विट बीजगणित

From Vigyanwiki

गणित में, जटिल विट बीजगणित, जिसका नाम अर्नेस्ट विट के नाम पर रखा गया है, रीमैन क्षेत्र पर परिभाषित मेरोमोर्फिक सदिश क्षेत्रों का लाइ बीजगणित है जो दो निश्चित बिंदुओं को छोड़कर होलोमोर्फिक हैं। यह एक वृत्त पर बहुपद सदिश क्षेत्रों के झूठ बीजगणित का जटिलीकरण भी है, और वलय C[z,z की व्युत्पत्तियों का झूठ बीजगणित-1]।

परिमित क्षेत्रों पर परिभाषित कुछ संबंधित लाई बीजगणित हैं, जिन्हें विट बीजगणित भी कहा जाता है।

जटिल विट बीजगणित को पहली बार कार्टन (1909) द्वारा परिभाषित किया गया था, और 1930 के दशक में विट द्वारा परिमित क्षेत्रों पर इसके एनालॉग्स का अध्ययन किया गया था।

आधार

विट बीजगणित के लिए एक आधार सदिश क्षेत्रों द्वारा दिया गया है , एन के लिए.

दो आधार सदिश क्षेत्रों के झूठ व्युत्पन्न द्वारा दिया जाता है

इस बीजगणित का एक समूह विस्तार # केंद्रीय विस्तार है जिसे विरासोरो बीजगणित कहा जाता है जो द्वि-आयामी अनुरूप क्षेत्र सिद्धांत और स्ट्रिंग सिद्धांत में महत्वपूर्ण है।

ध्यान दें कि n को 1,0,-1 तक सीमित करने पर, एक सबलजेब्रा प्राप्त होता है। सम्मिश्र संख्याओं के क्षेत्र में लिया गया, यह केवल झूठ बीजगणित है लोरेंत्ज़ समूह के . वास्तविक से अधिक, यह बीजगणित SL(2,R)|sl(2,R) = su(1,1) है। इसके विपरीत, सु(1,1) एक प्रस्तुति में मूल बीजगणित का पुनर्निर्माण करने के लिए पर्याप्त है।[1]


परिमित क्षेत्रों पर

विशेषता पी> 0 के एक क्षेत्र के ऊपर, विट बीजगणित को अंगूठी के व्युत्पन्न के लाई बीजगणित के रूप में परिभाषित किया गया है

के [जेड] / जेडपी</सुप>

विट बीजगणित एल द्वारा फैला हुआ हैm −1≤ m ≤ p−2 के लिए।

छवियां

n = -1 Witt vector field
n = 0 Witt vector field
n = 1 Witt vector field
n = -2 Witt vector field
n = 2 Witt vector field
n = -3 Witt vector field

यह भी देखें

संदर्भ

  1. D Fairlie, J Nuyts, and C Zachos (1988). Phys Lett B202 320-324. doi:10.1016/0370-2693(88)90478-9