परिवर्तनीय नवीकरणीय ऊर्जा

From Vigyanwiki
स्पेन में नवीकरणीय ऊर्जा में 150 मेगावाट अंडासोल सौर ऊर्जा स्टेशन एक वाणिज्यिक परवलयिक गर्त सौर तापीय ऊर्जा संयंत्र है। अंडासोल प्लांट सौर ऊर्जा को स्टोर करने के लिए पिघले हुए नमक के टैंक का उपयोग करता है ताकि यह सूर्यास्त के बाद भी बिजली पैदा कर सके।[1]
नवीकरणीय ऊर्जा स्रोतों की उच्च पैठ वाले ग्रिडों को आमतौर पर बेसलोड उत्पादन के बजाय अधिक लचीली पीढ़ी की आवश्यकता होती है[2]

परिवर्तनीय नवीकरणीय ऊर्जा (वीआरई) या आंतरायिक नवीकरणीय ऊर्जा स्रोत (आईआरईएस) नवीकरणीय ऊर्जा स्रोत हैं जो उनके अस्थिर प्रकृति के कारण प्रेषण योग्य नहीं हैं, जैसे पवन ऊर्जा और सौर ऊर्जा, नवीकरणीय ऊर्जा स्रोतों के विपरीत, जैसे बांधित पनबिजली या बायोमास, या अपेक्षाकृत स्थिर स्रोत, जैसे कि भूतापीय शक्ति।

कम मात्रा में आंतरायिक शक्ति के उपयोग का विद्युत ग्रिड संचालन पर बहुत कम प्रभाव पड़ता है। बड़ी मात्रा में आंतरायिक शक्ति का उपयोग करने के लिए उन्नयन या यहां तक ​​कि ग्रिड के बुनियादी ढांचे के एक नए स्वरूप की आवश्यकता हो सकती है।Cite error: Closing </ref> missing for <ref> tag ग्रिड में परिवर्तनीय ऊर्जा के बड़े हिस्से को अवशोषित करने के विकल्पों में ऊर्जा भंडारण का उपयोग करना, आपूर्ति को सुचारू करने के लिए विभिन्न चर स्रोतों के बीच बेहतर इंटरकनेक्शन, पनबिजली जैसे प्रेषण योग्य ऊर्जा स्रोतों का उपयोग करना और अधिक क्षमता होना शामिल है, ताकि मौसम के कम अनुकूल होने पर भी पर्याप्त ऊर्जा का उत्पादन किया जा सके। ऊर्जा क्षेत्र और भवन, परिवहन और औद्योगिक क्षेत्रों के बीच अधिक संपर्क भी मदद कर सकते हैं।[3]: 55 

पृष्ठभूमि और शब्दावली

अधिकांश बिजली ग्रिडों में आंतरायिक नवीकरणीय ऊर्जा का प्रवेश कम है: 2021 में वैश्विक बिजली उत्पादन 7% पवन और 4% सौर था।[4] चुकी, 2021 में डेनमार्क, लक्समबर्ग और उरुग्वे ने अपनी 40% से अधिक बिजली पवन और सौर से उत्पन्न की।[4] परिवर्तनीय नवीनीकरण के लक्षणों में उनकी अप्रत्याशितता, परिवर्तनशीलता और कम चलने वाली लागत शामिल हैं। ये विद्युत शक्ति संचरण को एक चुनौती प्रदान करते हैं, जिन्हें यह सुनिश्चित करना चाहिए कि आपूर्ति और मांग का मिलान हो। समाधानों में ऊर्जा भंडारण, मांग प्रतिक्रिया, अधिक क्षमता और सेक्टर कपलिंग शामिल हैं।[5] छोटे पृथक ग्रिड पैठ के उच्च स्तर के प्रति कम सहिष्णु हो सकते हैं।[6][7]

आपूर्ति के लिए बिजली की मांग का मिलान आंतरायिक बिजली स्रोतों के लिए विशिष्ट समस्या नहीं है। मौजूदा पावर ग्रिड में पहले से ही मांग में अचानक और बड़े बदलाव और बिजली संयंत्र की अप्रत्याशित विफलता सहित अनिश्चितता के तत्व शामिल हैं। हालांकि पावर ग्रिड पहले से ही इन समस्याओं से निपटने के लिए अनुमानित पीक डिमांड से अधिक क्षमता के लिए डिज़ाइन किए गए हैं, बड़ी मात्रा में आंतरायिक बिजली को समायोजित करने के लिए महत्वपूर्ण उन्नयन की आवश्यकता हो सकती है।[8]

आंतरायिक विद्युत स्रोतों के मुद्दे को समझने के लिए कई प्रमुख शब्द उपयोगी हैं। ये शर्तें मानकीकृत नहीं हैं, और विविधताओं का उपयोग किया जा सकता है। इनमें से अधिकतर शर्तें पारंपरिक बिजली संयंत्रों पर भी लागू होती हैं।

  • आंतरायिकता या परिवर्तनशीलता वह सीमा है जिसमें एक शक्ति स्रोत में उतार-चढ़ाव होता है। इसके दो पहलू हैं: एक पूर्वानुमेय परिवर्तनशीलता (जैसे दिन-रात चक्र) और एक अप्रत्याशित भाग (अपूर्ण स्थानीय मौसम पूर्वानुमान)।[9] आंतरायिक शब्द का उपयोग अप्रत्याशित भाग को संदर्भित करने के लिए किया जा सकता है, फिर चर के साथ पूर्वानुमेय भाग का जिक्र किया जा सकता है।[10]
  • डिस्पैचेबिलिटी जेनरेशन किसी दिए गए पावर स्रोत की मांग पर आउटपुट को तेज़ी से बढ़ाने और घटाने की क्षमता है। अवधारणा आंतरायिकता से अलग है; डिस्पैचबिलिटी कई तरीकों में से एक है, सिस्टम ऑपरेटर सिस्टम की मांग (तकनीकी भार) के लिए आपूर्ति (जेनरेटर का आउटपुट) से मेल खाते हैं।[11]
  • पेनेट्रेशन वार्षिक खपत के प्रतिशत के रूप में उत्पन्न बिजली की मात्रा है।[12]
  • नाममात्र शक्ति या नेमप्लेट क्षमता सामान्य परिचालन स्थितियों में उत्पादन संयंत्र का अधिकतम उत्पादन है। यह सबसे सामान्य संख्या है जिसका उपयोग किया जाता है और आमतौर पर वाट में व्यक्त किया जाता है (गुणकों जैसे kW, MW, GW सहित)।
  • क्षमता कारक, औसत क्षमता कारक, या भार कारक एक जनरेटर का औसत अपेक्षित उत्पादन होता है, आमतौर पर एक वार्षिक अवधि में। इसे नेमप्लेट क्षमता के प्रतिशत के रूप में या दशमलव रूप में व्यक्त किया जाता है (जैसे 30% या 0.30)।
  • इलेक्ट्रिकल ग्रिड क्षमता और या दृढ़ शक्ति "प्रतिबद्धता द्वारा कवर की गई अवधि के दौरान हर समय उपलब्ध रहने के लिए आपूर्तिकर्ता द्वारा गारंटीकृत है"।[13]
  • क्षमता क्रेडिट: पारंपरिक (प्रेषण योग्य) उत्पादन शक्ति की मात्रा जिसे विश्वसनीयता बनाए रखते हुए सिस्टम से संभावित रूप से हटाया जा सकता है, आमतौर पर नाममात्र शक्ति के प्रतिशत के रूप में व्यक्त किया जाता है।[14]
  • दूरदर्शिता या पूर्वानुमेयता यह है कि ऑपरेटर पीढ़ी का कितना सटीक अनुमान लगा सकता है:[15] उदाहरण के लिए ज्वारीय ऊर्जा ज्वार के साथ बदलती है लेकिन यह पूरी तरह से पूर्वाभास योग्य है क्योंकि चंद्रमा की कक्षा का सटीक अनुमान लगाया जा सकता है, और मौसम के बेहतर पूर्वानुमान से पवन ऊर्जा का अधिक अनुमान लगाया जा सकता है।[16]

स्रोत

बांधित पनबिजली, बायोमास और भूतापीय प्रेषण योग्य हैं क्योंकि प्रत्येक में संभावित ऊर्जा का भंडार है; भंडारण के बिना हवा और सौर को कम किया जा सकता है, लेकिन प्रकृति द्वारा प्रदान किए जाने के अलावा, प्रेषित नहीं किया जा सकता है। हवा और सौर के बीच, सौर में हवा की तुलना में अधिक परिवर्तनशील दैनिक चक्र होता है, लेकिन हवा की तुलना में दिन के उजाले में अधिक पूर्वानुमानित होता है। सौर की तरह, ज्वारीय ऊर्जा प्रत्येक दिन चक्र के चालू और बंद होने के बीच बदलती रहती है, सौर के विपरीत इसमें कोई रुकावट नहीं होती है, ज्वार बिना किसी चूक के हर दिन उपलब्ध होते हैं।

पवन ऊर्जा

आगे के दिन की भविष्यवाणी और वास्तविक पवन ऊर्जा

ग्रिड ऑपरेटर अगले दिन का उपयोग करने के लिए उपलब्ध बिजली स्रोतों में से कौन सा निर्धारित करने के लिए दिन के पूर्वानुमान का उपयोग करते हैं, और मौसम की भविष्यवाणी का उपयोग संभावित पवन ऊर्जा और सौर ऊर्जा उत्पादन की भविष्यवाणी करने के लिए किया जाता है। हालांकि पवन ऊर्जा पूर्वानुमान का उपयोग दशकों से किया जा रहा है, 2019 तक आईईए उनकी सटीकता को और बेहतर बनाने के लिए अंतर्राष्ट्रीय सहयोग का आयोजन कर रहा है।[17]

दो साल की अवधि में एरी शोर्स विंड फार्म मासिक उत्पादन

हवा से उत्पन्न बिजली एक परिवर्तनशील संसाधन है, और किसी दिए गए संयंत्र द्वारा किसी भी समय उत्पादित बिजली की मात्रा हवा की गति, वायु घनत्व और टरबाइन विशेषताओं (अन्य कारकों के बीच) पर निर्भर करेगी। यदि हवा की गति बहुत कम है तो पवन टर्बाइन बिजली बनाने में सक्षम नहीं होंगे, और यदि यह बहुत अधिक है तो क्षति से बचने के लिए टर्बाइनों को बंद करना होगा। जबकि एक टरबाइन से उत्पादन बहुत तेजी से भिन्न हो सकता है क्योंकि स्थानीय हवा की गति भिन्न होती है, क्योंकि अधिक टर्बाइन बड़े और बड़े क्षेत्रों से जुड़े होते हैं, औसत बिजली उत्पादन कम परिवर्तनशील हो जाता है।[8]

  • आंतरायिकता: सिनॉप्टिक स्केल मौसम विज्ञान (लगभग 1000 किमी से कम लंबा, एक औसत देश का आकार) से छोटे क्षेत्रों में ज्यादातर एक ही मौसम होता है और इस प्रकार एक ही पवन ऊर्जा के आसपास होता है, जब तक कि स्थानीय परिस्थितियां विशेष हवाओं का पक्ष नहीं लेती हैं। कुछ अध्ययनों से पता चलता है कि भौगोलिक रूप से विविध क्षेत्र में फैले पवन फार्म पूरी तरह से शायद ही कभी पूरी तरह से बिजली उत्पादन बंद कर देंगे।[18][19] हालांकि आयरलैंड जैसे समान भूगोल वाले छोटे क्षेत्रों के मामले में ऐसा कम ही होता है।[20][21][22] स्कॉटलैंड[23] और डेनमार्क जहां प्रति वर्ष बहुत कम पवन ऊर्जा के साथ कई दिन होते हैं।[24]
  • क्षमता कारक: पवन ऊर्जा में आम तौर पर 25–50% का वार्षिक क्षमता कारक होता है, जिसमें अपतटीय पवन तटवर्ती पवन से बेहतर प्रदर्शन करती है।[25]
  • प्रेषणीयता: क्योंकि पवन ऊर्जा अपने आप में प्रेषणीय नहीं होती पवन फार्म कभी-कभी भंडारण के साथ बनाए जाते हैं।[26][27]
  • क्षमता क्रेडिट: पैठ के निम्न स्तर पर, पवन का क्षमता क्रेडिट लगभग क्षमता कारक के समान होता है। जैसे ही ग्रिड पर पवन ऊर्जा की एकाग्रता बढ़ती है, क्षमता क्रेडिट प्रतिशत गिर जाता है।[28][29]
  • परिवर्तनशीलता: साइट पर निर्भर।[30] भूमि समीर की तुलना में समुद्री समीर बहुत अधिक स्थिर होती हैं।[8]मौसमी परिवर्तनशीलता उत्पादन को 50% तक कम कर सकती है।[31]
  • विश्वसनीयता इंजीनियरिंग: जब हवा चलती है तो एक पवन खेत में उच्च तकनीकी विश्वसनीयता होती है। यही है, किसी भी समय आउटपुट केवल हवा की गति या तूफान गिरने के कारण धीरे-धीरे भिन्न होगा (बाद में शट डाउन की आवश्यकता होती है)। एक विशिष्ट पवन फार्म को चरम पर आधे घंटे से भी कम समय में बंद होने की संभावना नहीं है, जबकि एक समान आकार का पावर स्टेशन पूरी तरह से तत्काल और बिना किसी चेतावनी के विफल हो सकता है। मौसम की भविष्यवाणी के माध्यम से पवन टर्बाइनों का कुल बंद होने का अनुमान लगाया जा सकता है। पवन टर्बाइन की औसत उपलब्धता 98% है, और जब टर्बाइन विफल हो जाता है या रखरखाव के लिए बंद हो जाता है तो यह एक बड़े पवन खेत के उत्पादन का केवल एक छोटा सा प्रतिशत प्रभावित करता है।[32]
  • पूर्वानुमेयता: हालाँकि हवा परिवर्तनशील है, यह अल्पावधि में भी पूर्वानुमान योग्य है। इस बात की 80% संभावना है कि हवा का उत्पादन एक घंटे में 10% से कम बदलेगा और 40% संभावना है कि यह 5 घंटे में 10% या उससे अधिक बदल जाएगा।[33]

क्योंकि पवन ऊर्जा बड़ी संख्या में छोटे जनरेटर द्वारा उत्पन्न होती है, व्यक्तिगत विफलताओं का पावर ग्रिड पर बड़ा प्रभाव नहीं पड़ता है। पवन की इस विशेषता को लचीलापन कहा गया है।[34]

सौर ऊर्जा

सैन फ्रांसिस्को में एटी एंड टी पार्क में दैनिक सौर उत्पादन
सैन फ्रांसिस्को में एटी एंड टी पार्क में सौर पैनलों के उत्पादन में मौसमी बदलाव

आंतरायिकता स्वाभाविक रूप से सौर ऊर्जा को प्रभावित करती है, क्योंकि सौर स्रोतों से नवीकरणीय बिजली का उत्पादन किसी दिए गए स्थान और समय पर सूर्य के प्रकाश की मात्रा पर निर्भर करता है। सौर उत्पादन पूरे दिन और मौसम के दौरान बदलता रहता है, और यह धूल, कोहरे, बादलों के आवरण, पाले या बर्फ से प्रभावित होता है। कई मौसमी कारक काफी अनुमानित हैं, और कुछ सौर तापीय प्रणालियां पूरे दिन के लिए ग्रिड पावर का उत्पादन करने के लिए ताप भंडारण का उपयोग करती हैं।[35]

  • परिवर्तनशीलता: एक ऊर्जा भंडारण प्रणाली के अभाव में, सौर रात में बिजली का उत्पादन नहीं करता है, खराब मौसम में थोड़ा और मौसम के बीच बदलता रहता है। कई देशों में, कम हवा की उपलब्धता और इसके विपरीत मौसम में सौर सबसे अधिक ऊर्जा पैदा करता है।[36]
  • क्षमता कारक मानक फोटोवोल्टिक सौर का वार्षिक औसत क्षमता कारक 10-20% है,[37] लेकिन पैनल जो सूर्य को स्थानांतरित और ट्रैक करते हैं, उनकी क्षमता कारक 30% तक होती है।[38] भंडारण के साथ थर्मल सौर परवलयिक गर्त 56%।[39] भंडारण के साथ थर्मल सौर ऊर्जा टावर 73%।[39]
बाएं

सौर-जनित बिजली की आंतरायिकता का प्रभाव मांग के साथ उत्पादन के सहसंबंध पर निर्भर करेगा। उदाहरण के लिए, नेवादा सोलर वन जैसे सौर ताप विद्युत संयंत्र कुछ हद तक दक्षिण-पश्चिमी संयुक्त राज्य अमेरिका जैसे महत्वपूर्ण शीतलन मांगों वाले क्षेत्रों में गर्मियों के चरम भार से मेल खाते हैं। छोटे स्पैनिश जेमासोलर थर्मोसोलर प्लांट जैसी तापीय ऊर्जा भंडारण प्रणालियाँ सौर आपूर्ति और स्थानीय खपत के बीच मेल को बेहतर बना सकती हैं। थर्मल स्टोरेज का उपयोग करने वाला बेहतर क्षमता कारक अधिकतम क्षमता में कमी का प्रतिनिधित्व करता है, और सिस्टम द्वारा बिजली उत्पन्न करने के कुल समय को बढ़ाता है।[40][41][42]

रन-ऑफ़-द-रिवर पनबिजली

जलाशयों के पर्यावरणीय प्रभाव के कारण कई देशों में अब नए बड़े बांध नहीं बनाए जा रहे हैं। रन-ऑफ-द-रिवर पनबिजली का निर्माण जारी है।[43] जलाशय की अनुपस्थिति के परिणामस्वरूप बिजली उत्पादन में मौसमी और वार्षिक दोनों बदलाव होते हैं।

ज्वारीय शक्ति

ज्वार के प्रकार

ज्वारीय शक्ति सभी परिवर्तनशील नवीकरणीय ऊर्जा स्रोतों में सबसे अधिक अनुमानित है। ज्वार-भाटे दिन में दो बार पलटते हैं, लेकिन वे कभी भी रुक-रुक कर नहीं होते, इसके विपरीत वे पूरी तरह से विश्वसनीय होते हैं। दुनिया में केवल 20 साइटों को अभी तक संभावित ज्वारीय बिजली स्टेशनों के रूप में पहचाना गया है।[44]

तरंग शक्ति

लहरें मुख्य रूप से हवा द्वारा बनाई जाती हैं, इसलिए लहरों से उपलब्ध शक्ति हवा से उपलब्ध शक्ति का अनुसरण करती है, लेकिन पानी के द्रव्यमान के कारण पवन ऊर्जा की तुलना में कम चर होता है। पवन ऊर्जा हवा की गति के घन के समानुपाती होती है, जबकि तरंग शक्ति तरंग ऊंचाई के वर्ग के समानुपाती होती है।[45][46][47]

उनके एकीकरण के लिए समाधान

विस्थापित प्रेषण योग्य उत्पादन कोयला, प्राकृतिक गैस, बायोमास, परमाणु, भू-तापीय या भंडारण हाइड्रो हो सकता है।[citation needed][clarification needed] परमाणु या भूतापीय को शुरू करने और रोकने के बजाय उन्हें निरंतर आधार भार शक्ति के रूप में उपयोग करना सस्ता है। मांग से अधिक उत्पन्न होने वाली कोई भी बिजली हीटिंग ईंधन को विस्थापित कर सकती है, भंडारण में परिवर्तित हो सकती है या किसी अन्य ग्रिड को बेची जा सकती है। जैव ईंधन और पारंपरिक जलविद्युत को बाद के लिए बचाया जा सकता है जब रुक-रुक कर बिजली पैदा नहीं हो रही हो। कुछ लोगों का अनुमान है कि 2020 के अंत तक "निकट-फर्म" नवीकरणीय (सौर और/या पवन वाली बैटरी) बिजली मौजूदा परमाणु ऊर्जा से सस्ती होगी: इसलिए वे कहते हैं कि आधार भाग पावर की आवश्यकता नहीं होगी।[48] जीवाश्म ईंधन चरण-आउट कोयला और प्राकृतिक गैस जो कम ग्रीनहाउस गैसों का उत्पादन करते हैं, अंततः जीवाश्म ईंधन को जमीन में छोड़ी गई एक फंसे हुए संपत्ति बना सकते हैं। अत्यधिक एकीकृत ग्रिड लागत पर लचीलेपन और प्रदर्शन का पक्ष लेते हैं, जिसके परिणामस्वरूप अधिक संयंत्र कम घंटे और कम क्षमता वाले कारकों के लिए काम करते हैं।[49] विद्युत शक्ति के सभी स्रोतों में कुछ हद तक परिवर्तनशीलता होती है, जैसा कि मांग के पैटर्न में होता है जो नियमित रूप से बिजली की मात्रा में बड़े उतार-चढ़ाव का कारण बनता है जिसे आपूर्तिकर्ता ग्रिड में फीड करते हैं। जहां भी संभव हो, ग्रिड संचालन प्रक्रिया को उच्च स्तर की विश्वसनीयता पर मांग के साथ आपूर्ति से मेल खाने के लिए डिज़ाइन किया गया है, और आपूर्ति और मांग को प्रभावित करने के उपकरण अच्छी तरह से विकसित हैं। अत्यधिक परिवर्तनीय बिजली उत्पादन की बड़ी मात्रा की शुरूआत के लिए मौजूदा प्रक्रियाओं और अतिरिक्त निवेश में बदलाव की आवश्यकता हो सकती है।

एक विश्वसनीय नवीकरणीय ऊर्जा आपूर्ति की क्षमता, अतिरेक (इंजीनियरिंग) के उपयोग से पूरी की जा सकती है, बिजली दोष-सहिष्णु डिजाइन का उत्पादन करने के लिए मिश्रित नवीनीकरण का उपयोग किया जा सकता है, जिसका उपयोग नियमित और अप्रत्याशित आपूर्ति मांगों को पूरा करने के लिए किया जा सकता है।[50] इसके अतिरिक्त, अंतराल की कमी या आपात स्थिति के लिए ऊर्जा का भंडारण एक विश्वसनीय बिजली आपूर्ति का हिस्सा हो सकता है।

व्यवहार में, जैसा कि हवा से बिजली उत्पादन भिन्न होता है, आंशिक रूप से लोड किए गए पारंपरिक संयंत्र, जो पहले से ही प्रतिक्रिया और आरक्षित प्रदान करने के लिए मौजूद हैं, क्षतिपूर्ति करने के लिए अपने उत्पादन को समायोजित करते हैं। जबकि आंतरायिक शक्ति के कम प्रवेश प्रतिक्रिया और कताई रिजर्व के मौजूदा स्तरों का उपयोग कर सकते हैं, उच्च प्रवेश स्तरों पर बड़े समग्र बदलावों के लिए अतिरिक्त भंडार या मुआवजे के अन्य साधनों की आवश्यकता होगी।

ऑपरेशनल रिजर्व

पावर ग्रिड में मौजूदा अनिश्चितताओं की भरपाई के लिए सभी प्रबंधित ग्रिड में पहले से ही परिचालन और स्पिनिंग रिजर्व मौजूद हैं। आंतरायिक संसाधनों जैसे कि हवा को जोड़ने के लिए 100% बैक-अप की आवश्यकता नहीं होती है क्योंकि परिचालन भंडार और संतुलन आवश्यकताओं की गणना सिस्टम-व्यापी आधार पर की जाती है, और किसी विशिष्ट उत्पादन संयंत्र को समर्पित नहीं होती है।

कुछ गैस, या पनबिजली संयंत्रों को आंशिक रूप से लोड किया जाता है और फिर मांग में बदलाव के रूप में बदलने या तेजी से खोई हुई पीढ़ी को बदलने के लिए नियंत्रित किया जाता है। मांग में बदलाव के रूप में बदलने की क्षमता को प्रतिक्रिया कहा जाता है। आमतौर पर 30 सेकंड से 30 मिनट के समय के भीतर खोई हुई पीढ़ी को जल्दी से बदलने की क्षमता को स्पिनिंग रिजर्व कहा जाता है।

आमतौर पर पीकिंग पावर प्लांट के रूप में चलने वाले थर्मल प्लांट बेस लोड पावर प्लांट के रूप में चलने की तुलना में कम कुशल होंगे। भंडारण क्षमता वाली पनबिजली सुविधाएं (जैसे पारंपरिक बांध विन्यास) बेस लोड या पीकिंग प्लांट के रूप में संचालित की जा सकती हैं।

ग्रिड बैटरी भंडारण पावर स्टेशन के लिए अनुबंध कर सकते हैं, जो एक या दो घंटे के लिए तुरंत उपलब्ध बिजली प्रदान करते हैं, जो विफलता की स्थिति में अन्य जनरेटर को शुरू करने का समय देता है, और आवश्यक स्पिनिंग रिजर्व की मात्रा को बहुत कम कर देता है।[51][52]

मांग प्रतिक्रिया

मांग प्रतिक्रिया आपूर्ति के साथ बेहतर तालमेल के लिए ऊर्जा की खपत में बदलाव है। यह लोड बंद करने का रूप ले सकता है, या आपूर्ति/मांग असंतुलन को सही करने के लिए अतिरिक्त ऊर्जा को अवशोषित कर सकता है। इन प्रणालियों के उपयोग के लिए अमेरिकी, ब्रिटिश और फ्रांसीसी प्रणालियों में व्यापक रूप से प्रोत्साहन तैयार किए गए हैं, जैसे कि अनुकूल दरें या पूंजीगत लागत सहायता, बड़े भार वाले उपभोक्ताओं को जब भी क्षमता की कमी होती है, या इसके विपरीत बढ़ाने के लिए उन्हें ऑफ़लाइन लेने के लिए प्रोत्साहित किया जाता है। अधिशेष होने पर लोड करें।

लोड नियंत्रण के कुछ प्रकार बिजली कंपनी को अपर्याप्त बिजली उपलब्ध होने पर दूर से लोड बंद करने की अनुमति देते हैं। फ्रांस में CERN जैसे बड़े उपयोगकर्ता EJP टैरिफ के प्रोत्साहन के तहत सिस्टम ऑपरेटर - EDF द्वारा आवश्यक बिजली के उपयोग में कटौती करते हैं।[53][54] ऊर्जा मांग प्रबंधन बिजली के उपयोग को समायोजित करने के लिए प्रोत्साहनों को संदर्भित करता है, जैसे पीक आवर्स के दौरान उच्च दरें। रीयल-टाइम परिवर्तनीय बिजली मूल्य निर्धारण उपयोगकर्ताओं को बिजली सस्ते में उपलब्ध होने पर अवधि का लाभ लेने के लिए उपयोग को समायोजित करने और अधिक दुर्लभ और महंगी होने वाली अवधि से बचने के लिए प्रोत्साहित कर सकता है।[55] कुछ भार जैसे अलवणीकरण संयंत्र, बिजली के बॉयलर और औद्योगिक प्रशीतन इकाइयां, अपने आउटपुट (पानी और गर्मी) को स्टोर करने में सक्षम हैं। कई पेपर्स ने यह भी निष्कर्ष निकाला है कि Bitcoin माइनिंग लोड कर्टेलमेंट (बिजली), हेज (फाइनेंस) इलेक्ट्रिसिटी मार्केट#जोखिम प्रबंधन को कम करेगा, ग्रिड को स्थिर करेगा, निवेश पावर स्टेशनों पर एनर्जी रिटर्न बढ़ाएगा और इसलिए अक्षय ऊर्जा ट्रांजिशन में तेजी लाएगा।[56][57][58][59][60][61][62][63] लेकिन दूसरों का तर्क है कि बिटकॉइन खनन कभी भी टिकाऊ नहीं हो सकता।[64] तात्कालिक मांग में कमी। अधिकांश बड़ी प्रणालियों में लोड की एक श्रेणी भी होती है जो कुछ परस्पर लाभकारी अनुबंध के तहत उत्पादन की कमी होने पर तुरंत डिस्कनेक्ट हो जाती है। यह तत्काल भार में कमी (या वृद्धि) दे सकता है।

भंडारण

नमक टैंक का निर्माण जो कुशल तापीय ऊर्जा भंडारण प्रदान करता है[65] ताकि सूर्यास्त के बाद उत्पादन प्रदान किया जा सके, और मांग आवश्यकताओं को पूरा करने के लिए उत्पादन निर्धारित किया जा सके।[66] 280 MW सोलाना जनरेटिंग स्टेशन को छह घंटे का ऊर्जा भंडारण प्रदान करने के लिए डिज़ाइन किया गया है। यह संयंत्र को एक वर्ष के दौरान अपनी निर्धारित क्षमता का लगभग 38 प्रतिशत उत्पादन करने की अनुमति देता है।[67]
लीथियम-आयन बैटरियों का सीखने की अवस्था: तीन दशकों में बैटरियों की कीमत में 97% की गिरावट आई है।

कम भार के समय जहां पवन और सौर से गैर-प्रेषणीय उत्पादन अधिक हो सकता है, ग्रिड स्थिरता के लिए विभिन्न प्रेषण योग्य उत्पादन स्रोतों के उत्पादन को कम करने या यहां तक ​​कि नियंत्रणीय भार को बढ़ाने की आवश्यकता होती है, संभवत: ऊर्जा भंडारण का उपयोग करके समय-शिफ्ट आउटपुट को उच्च मांग के समय तक . ऐसे तंत्रों में शामिल हो सकते हैं:

पंप-भंडारण पनबिजली सबसे प्रचलित मौजूदा तकनीक है, और पवन ऊर्जा के अर्थशास्त्र में काफी हद तक सुधार कर सकती है। भंडारण के लिए उपयुक्त जलविद्युत स्थलों की उपलब्धता ग्रिड से ग्रिड में भिन्न होगी। विशिष्ट राउंड ट्रिप दक्षता 80% है।[8][68] ग्रिड-स्केल बैटरी स्टोरेज के लिए पारंपरिक लिथियम-आयन सबसे आम प्रकार है as of 2020.[69] रिचार्जेबल फ्लो बैटरी एक बड़ी क्षमता, तीव्र-प्रतिक्रिया भंडारण माध्यम के रूप में काम कर सकती है।[11]हाइड्रोजन को इलेक्ट्रोलीज़ के माध्यम से बनाया जा सकता है और बाद में उपयोग के लिए संग्रहीत किया जा सकता है।[70] चक्का ऊर्जा भंडारण के रासायनिक बैटरियों पर कुछ फायदे हैं। पर्याप्त स्थायित्व के साथ-साथ जो उन्हें ध्यान देने योग्य जीवन में कमी के बिना अक्सर साइकिल चलाने की अनुमति देता है, उनके पास बहुत तेज़ प्रतिक्रिया और रैंप दर भी होती है। वे कुछ ही सेकंड में फुल डिस्चार्ज से फुल चार्ज हो सकते हैं।[71] वे गैर-विषैले और पर्यावरण के अनुकूल सामग्रियों का उपयोग करके निर्मित किए जा सकते हैं, सेवा जीवन समाप्त होने के बाद आसानी से पुनर्नवीनीकरण किया जा सकता है।[72] तापीय ऊर्जा भंडारण ऊष्मा का भंडारण करता है। संग्रहीत गर्मी का उपयोग सीधे ताप जरूरतों के लिए किया जा सकता है या बिजली में परिवर्तित किया जा सकता है। सीएचपी संयंत्र के संदर्भ में एक गर्मी भंडारण तुलनात्मक रूप से कम लागत पर कार्यात्मक बिजली भंडारण के रूप में काम कर सकता है। बर्फ भंडारण एयर कंडीशनिंग बर्फ को अंतर-मौसमी रूप से संग्रहीत किया जा सकता है और उच्च मांग की अवधि के दौरान एयर कंडीशनिंग के स्रोत के रूप में इस्तेमाल किया जा सकता है। वर्तमान प्रणालियों को केवल कुछ घंटों के लिए बर्फ जमा करने की आवश्यकता होती है, लेकिन वे अच्छी तरह से विकसित हैं।

विद्युत ऊर्जा के भंडारण के परिणामस्वरूप कुछ ऊर्जा नष्ट हो जाती है क्योंकि भंडारण और पुनर्प्राप्ति पूरी तरह से कुशल नहीं हैं। भंडारण के लिए पूंजी निवेश और भंडारण सुविधाओं के लिए जगह की भी आवश्यकता होती है।

भौगोलिक विविधता और पूरक प्रौद्योगिकियां

ओंटारियो में पांच पवन फार्मों के प्रति घंटा उत्पादन के पांच दिन

एकल पवन टरबाइन से उत्पादन की परिवर्तनशीलता अधिक हो सकती है। टर्बाइनों की किसी भी अतिरिक्त संख्या (उदाहरण के लिए, एक पवन खेत में) के संयोजन के परिणामस्वरूप कम सांख्यिकीय भिन्नता होती है, जब तक कि प्रत्येक टर्बाइन के आउटपुट के बीच सहसंबंध अपूर्ण है, और प्रत्येक टर्बाइन के बीच की दूरी के कारण सहसंबंध हमेशा अपूर्ण होते हैं। इसी तरह, भौगोलिक रूप से दूर पवन टर्बाइनों या पवन फार्मों में कम सहसंबंध होते हैं, जिससे समग्र परिवर्तनशीलता कम हो जाती है। चूंकि पवन ऊर्जा मौसम प्रणालियों पर निर्भर है, इसलिए किसी भी बिजली प्रणाली के लिए इस भौगोलिक विविधता के लाभ की एक सीमा है।[73]

एक विस्तृत भौगोलिक क्षेत्र में फैले कई पवन फार्म और एक साथ ग्रिड छोटे प्रतिष्ठानों की तुलना में अधिक लगातार और कम परिवर्तनशीलता के साथ बिजली का उत्पादन करते हैं। विशेष रूप से बड़ी संख्या में टर्बाइनों/खेतों से मौसम पूर्वानुमानों का उपयोग करके कुछ हद तक विश्वास के साथ पवन ऊर्जा का पूर्वानुमान। पवन उत्पादन की भविष्यवाणी करने की क्षमता समय के साथ बढ़ने की उम्मीद है क्योंकि डेटा एकत्र किया जाता है, खासकर नई सुविधाओं से।[73]

सौर ऊर्जा से उत्पादित बिजली हवा से उत्पन्न उतार-चढ़ाव वाली आपूर्ति का प्रतिकार करती है। आम तौर पर यह रात में और बादलों या तूफानी मौसम के दौरान सबसे तेज़ होता है, और कम हवा के साथ साफ दिनों में अधिक धूप होती है।[74] इसके अलावा, पवन ऊर्जा अक्सर सर्दियों के मौसम में चरम पर होती है, जबकि सौर ऊर्जा गर्मी के मौसम में चरम पर होती है; पवन और सौर का संयोजन प्रेषण योग्य बैकअप शक्ति की आवश्यकता को कम करता है।[75]

  • कुछ स्थानों पर, बिजली की मांग का पवन उत्पादन के साथ उच्च संबंध हो सकता है,[citation needed]विशेष रूप से उन स्थानों में जहां ठंडे तापमान से बिजली की खपत होती है (क्योंकि ठंडी हवा सघन होती है और अधिक ऊर्जा वहन करती है)।
  • अतिरिक्त उत्पादन में और निवेश के साथ स्वीकार्य पैठ बढ़ाई जा सकती है। उदाहरण के लिए, कुछ दिनों में 80% आंतरायिक हवा का उत्पादन हो सकता है और कई पवन रहित दिनों में प्राकृतिक गैस, बायोमास और हाइड्रो जैसे 80% प्रेषण योग्य बिजली का विकल्प होता है।
  • पनबिजली उत्पादन के मौजूदा उच्च स्तर वाले क्षेत्र हवा की पर्याप्त मात्रा को शामिल करने के लिए ऊपर या नीचे बढ़ सकते हैं। नॉर्वे, ब्राज़िल और मैनिटोबा सभी में जलविद्युत उत्पादन का उच्च स्तर है, क्यूबेक जलविद्युत से 90% से अधिक बिजली का उत्पादन करता है, और हाइड्रो-क्यूबेक दुनिया का सबसे बड़ा जलविद्युत उत्पादक है। यूएस पैसिफिक नॉर्थवेस्ट की पहचान एक अन्य क्षेत्र के रूप में की गई है जहां पवन ऊर्जा मौजूदा जलविद्युत द्वारा अच्छी तरह से पूरक है।[76] जलविद्युत सुविधाओं में भंडारण क्षमता जलाशय के आकार, और पर्यावरण और अन्य विचारों द्वारा सीमित होगी।

अंतरराष्ट्रीय स्तर पर ग्रिड कनेक्ट करना

अधिशेष के समय पड़ोसी ग्रिडों को ऊर्जा निर्यात करना और जरूरत पड़ने पर ऊर्जा का आयात करना अक्सर संभव होता है। यह प्रथा यूरोप में आम है[77] और अमेरिका और कनाडा के बीच।[78] अन्य ग्रिडों के साथ एकीकरण चर शक्ति की प्रभावी एकाग्रता को कम कर सकता है: उदाहरण के लिए, डेनमार्क की VRE की उच्च पैठ, स्कैंडिनेविया में जर्मन / डच / जलविद्युत के शासन के संदर्भ में, जिसके साथ इसका अंतर्संबंध है, के अनुपात के रूप में काफी कम है। कुल प्रणाली। परिवर्तनशीलता की भरपाई करने वाली पनबिजली का उपयोग पूरे देश में किया जा सकता है।[79]

निर्यात/आयात योजनाओं का समर्थन करने के लिए विद्युत पारेषण अवसंरचना की क्षमता को पर्याप्त रूप से उन्नत करना पड़ सकता है। संचरण में कुछ ऊर्जा खो जाती है। परिवर्तनीय शक्ति के निर्यात का आर्थिक मूल्य एक आकर्षक मूल्य के लिए उपयोगी समय पर उपयोगी शक्ति के साथ आयात ग्रिड प्रदान करने के लिए निर्यात ग्रिड की क्षमता पर निर्भर करता है।

सेक्टर कपलिंग

गतिशीलता, गर्मी और गैस जैसे क्षेत्रों को बिजली व्यवस्था के साथ जोड़कर मांग और उत्पादन का बेहतर मिलान किया जा सकता है। उदाहरण के लिए इलेक्ट्रिक वाहन बाजार भंडारण क्षमता का सबसे बड़ा स्रोत बनने की उम्मीद है। लचीलेपन के अन्य स्रोतों की तुलना में, चर नवीकरणीय ऊर्जा के उच्च प्रवेश के लिए यह अधिक महंगा विकल्प हो सकता है।[80] अंतर्राष्ट्रीय ऊर्जा एजेंसी का कहना है कि मौसमी मांग और आपूर्ति के बीच बेमेल की भरपाई के लिए सेक्टर कपलिंग की जरूरत है।[81]

इलेक्ट्रिक वाहनों को कम मांग और उच्च उत्पादन की अवधि के दौरान चार्ज किया जा सकता है, और कुछ स्थानों पर वाहन से ग्रिड को बिजली वापस भेज सकते हैं।[82][83]

पेनेट्रेशन

पेनेट्रेशन एक विद्युत शक्ति प्रणाली में एक प्राथमिक ऊर्जा (पीई) स्रोत के अनुपात को संदर्भित करता है, जिसे प्रतिशत के रूप में व्यक्त किया जाता है।[12]अलग-अलग भेदन उत्पन्न करने वाली गणना के कई तरीके हैं। पैठ की गणना या तो की जा सकती है:[84]

  1. विद्युत शक्ति प्रणाली के भीतर पीक लोड द्वारा विभाजित पीई स्रोत की नाममात्र क्षमता (स्थापित शक्ति); या
  2. विद्युत शक्ति प्रणाली की कुल क्षमता से विभाजित पीई स्रोत की नाममात्र क्षमता (स्थापित शक्ति); या
  3. किसी निश्चित अवधि में पीई स्रोत द्वारा उत्पन्न विद्युत ऊर्जा, इस अवधि में विद्युत शक्ति प्रणाली की मांग से विभाजित।

आंतरायिक चर स्रोतों के प्रवेश का स्तर निम्नलिखित कारणों से महत्वपूर्ण है:

  • महत्वपूर्ण मात्रा में डिस्पैचेबल पंप स्टोरेज के साथ पावर ग्रिड, जलाशय या तालाब के साथ पनबिजली या अन्य पीकिंग पावर प्लांट जैसे कि प्राकृतिक गैस से चलने वाले बिजली संयंत्र आंतरायिक शक्ति से अधिक आसानी से उतार-चढ़ाव को समायोजित करने में सक्षम हैं।[85]
  • बिना मजबूत इंटरकनेक्शन (जैसे दूरस्थ द्वीप) के अपेक्षाकृत छोटे इलेक्ट्रिक पावर सिस्टम कुछ मौजूदा डीजल जनरेटर को बनाए रख सकते हैं लेकिन कम ईंधन की खपत करते हैं,[86] लचीलेपन के लिए[87] जब तक स्वच्छ ऊर्जा स्रोत या भंडारण जैसे पंप किए गए हाइड्रो या बैटरी लागत प्रभावी नहीं हो जाते।[88]

2020 की शुरुआत में पवन और सौर दुनिया की बिजली का 10% उत्पादन करते हैं,[89] लेकिन 40-55% प्रवेश सीमा में आपूर्ति पहले से ही कई प्रणालियों में लागू की जा चुकी है,[4]2030 तक यूके के लिए 65% से अधिक की योजना बनाई गई है।[90][91] पैठ का कोई आम तौर पर स्वीकृत अधिकतम स्तर नहीं है, क्योंकि प्रत्येक प्रणाली की आंतरायिकता की भरपाई करने की क्षमता अलग-अलग होती है, और समय के साथ सिस्टम खुद बदल जाएगा। स्वीकार्य या अस्वीकार्य पैठ के आंकड़ों की चर्चा सावधानी के साथ की जानी चाहिए और इसका उपयोग सावधानी के साथ किया जाना चाहिए, क्योंकि प्रासंगिकता या महत्व स्थानीय कारकों, ग्रिड संरचना और प्रबंधन और मौजूदा उत्पादन क्षमता पर अत्यधिक निर्भर होगा।

दुनिया भर में अधिकांश प्रणालियों के लिए, मौजूदा पैठ का स्तर व्यावहारिक या सैद्धांतिक अधिकतम से काफी कम है।[84]

अधिकतम प्रवेश सीमा

क्षेत्रीय एकत्रीकरण, मांग प्रबंधन या भंडारण के बिना संयुक्त पवन और सौर की अधिकतम पैठ लगभग 70% से 90% अनुमानित है; और 12 घंटे के स्टोरेज के साथ 94% तक।[92] महत्वपूर्ण कारकों के रूप में आर्थिक दक्षता और लागत संबंधी विचारों के हावी होने की अधिक संभावना है; तकनीकी समाधान भविष्य में उच्च पैठ स्तरों पर विचार करने की अनुमति दे सकते हैं, खासकर यदि लागत विचार गौण हैं।

परिवर्तनशीलता के आर्थिक प्रभाव

पवन और सौर ऊर्जा की लागत के अनुमानों में पवन और सौर परिवर्तनशीलता की "बाहरी" लागतों के अनुमान शामिल हो सकते हैं, या उत्पादन की लागत तक सीमित हो सकते हैं। सभी विद्युत संयंत्रों की लागतें उत्पादन लागत से अलग होती हैं, उदाहरण के लिए, उत्पादन क्षमता के नुकसान के मामले में किसी भी आवश्यक पारेषण क्षमता या आरक्षित क्षमता की लागत। कई प्रकार की पीढ़ी, विशेष रूप से प्राप्त जीवाश्म ईंधन, में प्रदूषण जैसे बाहरी खर्च भी होंगे, ग्रीनहाउस गैस उत्सर्जन, और आवास विनाश जो आम तौर पर सीधे तौर पर जिम्मेदार नहीं होते हैं। आर्थिक प्रभावों के परिमाण पर बहस हुई है और यह स्थान के अनुसार अलग-अलग होगा, लेकिन उच्च पैठ स्तरों के साथ बढ़ने की उम्मीद है। कम पैठ स्तरों पर, ऑपरेटिंग रिजर्व और संतुलन लागत जैसी लागतों को नगण्य माना जाता है।

आंतरायिकता अतिरिक्त लागतें पेश कर सकती है जो पारंपरिक पीढ़ी के प्रकारों से अलग या भिन्न परिमाण की हैं। इनमें शामिल हो सकते हैं:

  • संचरण क्षमता: कम भार कारकों के कारण परमाणु और कोयला उत्पादन क्षमता की तुलना में संचरण क्षमता अधिक महंगी हो सकती है। ट्रांसमिशन क्षमता आम तौर पर अनुमानित पीक आउटपुट के आकार की होगी, लेकिन हवा के लिए औसत क्षमता काफी कम होगी, जिससे वास्तव में प्रसारित ऊर्जा की प्रति यूनिट लागत बढ़ जाएगी। हालांकि संचरण लागत कुल ऊर्जा लागत का एक छोटा अंश है।[93]
  • अतिरिक्त ऑपरेटिंग रिजर्व: यदि अतिरिक्त पवन और सौर मांग पैटर्न के अनुरूप नहीं हैं, तो अन्य उत्पादन प्रकारों की तुलना में अतिरिक्त ऑपरेटिंग रिजर्व की आवश्यकता हो सकती है, हालांकि इसके परिणामस्वरूप अतिरिक्त संयंत्रों के लिए उच्च पूंजीगत लागत नहीं होती है क्योंकि यह केवल मौजूदा संयंत्र हैं जो कम आउटपुट-स्पिनिंग रिजर्व पर चल रहे हैं। बयानों के विपरीत कि सभी हवाओं को "बैक-अप क्षमता" की समान मात्रा द्वारा समर्थित किया जाना चाहिए, आंतरायिक जनरेटर आधार क्षमता में योगदान करते हैं "जब तक पीक अवधि के दौरान उत्पादन की कुछ संभावना होती है"। बैक-अप क्षमता को व्यक्तिगत जनरेटर के लिए जिम्मेदार नहीं ठहराया जाता है, क्योंकि बैक-अप या ऑपरेटिंग रिजर्व "केवल सिस्टम स्तर पर अर्थ रखते हैं"।[94]
  • संतुलन लागत: ग्रिड की स्थिरता बनाए रखने के लिए, मांग के साथ भार को संतुलित करने के लिए कुछ अतिरिक्त लागतें आ सकती हैं। हालांकि ग्रिड संतुलन में सुधार महंगा हो सकता है, लेकिन इससे दीर्घकालिक बचत हो सकती है।[95][96][97][98]

कई देशों में कई प्रकार की परिवर्तनीय नवीकरणीय ऊर्जा के लिए, सरकार समय-समय पर कुछ बिजली सबस्टेशनों से जुड़ने के लिए सौर ऊर्जा की एक निश्चित क्षमता का निर्माण करने के लिए कंपनियों को सीलबंद बोली लगाने के लिए आमंत्रित करती है। सबसे कम बोली को स्वीकार करके सरकार उस कीमत पर प्रति kWh पर निश्चित वर्षों के लिए, या एक निश्चित कुल मात्रा तक बिजली खरीदने के लिए प्रतिबद्ध है। यह अत्यधिक अस्थिर थोक बिजली कीमतों के खिलाफ निवेशकों के लिए निश्चितता प्रदान करता है।[99][100][101] हालांकि, यदि वे विदेशी मुद्रा में उधार लेते हैं, तो वे अभी भी विनिमय दर में उतार-चढ़ाव का जोखिम उठा सकते हैं।[102]

विनियमन और ग्रिड योजना

ब्रिटेन

ब्रिटिश विद्युत प्रणाली के संचालक ने कहा है कि यह 2025 तक शून्य-कार्बन का संचालन करने में सक्षम होगा, जब भी पर्याप्त नवीकरणीय उत्पादन होगा, और 2033 तक कार्बन नकारात्मक सकता है।[103] कंपनी, नेशनल ग्रिड इलेक्ट्रिसिटी सिस्टम ऑपरेटर, का कहना है कि नए उत्पाद और सेवाएं सिस्टम के संचालन की समग्र लागत को कम करने में मदद करेंगी।[104]

यह भी देखें

आगे की पढाई

  • शिवराम, वरुण (2018). इनोवेशन टू हार्नेस सोलर एनर्जी एंड पावर द प्लैनेट।. कैम्ब्रिज, एमए:: एमआईटी प्रेस. ISBN 978-0-262-03768-6.{{cite book}}: CS1 maint: extra punctuation (link)

संदर्भ

  1. Cartlidge, Edwin (2011-11-18). "Saving for a Rainy Day". Science (in English). 334 (6058): 922–924. Bibcode:2011Sci...334..922C. doi:10.1126/science.334.6058.922. ISSN 0036-8075. PMID 22096185.
  2. "Flexible Power Plant Operation to Enable High Renewable Energy Penetration". IESR (in English). 2022-06-15. Retrieved 2022-11-21.
  3. IPCC: Climate Change 2022, Mitigation of Climate Change, Summary for Policymakers (PDF). ipecac.ch (Report). Intergovernmental Panel on Climate Change. 4 April 2022. Retrieved 2004-04-22.
  4. 4.0 4.1 4.2 "Global Electricity Review 2022". Ember (in English). 2022-03-29. Retrieved 2022-03-31.
  5. Sinsel, Simon R.; Riemke, Rhea L.; Hoffmann, Volker H. (2020-01-01). "Challenges and solution technologies for the integration of variable renewable energy sources—a review". Renewable Energy (in English). 145: 2271–2285. doi:10.1016/j.renene.2019.06.147. hdl:20.500.11850/373407. ISSN 0960-1481. S2CID 198480155.
  6. Cite error: Invalid <ref> tag; no text was provided for refs named All_Island_Grid_Overview
  7. Czisch, Gregor; Gregor Giebel. "Realisable Scenarios for a Future Electricity Supply based 100% on Renewable Energies" (PDF). Institute for Electrical Engineering – Efficient Energy Conversion University of Kassel, Germany and Risø National Laboratory, Technical University of Denmark. Archived from the original (PDF) on 2014-07-01. Retrieved 2008-10-15.
  8. 8.0 8.1 8.2 8.3 "Variability of Wind Power and other Renewables: Management Options and Strategies" (PDF). IEA. 2005. Retrieved 2008-10-15.
  9. Widén, Joakim; Carpman, Nicole (1 April 2015). "Variability assessment and forecasting of renewables: A review for solar, wind, wave and tidal resources". Renewable and Sustainable Energy Reviews (in English). 44: 356–375. doi:10.1016/j.rser.2014.12.019. ISSN 1364-0321.
  10. Pommeret, Aude; Schubert, Katheline (2019). "Energy Transition with Variable and Intermittent Renewable Electricity Generation". Cesifo Working Paper Series. CESifo Working Paper. 7442: 2.
  11. 11.0 11.1 Kuntz, Mark T.; Justin Dawe (2005). "renewable. rechargeable. remarkable". VRB Power Systems. Mechanical Engineering. Archived from the original on 2009-01-15. Retrieved 2008-10-20.
  12. 12.0 12.1 International Energy Agency Wind Task Force, "Design and Operation of Power Systems with Large Amounts of Wind Power" Archived 2007-10-25 at the Wayback Machine Oklahoma Conference Presentation, October 2006
  13. "firm power". www.ecowho.com. Retrieved 2021-02-10.
  14. Giebel, Gregor. "Wind Powers Has a Capacity Credit" (PDF). Risø National Laboratory. Archived from the original (PDF) on 2009-03-18. Retrieved 2008-10-16.
  15. "Defining and Quantifying Intermittency in the Power Sector". Energies.
  16. "Volatile but predictable: Forecasting renewable power generation". Clean Energy Wire (in English). 2016-08-15. Retrieved 2021-02-10.
  17. "IEA wind task 36". iea wind forecasting (in English). Retrieved 2019-07-25.
  18. "The power of multiples: Connecting wind farms can make a more reliable and cheaper power source". 2007-11-21.
  19. Archer, C. L.; Jacobson, M. Z. (2007). "Supplying Baseload Power and Reducing Transmission Requirements by Interconnecting Wind Farms" (PDF). Journal of Applied Meteorology and Climatology. 46 (11): 1701–1717. Bibcode:2007JApMC..46.1701A. CiteSeerX 10.1.1.475.4620. doi:10.1175/2007JAMC1538.1.
  20. David JC MacKay. "Sustainable Energy - without the hot air. Fluctuations and storage".
  21. Andrzej Strupczewski. "Czy w Polsce wiatr wystarczy zamiast elektrowni atomowych?" [Can the wind suffice instead of nuclear power in Poland?] (in polski). atom.edu.pl. Archived from the original on 2011-09-04. Retrieved 2009-11-26.
  22. Diesendorf, Mark (August 2007). "The Base-Load Fallacy" (PDF). Institute of Environmental Studies. www.energyscience.org.au. Archived from the original (PDF) on 2008-07-08. Retrieved 2008-10-18.
  23. "Analysis of UK Wind Generation" 2011
  24. Sharman, Hugh (May 2005). "Why wind power works for Denmark". Proceedings of the Institution of Civil Engineers - Civil Engineering. 158 (2): 66–72. doi:10.1680/cien.2005.158.2.66.
  25. "Average annual capacity factors by technology, 2018 – Charts – Data & Statistics". IEA (in British English). Retrieved 2021-02-10.
  26. "How Dispatchable Wind Is Becoming a Reality in the US". www.greentechmedia.com. Retrieved 2020-08-10.
  27. "51MWh vanadium flow battery system ordered for wind farm in northern Japan". Energy Storage News (in English). 20 July 2020. Retrieved 2020-08-10.
  28. "Blowing Away the Myths" (PDF). The British Wind Energy Association. February 2005. Archived from the original (PDF) on 2007-07-10. Retrieved 2008-10-16.
  29. Nedic, Dusko; Anser Shakoor; Goran Strbac; Mary Black; Jim Watson; Catherine Mitchell (July 2005). "Security assessment of future UK electricity scenarios" (PDF). Tyndall Centre for Climate Change Research. Archived from the original (PDF) on January 11, 2007. Retrieved 2008-10-20.
  30. Junling Huang; Xi Lu; Michael B. McElroy (2014). "Meteorologically defined limits to reduction in the variability of outputs from a coupled wind farm system in the Central US" (PDF). Renewable Energy. 62: 331–340. doi:10.1016/j.renene.2013.07.022.
  31. [1] Graham Sinden (1 December 2005). "Characteristics of the UK wind resource" pg4
  32. Reliability of Wind Turbines[permanent dead link][dead link]
  33. "Wind Systems Integration Basics". Archived from the original on 7 June 2012.
  34. "renewable is doable A Smarter Energy Plan for Ontario (brochure version)" (PDF). PEMBINA Institute. August 2007. Retrieved 2008-10-17.
  35. Gemasolar, energía non stop Archived 2013-02-06 at the Wayback Machine Spanish 26 October 2011
  36. Jurasz, J.; Canales, F.A.; Kies, A.; Guezgouz, M.; Beluco, A. (2020-01-01). "A review on the complementarity of renewable energy sources: Concept, metrics, application and future research directions". Solar Energy (in English). 195: 703–724. arXiv:1904.01667. Bibcode:2020SoEn..195..703J. doi:10.1016/j.solener.2019.11.087. ISSN 0038-092X.
  37. "Average annual capacity factors by technology, 2018 – Charts – Data & Statistics". IEA (in British English). Retrieved 2021-02-10.
  38. World Energy Perspective (PDF) (Report). World Energy Council. 2013. p. 21.
  39. 39.0 39.1 "Executive Summary: Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts" (PDF). National Renewable Energy Laboratory. October 2003. Retrieved 2016-11-07.
  40. Spain Pioneers Grid-Connected Solar-Tower Thermal Power p. 3. Retrieved December 19, 2008.
  41. Mills, David; Robert G. Morgan (July 2008). "A solar-powered economy: How solar thermal can replace coal, gas and oil". RenewableEnergyWorld.com. Retrieved 2008-10-17.
  42. "Solar Air Cooling". Integration of Renewable energy on Farms. March 2008. Archived from the original on 2011-07-06. Retrieved 2008-10-17.
  43. "Project Description – Keeyask Hydropower Limited Partnership". 10 February 2011.
  44. "Energy Resources: Tidal power". www.darvill.clara.net. Retrieved 2022-03-31.
  45. Wind and Waves
  46. "Comparing the Variability of Wind Speed and Wave Height Data" (PDF). Archived from the original (PDF) on 2012-06-17. Retrieved 2012-06-04.
  47. "Savenkov, M 2009 'On the Truncated Weibull Distribution and its Usefulness in Evaluating the Theoretical Capacity Factor of Potential Wind (or Wave) Energy Sites', University Journal of Engineering and Technology, vol. 1, no. 1, pp. 21-25" (PDF). Archived from the original (PDF) on 2015-02-22. Retrieved 2014-11-30.
  48. Harvey, George (2022-06-28). "We Don't Need Base Load Power". CleanTechnica (in English). Retrieved 2022-11-21.
  49. Michael G. Richard: Death by 'capacity factor': Is this how wind and solar ultimately win the game?, 2015-10-06
  50. "Solar and Energy Storage: A Perfect Match - Energy Storage to the Test". RenewableEnergyWorld.com. Retrieved 2011-03-08.
  51. "UK battery storage capacity could reach 70% growth in 2019 as business models evolve". Solar Power Portal.
  52. "UK battery storage market reaches 1GW landmark as new applications continues to grow". Solar Power Portal.
  53. Andrews, Dave (May 24, 2009). "How CERN is encouraged to not do atom or quark smashing, during periods of high demand and low power station availablity [sic], by means of the EJP tarrif". - Extract from CERN newsletter indication when to switch of loads bulletin 46
  54. http://www.claverton-energy.com/download/42/ description of EJP tariff Archived December 8, 2008, at the Wayback Machine
  55. "2005 Integrated Energy Policy Report". California Energy Commission. November 21, 2005. Retrieved 2006-04-21.
  56. Fridgen, Gilbert; Körner, Marc-Fabian; Walters, Steffen; Weibelzahl, Martin (2021-03-09). "Not All Doom and Gloom: How Energy-Intensive and Temporally Flexible Data Center Applications May Actually Promote Renewable Energy Sources". Business & Information Systems Engineering (in English). 63 (3): 243–256. doi:10.1007/s12599-021-00686-z. ISSN 2363-7005. S2CID 233664180. To gain applicable knowledge, this paper evaluates the developed model by means of two use-cases with real-world data, namely AWS computing instances for training Machine Learning algorithms and Bitcoin mining as relevant DC applications. The results illustrate that for both cases the NPV of the IES compared to a stand-alone RES-plant increases, which may lead to a promotion of RES-plants.
  57. Rhodes, Joshua. "Is Bitcoin Inherently Bad For The Environment?". Forbes (in English). Retrieved 2022-01-16. Mining and transacting cryptocurrencies, such as bitcoin, do present energy and emissions challenges, but new research shows that there are possible pathways to mitigate some of these issues if cryptocurrency miners are willing to operate in a way to compliment the deployment of more low-carbon energy.
  58. "Green Bitcoin Does Not Have to Be an Oxymoron". news.bloomberglaw.com (in English). Retrieved 2022-01-16. One way to invest in Bitcoin that has a positive effect on renewable energy is to encourage mining operations near wind or solar sites. This provides a customer for power that might otherwise need to be transmitted or stored, saving money as well as carbon.
  59. Moffit, Tim (2021-06-01). "Beyond Boom and Bust: An emerging clean energy economy in Wyoming" (in English). Currently, projects are under development, but the issue of overgenerated wind continues to exist. By harnessing the overgenerated wind for Bitcoin mining, Wyoming has the opportunity to redistribute the global hashrate, incentivize Bitcoin miners to move their operations to Wyoming, and stimulate job growth as a result. {{cite journal}}: Cite journal requires |journal= (help)
  60. Rennie, Ellie (2021-11-07). "Climate change and the legitimacy of Bitcoin" (in English). Rochester, NY. SSRN 3961105. In responding to these pressures and events, some miners are providing services and innovations that may help the viability of clean energy infrastructures for energy providers and beyond, including the data and computing industry. The paper finds that if Bitcoin loses legitimacy as a store of value, then it may result in lost opportunities to accelerate sustainable energy infrastructures and markets. {{cite journal}}: Cite journal requires |journal= (help)
  61. Eid, Bilal; Islam, Md Rabiul; Shah, Rakibuzzaman; Nahid, Abdullah-Al; Kouzani, Abbas Z.; Mahmud, M. A. Parvez (2021-11-01). "Enhanced Profitability of Photovoltaic Plants By Utilizing Cryptocurrency-Based Mining Load". IEEE Transactions on Applied Superconductivity. 31 (8): 1–5. Bibcode:2021ITAS...3196503E. doi:10.1109/TASC.2021.3096503. hdl:20.500.11782/2513. ISSN 1558-2515. S2CID 237245955. The grid connected photovoltaic (PV) power plants (PVPPs) are booming nowadays. The main problem facing the PV power plants deployment is the intermittency which leads to instability of the grid. [...] This paper investigating the usage of a customized load - cryptocurrency mining rig - to create an added value for the owner of the plant and increase the ROI of the project. [...] The developed strategy is able to keep the profitability as high as possible during the fluctuation of the mining network.
  62. Bastian-Pinto, Carlos L.; Araujo, Felipe V. de S.; Brandão, Luiz E.; Gomes, Leonardo L. (2021-03-01). "Hedging renewable energy investments with Bitcoin mining". Renewable and Sustainable Energy Reviews (in English). 138: 110520. doi:10.1016/j.rser.2020.110520. ISSN 1364-0321. S2CID 228861639. Windfarms can hedge electricity price risk by investing in Bitcoin mining. [...] These findings, which can also be applied to other renewable energy sources, may be of interest to both the energy generator as well as the system regulator as it creates an incentive for early investment in sustainable and renewable energy sources.
  63. Shan, Rui; Sun, Yaojin (2019-08-07). "Bitcoin Mining to Reduce the Renewable Curtailment: A Case Study of Caiso" (in English). Rochester, NY. SSRN 3436872. The enormous energy demand from Bitcoin mining is a considerable burden to achieve the climate agenda and the energy cost is the major operation cost. On the other side, with high penetration of renewable resources, the grid makes curtailment for reliability reasons, which reduces both economic and environment benefits from renewable energy. Deploying the Bitcoin mining machines at renewable power plants can mitigate both problems. {{cite journal}}: Cite journal requires |journal= (help)
  64. "Can renewable energy make crypto mining greener? | Sifted". sifted.eu. Retrieved 2022-06-27.
  65. Wright, matthew; Hearps, Patrick; et al. Australian Sustainable Energy: Zero Carbon Australia Stationary Energy Plan, Energy Research Institute, University of Melbourne, October 2010, p. 33. Retrieved from BeyondZeroEmissions.org website.
  66. Innovation in Concentrating Thermal Solar Power (CSP), RenewableEnergyFocus.com website.
  67. Solana: 10 Facts You Didn't Know About the Concentrated Solar Power Plant Near Gila Bend
  68. Benitez, Pablo C.; Lilianna E. Dragulescu; G. Cornelis Van Kooten (February 2006). "The Economics of Wind Power with Energy Storage". Resource Economics and Policy Analysis (REPA) Research Group. Department of Economics, University of Victoria. Retrieved 2008-10-20.
  69. "Grid-Scale Battery Storage Frequently Asked Questions" (PDF).
  70. "The global race to produce hydrogen offshore". BBC News (in British English). 2021-02-12. Retrieved 2021-02-12.
  71. "Mechanical energy storage".
  72. "Kinetic energy storage".
  73. 73.0 73.1 Junling Huang; Michael B. McElroy (2014). "Meteorologically defined limits to reduction in the variability of outputs from a coupled wind farm system in the Central US" (PDF). Renewable Energy. 62: 331–340. doi:10.1016/j.renene.2013.07.022.
  74. Lovins, Amory; L. Hunter Lovins (November 1983). "The Fragility of Domestic Energy" (PDF). The Atlantic. Archived from the original (PDF) on June 25, 2008. Retrieved 2008-10-20.
  75. Nyenah, Emmanuel; Sterl, Sebastian; Thiery, Wim (2022). "Pieces of a puzzle: solar-wind power synergies on seasonal and diurnal timescales tend to be excellent worldwide". Environmental Research Communications. 4 (5): 055011. doi:10.1088/2515-7620/ac71fb. S2CID 249227821.
  76. https://www.washingtonpost.com/wp-dyn/content/article/2007/03/20/AR2007032001634.html "Air, Water Powerful Partners in Northwest", Washington Post, March 20, 2007
  77. JUNE, WE (2022-01-27). "The European Super Grid : A solution to the EU's energy problems • Eyes on Europe". Eyes on Europe (in français). Retrieved 2022-03-31.
  78. "US, Canada expand clean energy cooperation". IHS Markit. 2021-06-30. Retrieved 2022-03-31.
  79. "How Norway became Europe's biggest power exporter". Power Technology (in English). 2021-04-19. Retrieved 2022-03-31.
  80. IRENA (2018). Power System Flexibility for the Energy Transition, Part 1: Overview for policy makers (PDF). Abu Dhabi: International Renewable Energy Agency. pp. 25, 42. ISBN 978-92-9260-089-1.
  81. "System integration of renewables – Topics". IEA (in British English). Retrieved 2021-05-21.
  82. "Is Vehicle-to-Grid Technology the Key to Accelerating the Clean Energy Revolution?". POWER Magazine (in English). 2020-11-09. Retrieved 2021-02-12.
  83. "UK city of Nottingham uses vehicle-to-grid (V2G) and IoT to optimise EV fleet charging". Traffic Technology Today (in British English). 2021-01-18. Retrieved 2021-02-12.
  84. 84.0 84.1 Gross, Robert; Heptonstall, Philip; Anderson, Dennis; Green, Tim; Leach, Matthew; Skea, Jim (March 2006). The Costs and Impacts of Intermittency (PDF). UK Energy Research Council. ISBN 978-1-903144-04-6. Archived from the original (PDF) on 2009-03-18. Retrieved 2010-07-22.
  85. http://repa.econ.uvic.ca/publications/Working%20Paper%202006-02.pdf[permanent dead link]
  86. Shumais, Mohamed; Mohamed, Ibrahim. "DIMENSIONS OF ENERGY INSECURITY ON SMALL ISLANDS: THE CASE OF THE MALDIVES" (PDF).
  87. "Transforming small-island power systems". /publications/2019/Jan/Transforming-small-island-power-systems (in English). Retrieved 2020-09-08.
  88. "Shining a light on a smart island". MAN Energy Solutions (in English). Retrieved 2020-09-08.
  89. "Wind and solar produce record 10% of world's electricity, but faster change needed, scientists warn". www.independent.co.uk (in English). 13 August 2020. Archived from the original on 2022-08-11. Retrieved 2020-09-08.
  90. Ltd, Renews (2020-08-11). "Britain urged to hit 65% renewables by 2030". reNEWS - Renewable Energy News (in English). Retrieved 2020-09-08.
  91. "UK Looks To Triple Solar And More Than Quadruple Offshore Wind Power". OilPrice.com (in English). Retrieved 2022-03-31.
  92. Tong, Dan; Farnham, David J.; Duan, Lei; Zhang, Qiang; Lewis, Nathan S.; Caldeira, Ken; Davis, Steven J. (2021-10-22). "Geophysical constraints on the reliability of solar and wind power worldwide". Nature Communications (in English). 12 (1): 6146. Bibcode:2021NatCo..12.6146T. doi:10.1038/s41467-021-26355-z. ISSN 2041-1723. PMC 8536784. PMID 34686663.
  93. http://www.claverton-energy.com/what-is-the-cost-per-kwh-of-bulk-transmission-national-grid-in-the-uk-note-this-excludes-distribution-costs.html Electric power transmission costs per kWh transmission / National Grid in the UK (note this excludes distribution costs)
  94. http://www.ukerc.ac.uk/component/option,com_docman/task,doc_download/gid,550/ Archived 2007-07-06 at the Wayback Machine The Costs and Impacts of Intermittency, UK Energy Research Council, March 2006
  95. Welle (www.dw.com), Deutsche. "Will war fast-track the energy transition? | DW | 04.03.2022". DW.COM (in British English). Retrieved 2022-03-31.
  96. Morse, Richard; Salvatore, Sarah; Slusarewicz, Joanna H.; Cohan, Daniel S. (2022-03-14). "Can wind and solar replace coal in Texas?". Renewables: Wind, Water, and Solar. 9 (1): 1. doi:10.1186/s40807-022-00069-2. ISSN 2198-994X. S2CID 247454828.
  97. Vetter, David. "5 New Reports Show Wind And Solar Power Can Cripple Putin, Secure Climate Goals". Forbes (in English). Retrieved 2022-03-31.
  98. "Accelerating Grid Integration". www.usaid.gov (in English). 2022-02-17. Retrieved 2022-03-31. Grid modernization reduces medium- to long-term curtailment, stagnation of large-scale renewable energy deployment, reduces long-term costs, and enables new business models, such as electric vehicles (EVs), aggregation, demand-side management, and distributed energy resources. It also promotes regional market coordination and power system integration which can unlock billions of dollars in electricity revenue through cross-border trade.
  99. ES, Tetra Tech; order, Inc under USAID’s Scaling Up Renewable Energy task (2021-07-28). "Renewable Energy Auctions Toolkit | Energy | U.S. Agency for International Development". www.usaid.gov (in English). Retrieved 2022-05-19.
  100. "Feed-In Tariffs vs Reverse Auctions: Setting the Right Subsidy Rates for Solar". Development Asia (in English). 2021-11-10. Retrieved 2022-05-19.
  101. "Government hits accelerator on low-cost renewable power". GOV.UK (in English). Retrieved 2022-05-19.
  102. "Currency Risk Is the Hidden Solar Project Deal Breaker". www.greentechmedia.com. Retrieved 2022-05-19.
  103. Ambrose, Jillian (2020-07-27). "UK electricity grid's carbon emissions could turn negative by 2033, says National Grid". The Guardian (in British English). ISSN 0261-3077. Retrieved 2020-11-03.
  104. "Zero carbon operation of Great Britain's electricity system by 2025 | National Grid ESO". www.nationalgrideso.com. Retrieved 2019-07-09.

बाहरी कड़ियाँ