तनाव (भौतिकी)

From Vigyanwiki
Revision as of 21:41, 9 September 2022 by alpha>Indicwiki (Created page with "{{Short description|Pulling force transmitted axially – Opposite of compression}} भौतिकी में, तनाव को एक स्ट्रिंग, एक...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

भौतिकी में, तनाव को एक स्ट्रिंग, एक केबल, चेन, या इसी तरह की वस्तु के माध्यम से, या एक रॉड, ट्रस सदस्य, या इसी तरह की त्रि-आयामी वस्तु के प्रत्येक छोर से अक्षीय रूप से प्रेषित खींचने वाले बल के रूप में वर्णित किया जाता है; तनाव को उक्त तत्वों के प्रत्येक छोर पर कार्यरत बलों की क्रिया-प्रतिक्रिया जोड़ी के रूप में भी वर्णित किया जा सकता है। तनाव संपीड़न (भौतिकी) के विपरीत हो सकता है।

परमाणु स्तर पर, जब परमाणु या अणु एक दूसरे से अलग हो जाते हैं और एक बहाल करने वाले बल के साथ संभावित ऊर्जा प्राप्त करते हैं, तो बहाल करने वाला बल वह पैदा कर सकता है जिसे तनाव भी कहा जाता है। इस तरह के तनाव के तहत एक स्ट्रिंग या रॉड का प्रत्येक सिरा उस वस्तु को खींच सकता है जिससे वह जुड़ी हुई है, ताकि स्ट्रिंग / रॉड को उसकी आराम से लंबाई में बहाल किया जा सके।

तनाव (एक संचरित बल के रूप में, बलों की एक क्रिया-प्रतिक्रिया जोड़ी के रूप में, या एक पुनर्स्थापना बल के रूप में) को इंटरनेशनल सिस्टम ऑफ यूनिट्स (या इंपीरियल इकाइयों में पाउंड-बल) में न्यूटन (इकाई) में मापा जाता है। एक स्ट्रिंग या अन्य वस्तु जो तनाव संचारित करती है, के सिरे उन वस्तुओं पर बल लगाएंगे जिनसे स्ट्रिंग या रॉड जुड़ा हुआ है, लगाव के बिंदु पर स्ट्रिंग की दिशा में। तनाव के कारण इन बलों को निष्क्रिय बल भी कहा जाता है। स्ट्रिंग्स द्वारा आयोजित वस्तुओं के सिस्टम के लिए दो बुनियादी संभावनाएं हैं:[1] या तो त्वरण शून्य है और सिस्टम संतुलन में है, या त्वरण है, और इसलिए सिस्टम में एक शुद्ध बल मौजूद है।

File:Tug Of War Tension.png
आयरिश चैंपियन रस्साकशी टीम के नौ पुरुष एक रस्सी पर खींचते हैं। तस्वीर में रस्सी रस्सी के आसन्न खंडों को दिखाते हुए एक खींचे गए चित्रण में फैली हुई है। एक खंड को मुक्त शरीर आरेख में दोहराया गया है जो परिमाण T की क्रिया-प्रतिक्रिया बलों की एक जोड़ी को विपरीत दिशाओं में खींच रहा है, जहां T अक्षीय रूप से प्रसारित होता है और इसे तनाव बल कहा जाता है। रस्सी का यह सिरा रस्साकशी दल को दाईं ओर खींच रहा है। रस्सी के प्रत्येक खंड को दो पड़ोसी खंडों द्वारा अलग किया जाता है, उस खंड पर जोर दिया जाता है जिसे तनाव भी कहा जाता है, जो दो फुटबॉल मैदान के सदस्यों के साथ बदल सकता है।


एक आयाम में तनाव

टेदरबॉल रस्सी में तनाव।

एक स्ट्रिंग में तनाव एक गैर-ऋणात्मक अदिश (भौतिकी) है। शून्य तनाव सुस्त है। एक स्ट्रिंग या रस्सी को अक्सर एक आयाम के रूप में आदर्शित किया जाता है, जिसकी लंबाई होती है लेकिन शून्य क्रॉस सेक्शन (ज्यामिति) के साथ द्रव्यमान रहित होता है। यदि स्ट्रिंग में कोई मोड़ नहीं है, जैसा कि कंपन या पुली के साथ होता है, तो तनाव स्ट्रिंग के साथ एक स्थिरांक होता है, जो स्ट्रिंग के सिरों द्वारा लगाए गए बलों के परिमाण के बराबर होता है। न्यूटन के तीसरे नियम के अनुसार, ये वही बल हैं जो डोरी के सिरों पर उन वस्तुओं द्वारा लगाए जाते हैं जिनसे सिरे जुड़े होते हैं। यदि डोरी एक या एक से अधिक फुफ्फुस के चारों ओर मुड़ती है, तो आदर्श स्थिति में इसकी लंबाई के साथ निरंतर तनाव रहेगा कि पुली द्रव्यमान रहित और घर्षण रहित हैं। एक कंपन स्ट्रिंग आवृत्तियों के एक सेट के साथ कंपन करती है जो स्ट्रिंग के तनाव पर निर्भर करती है। इन आवृत्तियों को न्यूटन के गति के नियमों से प्राप्त किया जा सकता है। डोरी का प्रत्येक सूक्ष्म खंड खींचता है और अपने पड़ोसी खंडों द्वारा खींचा जाता है, जिसमें स्ट्रिंग के साथ उस स्थिति में तनाव के बराबर बल होता है।

यदि स्ट्रिंग में वक्रता है, तो दोनों अपने दो पड़ोसियों द्वारा एक खंड पर खींचते हैं, शून्य में नहीं जुड़ेंगे, और स्ट्रिंग के उस खंड पर एक शुद्ध बल होगा, जिससे त्वरण होगा। यह शुद्ध बल एक पुनर्स्थापना बल है, और स्ट्रिंग की गति में अनुप्रस्थ तरंगें शामिल हो सकती हैं जो स्टर्म-लिउविल सिद्धांत के लिए केंद्रीय समीकरण को हल करती हैं:

कहाँ पे प्रति इकाई लंबाई पर बल स्थिरांक है [इकाई प्रति क्षेत्र बल] और अनुप्रस्थ विस्थापन के प्रतिध्वनि के लिए प्रतिजन मान हैं तार पर,[2] समाधान के साथ जिसमें एक तार वाले यंत्र पर हार्मोनिक्स के विभिन्न पैमाने शामिल हैं।

तीन आयामों का तनाव

तनाव का उपयोग त्रि-आयामी, निरंतर सामग्री जैसे रॉड या ट्रस सदस्य के सिरों द्वारा लगाए गए बल का वर्णन करने के लिए भी किया जाता है। इस संदर्भ में, तनाव दबाव के अनुरूप है#नकारात्मक दबाव। तनाव में एक छड़ लंबी हो जाती है। बढ़ाव की मात्रा और संरचनात्मक भार जो विफलता का कारण होगा, दोनों अकेले बल के बजाय प्रति-अनुभागीय क्षेत्र पर बल पर निर्भर करते हैं, इसलिए तनाव (यांत्रिकी) = अक्षीय बल/पार अनुभागीय क्षेत्र तनाव की तुलना में इंजीनियरिंग उद्देश्यों के लिए अधिक उपयोगी है। तनाव एक 3x3 मैट्रिक्स है जिसे टेंसर कहा जाता है, और तनाव टेंसर का तत्व प्रति क्षेत्र तन्यता बल है, या प्रति क्षेत्र संपीड़न बल है, जिसे इस तत्व के लिए ऋणात्मक संख्या के रूप में दर्शाया जाता है, यदि रॉड को लम्बा करने के बजाय संकुचित किया जा रहा है।

इस प्रकार, तनाव टेंसर के ट्रेस (रैखिक बीजगणित) को लेकर कोई भी तनाव के अनुरूप एक अदिश प्राप्त कर सकता है।

संतुलन में प्रणाली

एक प्रणाली संतुलन में होती है जब सभी बलों का योग शून्य होता है।[1]

उदाहरण के लिए, एक ऐसी प्रणाली पर विचार करें जिसमें एक वस्तु शामिल है जिसे एक स्थिर वेग पर तनाव, टी के साथ एक स्ट्रिंग द्वारा लंबवत रूप से कम किया जा रहा है। प्रणाली का एक स्थिर वेग है और इसलिए संतुलन में है क्योंकि स्ट्रिंग में तनाव, जो वस्तु पर खींच रहा है, भार बल के बराबर है, मिलीग्राम (एम द्रव्यमान है, जी पृथ्वी के गुरुत्वाकर्षण के कारण त्वरण है) , जो वस्तु पर नीचे खींच रहा है।[1]


नेट बल के तहत सिस्टम

एक प्रणाली पर एक असंतुलित बल लगाया जाता है जब एक प्रणाली में एक शुद्ध बल होता है, दूसरे शब्दों में सभी बलों का योग शून्य नहीं होता है। त्वरण और शुद्ध बल हमेशा एक साथ मौजूद होते हैं।[1]

उदाहरण के लिए, ऊपर के समान प्रणाली पर विचार करें लेकिन मान लीजिए कि वस्तु अब बढ़ते वेग के साथ नीचे की ओर (सकारात्मक त्वरण) हो रही है, इसलिए सिस्टम में कहीं न कहीं एक शुद्ध बल मौजूद है। इस मामले में, नकारात्मक त्वरण इंगित करेगा कि .[1]
एक अन्य उदाहरण में, मान लीजिए कि दो पिंड A और B जिनका द्रव्यमान है तथा , क्रमशः, एक घर्षण रहित चरखी पर एक अविभाज्य स्ट्रिंग द्वारा एक दूसरे से जुड़े होते हैं। शरीर A पर दो बल कार्य कर रहे हैं: इसका भार () नीचे खींचना, और तनाव स्ट्रिंग में ऊपर खींच रहा है। इसलिए, शुद्ध बल शरीर पर A is , इसलिए . एक्स्टेंसिबल स्ट्रिंग में, हुक का नियम लागू होता है।

आधुनिक भौतिकी में तार

विशेष सापेक्षता सिद्धांतों में स्ट्रिंग जैसी वस्तुएं, जैसे क्वार्क के बीच बातचीत के कुछ मॉडलों में उपयोग की जाने वाली QCD स्ट्रिंग, या आधुनिक स्ट्रिंग सिद्धांत में उपयोग की जाने वाली वस्तुओं में भी तनाव होता है। इन स्ट्रिंग्स का विश्लेषण उनकी विश्व शीट के संदर्भ में किया जाता है, और ऊर्जा तब आमतौर पर स्ट्रिंग की लंबाई के समानुपाती होती है। नतीजतन, ऐसे तारों में तनाव खिंचाव की मात्रा से स्वतंत्र होता है।

यह भी देखें

  • सातत्यक यांत्रिकी
  • गिरावट कारक
  • सतह तनाव
  • तन्यता ताकत
  • द्रव - स्थैतिक दबाव


इस पृष्ठ में अनुपलब्ध आंतरिक कड़ियों की सूची

संदर्भ

  1. 1.0 1.1 1.2 1.3 1.4 Physics for Scientists and Engineers with Modern Physics, Section 5.7. Seventh Edition, Brooks/Cole Cengage Learning, 2008.
  2. A. Fetter and J. Walecka. (1980). Theoretical Mechanics of Particles and Continua. New York: McGraw-Hill.