्धांत से आने वाली कुछ धारणा कार्यात्मक समीकरण प्राप्त करने के लिए आवश्यक लगती है। तानियामा-शिमुरा अनुमान सामान्य सिद्धांत के रूप में इसका एक विशेष स्थिति था। गामा-कारक पहलू को हॉज सिद्धांत से जोड़कर, और अपेक्षित ε कारक के विस्तृत अध्ययन से, अनुभवजन्य के रूप में सिद्धांत को काफी परिष्कृत स्थिति में लाया गया है, भले ही प्रमाण गायब हों।

यह भी देखें

संदर्भ

  1. "§25.15 Dirichlet -functions on NIST".

बाहरी संबंध