कोकर्नेल

From Vigyanwiki
Revision as of 13:55, 8 May 2023 by alpha>Indicwiki (Created page with "{{Short description|Quotient space of a codomain of a linear map by the map's image}} {{Redirect|Coker (mathematics)|other uses|Coker (disambiguation)}} {{no footnotes|date=Fe...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

वेक्टर रिक्त स्थान के एक रेखीय मानचित्रण का कोकर्नेल f : XY भागफल स्थान है (रैखिक बीजगणित) Y / im(f) के कोडोमेन का f की छवि द्वारा f. कोकरनेल के आयाम को कोरैंक कहा जाता है f.

कोकर्नेल कर्नेल (श्रेणी सिद्धांत) के लिए दोहरे (श्रेणी सिद्धांत) हैं, इसलिए नाम: कर्नेल डोमेन का एक सबोबिज है (यह डोमेन के लिए मैप करता है), जबकि कोकर्नेल कोडोमेन का एक अंश वस्तु है (यह मानचित्र से मैप करता है) कोडोमेन)।

सहज रूप से, एक समीकरण दिया f(x) = y जिसे कोई हल करना चाह रहा है, कोकरनेल उन बाधाओं को मापता है जो y इस समीकरण के समाधान के लिए संतुष्ट होना चाहिए - समाधान के लिए बाधाएं - जबकि कर्नेल समाधान में स्वतंत्रता की डिग्री को मापता है, यदि कोई मौजूद है। यह नीचे #अंतर्ज्ञान में विस्तृत है।

अधिक आम तौर पर, आकारिकी का कोकर्नेल f : XY कुछ श्रेणी सिद्धांत में (उदाहरण के लिए समूह (गणित) के बीच एक समूह समरूपता या हिल्बर्ट रिक्त स्थान के बीच एक परिबद्ध रैखिक संचालिका) एक वस्तु है Q और एक रूपवाद q : YQ ऐसा है कि रचना q f श्रेणी का शून्य रूपवाद है, और इसके अलावा q इस संपत्ति के संबंध में सार्वभौमिक मानचित्रण संपत्ति है। अक्सर नक्शा q समझा जाता है, और Q का ही कोकर्नेल कहा जाता है f.

सार बीजगणित में कई स्थितियों में, जैसे एबेलियन समूहों, वेक्टर रिक्त स्थान या मॉड्यूल (गणित) के लिए, समरूपता का कोकर्नेल f : XY का भागफल समुच्चय है Y की छवि (गणित) द्वारा f. टोपोलॉजी सेटिंग्स में, जैसे कि हिल्बर्ट रिक्त स्थान के बीच बंधे रैखिक ऑपरेटरों के साथ, आमतौर पर भागफल में जाने से पहले छवि को बंद करना (गणित) लेना पड़ता है।

औपचारिक परिभाषा

कोकर्नेल को श्रेणी सिद्धांत के सामान्य ढांचे में परिभाषित किया जा सकता है। परिभाषा को समझने के लिए विचाराधीन श्रेणी में शून्य आकारिकी होनी चाहिए। आकारिकी का कोकरनेल f : XY के बराबर के रूप में परिभाषित किया गया है f और शून्य रूपवाद 0XY : XY.

स्पष्ट रूप से, इसका अर्थ निम्नलिखित है। का कोकरनेल f : XY एक वस्तु है Q एक साथ एक morphism के साथ q : YQ जैसे कि आरेख

क्रमविनिमेय आरेख। इसके अलावा, रूपवाद q इस आरेख के लिए सार्वभौमिक संपत्ति होनी चाहिए, अर्थात ऐसा कोई अन्य q′ : YQ कंपोज करके प्राप्त किया जा सकता है q एक अद्वितीय morphism के साथ u : QQ:

Cokernel-02.png

जैसा कि सभी सार्वभौमिक निर्माणों के साथ होता है, कोकरनेल, यदि यह मौजूद है, एक अद्वितीय समरूपता के लिए अद्वितीय है, या अधिक सटीक रूप से: यदि q : YQ और q′ : YQ के दो कोकर्नेल हैं f : XY, तो वहाँ एक अद्वितीय समरूपता मौजूद है u : QQ साथ q' = u q.

सभी समकक्षों की तरह, कोकरनेल q : YQ अनिवार्य रूप से एक एपिमोर्फिज्म है। इसके विपरीत एक एपिमोर्फिज्म को सामान्य रूपवाद (या सामान्य) कहा जाता है यदि यह कुछ आकारिकी का कोकर्नेल है। एक श्रेणी को सामान्य कहा जाता है यदि प्रत्येक अधिरूपता सामान्य है (उदाहरण के लिए समूहों की श्रेणी असामान्य है)।

उदाहरण

समूहों की श्रेणी में, एक समूह समरूपता का कोकर्नेल f : GH का भागफल समूह है H की छवि के सामान्य समापन (समूह सिद्धांत) द्वारा f. एबेलियन समूहों के मामले में, चूंकि प्रत्येक उपसमूह सामान्य है, कोकर्नेल न्यायपूर्ण है H आदर्श (रिंग थ्योरी) की छवि f:


विशेष मामले

एक पूर्ववर्ती श्रेणी में, आकारिकी को जोड़ना और घटाना समझ में आता है। ऐसी श्रेणी में, दो आकारिकी का समतुल्य f और g (यदि यह मौजूद है) उनके अंतर का सिर्फ कोकर्नेल है:

एक एबेलियन श्रेणी में (एक विशेष प्रकार की पूर्ववर्ती श्रेणी) छवि (श्रेणी सिद्धांत) और आकारिकी की सह-छवि f द्वारा दिया गया है

विशेष रूप से, प्रत्येक एबेलियन श्रेणी सामान्य (और सामान्य भी) है। यानी हर एकरूपता m को कुछ रूपवाद के कर्नेल के रूप में लिखा जा सकता है। विशेष रूप से, m अपने स्वयं के कोकर्नेल का कर्नेल है:


अंतर्ज्ञान

कोकर्नेल को अवरोधों के स्थान के रूप में सोचा जा सकता है जो एक समीकरण को संतुष्ट करना चाहिए, अवरोधों के स्थान के रूप में, जैसे कि कर्नेल (बीजगणित) समाधानों का स्थान है।

औपचारिक रूप से, कोई मानचित्र के कर्नेल और कोकर्नेल को जोड़ सकता है T: VW सटीक क्रम से

इनकी व्याख्या इस प्रकार की जा सकती है: एक रैखिक समीकरण दिया गया है T(v) = w समाधान करना,

  • कर्नेल सजातीय समीकरण के समाधान का स्थान है T(v) = 0, और इसका आयाम समाधान में स्वतंत्रता की डिग्री की संख्या है T(v) = w, अगर वे मौजूद हैं;
  • कोकर्नेल डब्ल्यू पर बाधाओं का स्थान है जो समीकरण को हल करने के लिए संतुष्ट होना चाहिए, और इसका आयाम स्वतंत्र बाधाओं की संख्या है जो समाधान के लिए समीकरण के लिए संतुष्ट होना चाहिए।

कोकरनेल का आयाम और छवि का आयाम (रैंक) भागफल स्थान के आयाम के रूप में लक्ष्य स्थान के आयाम तक जुड़ते हैं W / T(V) बस अंतरिक्ष का आयाम घटा छवि का आयाम है।

एक साधारण उदाहरण के रूप में, मानचित्र पर विचार करें T: R2R2, द्वारा दिए गए T(x, y) = (0, y). फिर एक समीकरण के लिए T(x, y) = (a, b) समाधान करने के लिए, हमारे पास होना चाहिए a = 0 (एक बाधा), और उस स्थिति में समाधान स्थान है (x, b), या समकक्ष, (0, b) + (x, 0), (स्वतंत्रता की एक डिग्री)। कर्नेल को उप-स्थान के रूप में व्यक्त किया जा सकता है (x, 0) ⊆ V: का मान है x एक समाधान में स्वतंत्रता है। कोकरनेल को वास्तविक मूल्यवान मानचित्र के माध्यम से व्यक्त किया जा सकता है W: (a, b) → (a): एक वेक्टर दिया गया (a, b), का मान है a समाधान होने में बाधा है।

इसके अतिरिक्त, कोकरनेल को कुछ ऐसा माना जा सकता है जो कि कर्नेल इंजेक्शन (गणित) का पता लगाता है उसी तरह प्रक्षेपण का पता लगाता है। एक नक्शा इंजेक्शन है अगर और केवल अगर इसका कर्नेल छोटा है, और एक नक्शा विशेषण है अगर और केवल अगर इसका कोकर्नेल तुच्छ है, या दूसरे शब्दों में, यदि W = im(T).

संदर्भ