कॉमा श्रेणी
गणित में, एक अल्पविराम श्रेणी (एक विशेष स्थिति एक स्लाइस श्रेणी है) श्रेणी सिद्धांत में एक निर्माण है। यह रूपवाद को देखने का एक और विधि प्रदान करता है: केवल एक वर्ग (गणित) की वस्तुओं को एक दूसरे से संबंधित करने के अतिरिक्त, रूपवाद अपने आप में वस्तु बन जाते हैं। यह धारणा 1963 में विलियम लॉवरे एफ डब्ल्यू लॉवरे (लॉवरे, 1963 पृष्ठ 36) द्वारा प्रस्तुत की गई थी।, चूँकि विधि ने ऐसा नहीं किया सामान्यतः कई सालों बाद तक जाना जाता है। कई गणितीय अवधारणाओं को अल्पविराम श्रेणियों के रूप में माना जा सकता है। अल्पविराम श्रेणियां कुछ सीमा (श्रेणी सिद्धांत) और कोलिमिट के अस्तित्व की आश्वासन भी देती हैं। नाम मूल रूप से लॉवरे द्वारा उपयोग किए जाने वाले नोटेशन से आता है, जिसमें अल्पविराम विराम चिह्न सम्मिलित था। तथापि मानक अंकन बदल गया हो, नाम बना रहता है, क्योंकि एक ऑपरेटर के रूप में अल्पविराम का उपयोग संभावित रूप से भ्रमित करने वाला होता है, और यहां तक कि लॉवरे भी गैर-सूचनात्मक शब्द अल्पविराम श्रेणी को नापसंद करते हैं (लॉवरे, 1963 पृष्ठ 13)।
परिभाषा
सबसे सामान्य अल्पविराम श्रेणी के निर्माण में एक ही कोडोमेन वाले दो ऑपरेटर सम्मिलित होते हैं। अधिकांशतः इनमें से एक में डोमेन 1 (एक-वस्तु वन-मॉर्फिज़्म श्रेणी) होगा। श्रेणी सिद्धांत के कुछ खाते केवल इन विशेष स्थितियों पर विचार करते हैं, किंतु अल्पविराम श्रेणी शब्द वास्तव में बहुत अधिक सामान्य है।
सामान्य रूप
माना कि , , और श्रेणियां हैं, और और (स्रोत और लक्ष्य के लिए) कारक हैं:
<डिव वर्ग = केंद्र>
हम निम्नानुसार अल्पविराम श्रेणी बना सकते हैं:
- वस्तु सभी त्रिगुणमय हैं, जिसमें एक वस्तु में है, एक वस्तु में है, और में आकारिकी है।
- से तक आकारिकी सभी जोड़े हैं जहाँ और क्रमशः और में रूपवाद हैं, जैसे कि निम्न आरेख कम्यूट करता है:
आकारिकी की रचना को लेकर की जाती है, जब भी बाद वाला व्यंजक परिभाषित होता है। किसी वस्तु पर पहचान आकृतिवाद है।
स्लाइस श्रेणी
पहली विशेष स्थिति तब होता है जब फ़ंक्टर पहचान कारक है, और (एक वस्तु और एक रूपवाद वाली श्रेणी)। फिर किसी वस्तु के लिए में है ।
<डिव वर्ग = केंद्र>
इस स्थिति में, अल्पविराम श्रेणी को लिखा जाता है, और इसे अधिकांशतः पर स्लाइस श्रेणी या पर वस्तुओं की श्रेणी कहा जाता है। वस्तुएं को जोड़े में सरलीकृत किया जा सकता है, जहाँ कभी-कभी को से दर्शाया जाता है। एक आकारिकी से को स्लाइस श्रेणी में तब एक तीर के रूप में सरलीकृत किया जा सकता है, जिससे निम्नलिखित आरेख बना सकते हैं:
कॉस्लाइस श्रेणी
स्लाइस श्रेणी के लिए दोहरी (श्रेणी सिद्धांत) अवधारणा एक कोस्लाइस श्रेणी है। यहाँ, , डोमेन है और एक पहचान कारक है।
<डिव वर्ग = केंद्र>
इस स्थिति में, अल्पविराम श्रेणी को अधिकांशतः लिखा जाता है, जहां S द्वारा चयनित की वस्तु है। इसे , या वस्तुओं की श्रेणी के संबंध में कोस्लिस श्रेणी कहा जाता है। के तहत वस्तुएं के साथ जोड़े हैं। और को देखते हुए, कॉसलिस श्रेणी में एक रूपवाद एक नक्शा है जो निम्नलिखित आरेख को कम्यूट करता है:
तीर श्रेणी
और पर पहचान कारक हैं (इसलिए )।
<डिव वर्ग = केंद्र>
इस स्थिति में, अल्पविराम श्रेणी तीर श्रेणी है . इसकी वस्तुएं रूपवाद हैं , और इसके रूपवाद वर्ग में आ रहे हैं .[1]
अन्य विविधताएं
स्लाइस या कोस्लिस श्रेणी के स्थिति में, आइडेंटिटी फ़ैक्टर को किसी अन्य फ़ैक्टर से बदला जा सकता है; यह विशेष रूप से आसन्न फ़ैक्टरों के अध्ययन में उपयोगी श्रेणियों का एक परिवार पैदा करता है। उदाहरण के लिए, यदि एक एबेलियन समूह को उसकी बीजगणितीय संरचना में मैप करने वाला भुलक्कड़ फ़ंक्टर है, और कुछ निश्चित सेट (गणित) है (1 से एक फ़ैक्टर के रूप में माना जाता है), फिर अल्पविराम श्रेणी ऐसी वस्तुएं हैं जो मानचित्र हैं एक समूह के नीचे एक सेट के लिए। यह के बाएं आसन्न से संबंधित है , जो कि फ़ंक्टर है जो उस सेट को अपने आधार के रूप में मुक्त एबेलियन समूह के लिए मैप करता है। विशेष रूप से, की प्रारंभिक वस्तु विहित इंजेक्शन है , कहाँ द्वारा उत्पन्न मुक्त समूह है .
की एक वस्तु से मोर्फिज्म कहा जाता है को या एडोमेन के साथ संरचित तीर .[1]की एक वस्तु से मोर्फिज्म कहा जाता है को या एकोडोमेन के साथ -संरचित तीर .[1]
एक और विशेष स्थिति तब होता है जब दोनों और डोमेन वाले फंक्टर हैं . अगर और , फिर अल्पविराम श्रेणी , लिखा हुआ , असतत श्रेणी है जिसकी वस्तुएँ आकारिकी हैं को .
एक सम्मिलनकर्ता श्रेणी अल्पविराम श्रेणी की एक (गैर-पूर्ण) उपश्रेणी है जहाँ और ज़रूरत है। कॉमा श्रेणी को इन्सटर के रूप में भी देखा जा सकता है और , कहाँ और उत्पाद श्रेणी से बाहर दो प्रक्षेपण कारक हैं .
गुण
प्रत्येक अल्पविराम श्रेणी के लिए इसमें भुलक्कड़ कारक होते हैं।
- डोमेन फ़ैक्टर, , जो मैप करता है:
- वस्तुएं: ;
- आकारिकी: ;
- कोडोमेन फ़ंक्शन, , जो मैप करता है:
- वस्तुएं: ;
- आकारिकी: .
- तीर फ़ैक्टर, , जो मैप करता है:
- वस्तुएं: ;
- आकारिकी: ;
उपयोग के उदाहरण
कुछ उल्लेखनीय श्रेणियां
अल्पविराम श्रेणियों के संदर्भ में कई दिलचस्प श्रेणियों की स्वाभाविक परिभाषा है।
- नुकीले सेटों की श्रेणी अल्पविराम श्रेणी है, साथ किसी भी सिंगलटन सेट का चयन करना (फंक्टर का चयन करना), और (पहचान कारक) सेट की श्रेणी। इस श्रेणी का प्रत्येक वस्तु सेट के कुछ तत्व का चयन करने वाले फ़ंक्शन के साथ एक सेट है: बेसपॉइंट। मोर्फिज्म सेट पर कार्य होते हैं जो बेसपॉइंट्स को बेसपॉइंट्स को मैप करते हैं। इसी प्रकार कोई नुकीले स्थानों की श्रेणी बना सकता है .
- रिंग के ऊपर साहचर्य बीजगणित की श्रेणी कॉसलिस श्रेणी है , किसी भी अंगूठी समरूपता के बाद से सहयोगी को प्रेरित करता है -बीजगणित संरचना पर , और इसके विपरीत। मोर्फिज़्म तो नक्शे हैं जो आरेख यात्रा करते हैं।
- ग्राफ (असतत गणित) की श्रेणी है , साथ कार्यकर्ता एक सेट ले रहा है को . वस्तुएं फिर दो सेट और एक फ़ंक्शन से मिलकर बनता है; एक अनुक्रमण सेट है, नोड्स का एक सेट है, और के तत्वों के जोड़े चुनता है से प्रत्येक इनपुट के लिए . वह है, सेट से कुछ किनारों को चुनता है संभावित किनारों की। इस श्रेणी में एक रूपवाद दो कार्यों से बना है, एक अनुक्रमण सेट पर और एक नोड सेट पर। उन्हें उपरोक्त सामान्य परिभाषा के अनुसार सहमत होना चाहिए, जिसका अर्थ है संतुष्ट करना चाहिए . दूसरे शब्दों में, इंडेक्सिंग सेट के एक निश्चित तत्व के अनुरूप किनारे, अनुवादित होने पर, अनुवादित इंडेक्स के किनारे के समान होना चाहिए।
- अल्पविराम श्रेणियों के संदर्भ में कई वृद्धि या लेबलिंग संचालन व्यक्त किए जा सकते हैं। होने देना प्रत्येक ग्राफ को उसके किनारों के सेट तक ले जाने वाला फ़ंक्टर बनें, और दें हो (एक functor चयन) कुछ विशेष सेट: फिर ग्राफ़ की श्रेणी है जिसके किनारों को के तत्वों द्वारा लेबल किया गया है . अल्पविराम श्रेणी के इस रूप को अधिकांशतः वस्तु कहा जाता है -ऊपर - ऊपर की वस्तुओं से निकटता से संबंधित ऊपर चर्चा की। यहाँ, प्रत्येक वस्तु रूप लेती है , कहाँ एक ग्राफ है और के किनारों से एक समारोह को . ग्राफ़ के नोड्स को अनिवार्य रूप से उसी तरह लेबल किया जा सकता है।
- एक श्रेणी को स्थानीय रूप से कार्तीय बंद कहा जाता है यदि इसका प्रत्येक टुकड़ा कार्तीय बंद है (स्लाइस की धारणा के लिए ऊपर देखें)। स्थानीय रूप से कार्तीय बंद श्रेणियां निर्भर प्रकार के सिद्धांत की वर्गीकरण श्रेणी हैं।
सीमाएं और सार्वभौम आकारिकी
अल्पविराम श्रेणियों में सीमा (श्रेणी सिद्धांत) और सीमा (श्रेणी सिद्धांत) विरासत में मिल सकती है। अगर और पूरी श्रेणी हैं, एक सीमा (श्रेणी सिद्धांत) # सीमा का संरक्षण है, और एक अन्य फ़ैक्टर है (आवश्यक रूप से निरंतर नहीं), फिर अल्पविराम श्रेणी उत्पादित पूर्ण है,[2] और प्रक्षेपण कारक और निरंतर हैं। इसी प्रकार यदि और अपूर्ण हैं, और सीमा है (श्रेणी सिद्धांत) # सीमा का संरक्षण, फिर सह-पूर्ण है, और प्रक्षेपण फ़ैक्टर सह-सतत हैं।
उदाहरण के लिए, ध्यान दें कि अल्पविराम श्रेणी के रूप में रेखांकन की श्रेणी के उपरोक्त निर्माण में, सेट की श्रेणी पूर्ण और सह-पूर्ण है, और पहचान फ़ैक्टर निरंतर और निरंतर है। इस प्रकार, रेखांकन की श्रेणी पूर्ण और पूर्ण है।
एक विशेष कोलिमिट या एक सीमा से एक सार्वभौमिक संपत्ति की धारणा को अल्पविराम श्रेणी के रूप में व्यक्त किया जा सकता है। अनिवार्य रूप से, हम एक श्रेणी बनाते हैं जिसकी वस्तुएँ शंकु हैं, और जहाँ सीमित शंकु एक अंतिम वस्तु है; फिर, सीमा के लिए प्रत्येक सार्वभौमिक रूपवाद टर्मिनल वस्तु के लिए सिर्फ आकारिकी है। यह दोहरे स्थिति में काम करता है, जिसमें प्रारंभिक वस्तु वाले कोकोन की एक श्रेणी होती है। उदाहरण के लिए, चलो के साथ एक श्रेणी हो प्रत्येक वस्तु को लेने वाला को और प्रत्येक तीर को . से एक सार्वभौमिक रूपवाद को किसी वस्तु की परिभाषा के अनुसार होता है और आकृतिवाद सार्वभौमिक संपत्ति के साथ कि किसी भी रूपवाद के लिए एक अद्वितीय morphism है साथ . दूसरे शब्दों में, यह अल्पविराम श्रेणी में एक वस्तु है उस श्रेणी में किसी अन्य वस्तु के लिए आकारिकी होना; यह प्रारंभिक है। यह उत्पाद को परिभाषित करने में कार्य करता है , जब यह मौजूद है।
संयोजन
लॉवरे ने दिखाया कि कार्यकर्ता और यदि और केवल अल्पविराम श्रेणियां हैं, तो सहायक फ़ैक्टर हैं और , साथ और पहचान कारक चालू हैं और क्रमशः, आइसोमोर्फिक हैं, और अल्पविराम श्रेणी में समकक्ष तत्वों को उसी तत्व पर प्रक्षेपित किया जा सकता है . यह सेट को सम्मिलित किए बिना संयोजनों को वर्णित करने की अनुमति देता है, और वास्तव में अल्पविराम श्रेणियों को शुरू करने के लिए मूल प्रेरणा थी।
प्राकृतिक परिवर्तन
यदि के डोमेन बराबर हैं, फिर आरेख जो रूपवाद को परिभाषित करता है साथ आरेख के समान है जो एक प्राकृतिक परिवर्तन को परिभाषित करता है . दो धारणाओं के बीच का अंतर यह है कि एक प्राकृतिक परिवर्तन रूप के प्रकार के आकारिकी का एक विशेष संग्रह है , जबकि अल्पविराम श्रेणी की वस्तुओं में इस तरह के रूप के सभी आकारिकी सम्मिलित हैं। अल्पविराम श्रेणी के लिए एक फ़ंक्टर आकारिकी के उस विशेष संग्रह का चयन करता है। यह संक्षेप में एसए हक द्वारा एक अवलोकन द्वारा वर्णित है[3] कि एक प्राकृतिक परिवर्तन , साथ , एक functor से मेल खाता है जो प्रत्येक वस्तु को मैप करता है को और प्रत्येक morphism को मानचित्रित करता है को . यह प्राकृतिक परिवर्तनों के बीच एक आक्षेप पत्राचार है और कारक जो दोनों भुलक्कड़ कारकों के खंड (श्रेणी सिद्धांत) हैं .
संदर्भ
- ↑ 1.0 1.1 1.2 Adámek, Jiří; Herrlich, Horst; Strecker, George E. (1990). सार और ठोस श्रेणियाँ (PDF). John Wiley & Sons. ISBN 0-471-60922-6.
- ↑ Rydheard, David E.; Burstall, Rod M. (1988). कम्प्यूटेशनल श्रेणी सिद्धांत (PDF). Prentice Hall.
- ↑ Mac Lane, Saunders (1998), Categories for the Working Mathematician, Graduate Texts in Mathematics 5 (2nd ed.), Springer-Verlag, p. 48, ISBN 0-387-98403-8
- Comma category at the nLab
- Lawvere, W (1963). "Functorial semantics of algebraic theories" and "Some algebraic problems in the context of functorial semantics of algebraic theories". http://www.tac.mta.ca/tac/reprints/articles/5/tr5.pdf
बाहरी संबंध
- J. Adamek, H. Herrlich, G. Stecker, Abstract and Concrete Categories-The Joy of Cats
- WildCats is a category theory package for Mathematica. Manipulation and visualization of objects, रूपवाद, categories, functors, natural transformations, universal properties.
- Interactive Web page which generates examples of categorical constructions in the category of finite sets.
