फ्लॉपी डिस्क

From Vigyanwiki
Revision as of 23:47, 21 September 2022 by alpha>Poonam Singh
8-इंच, 5¼-इंच, और 3+12-इंच फ़्लॉपी डिस्क
8-इंच, 5¼-इंच (पूरी ऊंचाई), और 3+12-इंच ड्राइव
3½ इंच की फ़्लॉपी डिस्क को उसके आवास से हटा दिया गया

एक फ़्लॉपी डिस्क या फ़्लॉपी डिस्केट (आकस्मिक रूप से फ़्लॉपी, या डिस्केट के रूप में संदर्भित) एक पुराने (अप्रचलित) प्रकार का डिस्क भंडारण है, जो एक चुंबकीय भंडारण माध्यम की पतली और लचीली डिस्क से बना होता है, जो एक कपड़े के साथ पंक्तिबद्ध एक चौकोर प्लास्टिक के कणों में होता है जो फ़्लॉपी डिस्क से धूल के कणों को हटाता जाता है। फ्लॉपी डिस्क डिजिटल डेटा को स्टोर करती है, जिसे तब पढ़ा और लिखा जा सकता है जब डिस्क को किसी संगणक या अन्य डिवाइस से जुड़ी फ्लॉपी डिस्क ड्राइव (FDD) में डाला जाता है।

IBM द्वारा आविष्कार की गई पहली फ्लॉपी डिस्क का व्यास 8 इंच (203.2 मिमी) था।[1] इसके बाद, 5¼-इंच और फिर 3+12 इंच डेटा संग्रहण का एक सर्वव्यापी रूप बन जाता है और 21वीं सदी के पहले वर्षों में स्थानांतरित हो जाता है।[2] बाहरी USB फ़्लॉपी डिस्क ड्राइव के साथ 3+12-इंच फ़्लॉपी डिस्क का उपयोग आज भी किया जा सकता है। 5¼-इंच, 8-इंच और फ्लॉपी डिस्क के एक प्रकार के लिए USB ड्राइव होती है। अन्य आकार के फ़्लॉपी डिस्क न के बराबर होती हैं। कुछ व्यक्ति और संगठन फ़्लॉपी डिस्क से डेटा पढ़ने या स्थानांतरित करने के लिए पुराने उपकरणों का उपयोग आज भी कर रहे हैं।

20वीं सदी के उत्तरार्ध की संस्कृति में फ्लॉपी डिस्क इतने आम थे कि कई इलेक्ट्रॉनिक और सॉफ्टवेयर प्रोग्राम स्क्यूओमॉर्फ वर्चुअल में कुछ उदाहरण चिह्नों का उपयोग करना जारी रखते हैं जो 21वीं सदी में फ्लॉपी डिस्क की तरह दिखाई देते हैं। जबकि फ़्लॉपी डिस्क ड्राइव के अभी भी कुछ सीमित उपयोगी होते है, विशेष रूप से विरासत प्रणाली के साथ, उन्हें डेटा भंडारण (स्टोरेज) विधियों द्वारा बहुत अधिक डेटा भंडारण (स्टोरेज) क्षमता और कंप्यूटर डेटा भंडारण (स्टोरेज) प्रदर्शन में प्रयोग किया जाता हैं, जैसे USB फ्लैश ड्राइव, मेमोरी कार्ड, प्रकाशिक (ऑप्टिकल) डिस्क और स्टोरेज के साथ हटाया गया है। स्थानीयकंप्यूटर नेटवर्क और क्लाउड स्टोरेज के माध्यम से यह आधुनिक समय में उपलब्ध होते है।

इतिहास

8-इंच फ़्लॉपी डिस्क,
ड्राइव में डाला गया,
(3½-इंच फ़्लॉपी डिस्केट,
सामने, स्केल के लिए दिखाया गया है)
3½-इंच, उच्च घनत्व वाले फ़्लॉपी डिस्केट जिसमें चिपकने वाले लेबल लगे होते हैं

1960 के दशक के अंत में विकसित की गई पहली व्यावसायिक फ़्लॉपी डिस्क 8 इंच (203.2 मिमी) व्यास की होती थी,[1][2] इसे 1971 में IBM उत्पादों के एक घटक के रूप में व्यावसायिक रूप से उपलब्ध कराया गया था और फिर 1972 में मेमोरेक्सऔर अन्य द्वारा अलग से बेचे जाते थे।[3] ये डिस्क और संबंधित ड्राइव तैयार किए गए और IBM और मेमोरेक्स,शुगार्ट एसोसिएट्स और बरोज़ कॉर्पोरेशन जैसी अन्य कंपनियों द्वारा निर्मित और बेहतर सुधार किये गये थे।[4] फ्लॉपी डिस्क शब्द 1970 की शुरुआत में प्रिंट में दिखाई दिया था,[5] और हालांकि IBM ने 1973 में टाइप 1 डिस्केट के रूप में अपने पहले मीडिया की घोषणा की, उद्योग ने फ्लॉपी डिस्क या फ्लॉपी शब्द का उपयोग जारी रखा जाता था।

1976 में, शुगार्ट एसोसिएट्स (Shugart Associates) ने 5¼-इंच FDD पेश किया गया था। 1978 तक, ऐसे FDDs का उत्पादन करने वाले जिसमे दस से अधिक निर्माता थे।[6] हार्ड और सॉफ्ट-सेक्टर संस्करणों के साथ प्रतिस्पर्धी फ्लॉपी डिस्क प्रारूप थे और अवकल मैनचेस्टर एन्कोडिंग (डिफरेंशियल मैनचेस्टर एन्कोडिंग-DM), संशोधित आवृत्ति मॉड्यूलेशन (माडफाइड फ्रीक्वन्सी मॉड्यूलेशन-MFM), M2FM और समूह कोडित रिकॉर्डिंग GCR जैसी एन्कोडिंग योजनाओं के साथ प्रतिस्पर्धी फ्लॉपी डिस्क प्रारूप थे। 5¼-इंच प्रारूप ने अधिकांश उपयोगों के लिए 8-इंच वाले को विस्थापित कर दिया था ,और हार्ड-सेक्टर डिस्क के  प्रारूप गायब हो गया था। MFM एन्कोडिंग का उपयोग करते हुए डबल-साइडेड डबल-डेंसिटी (DSDD) प्रारूप के लिए DOS-based PCs में 5¼-इंच प्रारूप की सबसे आम क्षमता 360 KB थी।1984 में, IBM ने अपने PC-AT मॉडल के साथ 1.2 MB डुअल-साइडेड 5¼-इंच फ्लॉपी डिस्क पेश की गयी थी, लेकिन यह कभी भी बहुत लोकप्रिय नहीं हुई थी। IBM ने 1986 में अपने IBM PC परिवर्तनीय लैपटॉप कंप्यूटर पर 720 KB दोहरा घनत्व (डबल डेंसिटी) 3+12-इंच माइक्रोफ्लॉपी डिस्क और IBM पर्सनल सिस्टम/2 (पीएस/2) लाइन के साथ 1.44 MB उच्च घनत्व भंडारण मीडिया हाई-डेंसिटी वर्जन का इस्तेमाल शुरू किया। 1987 में डिस्क ड्राइव को पुराने PC मॉडल में जोड़ा जा सकता है।1987 में डिस्क ड्राइव को पुराने PC मॉडल में जोड़ा जा सकता है। 1988 में, Y-E डेटा ने 2.88 MB के DSDD डिस्केट के लिए एक ड्राइव की शुरुआत की, जिसका उपयोग IBM द्वारा अपने टॉप-ऑफ़-द-लाइन PS/2 मॉडल और दूसरी पीढ़ी के नेक्स्टक्यूब (NeXTcube) और नेक्स्टस्टेशन (NeXTstation) में किया गया था। चूंकि, मानकों की कमी और 3½-इंच ड्राइव की गति के कारण इस प्रारूप में बाज़ार की सीमित सफलताएँ होती थीं। 1980 के दशक की शुरुआत में, 5¼-इंच प्रारूप की सीमाएँ स्पष्ट हो गईं। मूल रूप से 8-इंच प्रारूप की तुलना में अधिक व्यावहारिक होने के लिए डिज़ाइन किया गया था, इसे बहुत बड़ा माना जा रहा था, लेकिन जैसे-जैसे रिकॉर्डिंग मीडिया की गुणवत्ता बढ़ी, डेटा को एक छोटे से क्षेत्र में संग्रहीत किया जा सकता था।[7] 2-, 2½-, 3-, 3¼-, पर ड्राइव के साथ कई समाधान विकसित किए गए थे।[8] 3+12- और 4 इंच (और Sony 's .) 90 mm × 94 mm (3.54 in × 3.70 in) डिस्क) विभिन्न कंपनियों द्वारा की पेशकश की।[7] पुराने प्रारूप पर उन सभी के कई फायदे थे, जिसमें हेड स्लॉट के ऊपर एक स्लाइडिंग धातु (या बाद में, कभी-कभी प्लास्टिक) शटर के साथ एक कठोर मामला शामिल था, जो नाजुक चुंबकीय माध्यम को धूल और क्षति से बचाने में मदद करता था, और एक स्लाइडिंग संरक्षण लिखे टैब, जो पहले के डिस्क के साथ इस्तेमाल होने वाले एडहेसिव टैब की तुलना में कहीं अधिक सुविधाजनक था। अच्छी तरह से स्थापित 5¼-इंच प्रारूप की बड़ी बाजार हिस्सेदारी ने इन विविध परस्पर-असंगत नए प्रारूपों के लिए महत्वपूर्ण बाजार हिस्सेदारी हासिल करना मुश्किल बना दिया।[7]1982 में कई निर्माताओं द्वारा पेश किए गए सोनी डिज़ाइन पर एक संस्करण को तेजी से अपनाया गया था। 1988 तक, 3+12-इंच 5¼-इंच को पछाड़ रहा था।[9]

आम तौर पर, फ़्लॉपी डिस्क शब्द बना रहता है, भले ही बाद की शैली फ़्लॉपी डिस्क में आंतरिक फ़्लॉपी डिस्क के आसपास एक कठोर मामला हो।

1980 के दशक के अंत तक, 5¼-इंच डिस्क को 3+12-इंच डिस्क से हटा दिया गया था। इस समय के दौरान, पीसी अक्सर दोनों आकारों के ड्राइव से सुसज्जित होते थे। 1990 के दशक के मध्य तक, 5¼-इंच की ड्राइव लगभग गायब हो गई थी, क्योंकि 3+12-इंच की डिस्क प्रमुख फ्लॉपी डिस्क बन गई थी। 3+12-इंच डिस्क के लाभ इसकी उच्च क्षमता, इसका छोटा भौतिक आकार, और इसका कठोर मामला था जो गंदगी और अन्य पर्यावरणीय जोखिमों से बेहतर सुरक्षा प्रदान करता था।

व्यापकता

अनुकरण (इमेशन) USB फ़्लॉपी ड्राइव, मॉडल 01946: एक बाहरी ड्राइव जो उच्च-घनत्व डिस्क को स्वीकार करता है

सॉफ़्टवेयर वितरित करने, डेटा स्थानांतरित करने और बैकअप बनाने के लिए निजी कंप्यूटर के साथ उनके उपयोग में 1980 और 1990 के दशक के दौरान फ्लॉपी डिस्क आम हो गई। आम जनता के लिए हार्ड डिस्क सस्ती होने से पहले,[nb 1] फ्लॉपी डिस्क का उपयोग अक्सर कंप्यूटर के ऑपरेटिंग सिस्टम (OS) को स्टोर करने के लिए किया जाता था। उस समय के अधिकांश घरेलू कंप्यूटरों में एक प्राथमिक OS और BASIC को रीड ऑनली मैमोरी (ROM) में संग्रहीत किया जाता है, जिसमें फ़्लॉपी डिस्क से अधिक उन्नत OS लोड करने का विकल्प होता है।

1990 के दशक की शुरुआत तक, बढ़ते सॉफ़्टवेयर के बढ़ते आकार का मतलब था कि माइक्रोसॉफ्ट विंडोज (Microsoft Windows) और एडोब फोटोशॉप (Adobe Photoshop) जैसे बड़े पैकेजों को एक दर्जन और अधिक डिस्क की आवश्यकता होती थी। 1996 में, अनुमानित रूप से पाँच बिलियन मानक फ़्लॉपी डिस्क उपयोग में थीं।[10] फिर, बड़े पैकेजों के वितरण को धीरे-धीरे सीडी रॉम (CD-ROM) , डीवीडी (DVD) और ऑनलाइन वितरण द्वारा बदल दिया गया था।

1990 के दशक के उत्तरार्ध में मौजूदा 3+12-इंच डिज़ाइन को बढ़ाने का एक प्रयास सुपरडिस्क था, जिसमें बहुत ही संकीर्ण डेटा ट्रैक और 120 मेगाबाइट की क्षमता वाले उच्च परिशुद्धता शीर्श मार्गदर्शन तंत्र का उपयोग किया गया था।[11] और मानक 3+12-इंच फ़्लॉपी के साथ पश्च-संगतता; सुपरडिस्क और अन्य उच्च-घनत्व फ्लॉपी-डिस्क उत्पादों के बीच एक प्रारूप युद्ध संक्षिप्त रूप से हुआ, हालांकि अंततः रिकॉर्ड करने योग्य CD/DVD, सॉलिड-स्टेट फ्लैश स्मृति, और अंततः क्लाउड-आधारित ऑनलाइन स्टोरेज इन सभी को हटाने योग्य डिस्क के प्रारूपों को अप्रचलित कर देता है। बाहरी USB-आधारित फ़्लॉपी डिस्क पर ड्राइव अभी भी उपलब्ध हैं, और कई आधुनिक सिस्टम में ऐसी ड्राइव से बूटिंग के लिए फ़र्मवेयर समर्थन प्रदान करते हैं।

अन्य प्रारूपों में क्रमिक संक्रमण

एक खुदरा 3½-इंच और 5¼-इंच फ्लॉपी डिस्क सफाई किट के आगे और पीछे, जैसा कि ऑस्ट्रेलिया में खुदरा विक्रेता बिग डब्ल्यू में बेचा गया था, लगभग 1990 के दशक की शुरुआत में

1990 के दशक के मध्य में, यांत्रिक रूप से असंगत उच्च-घनत्व वाली फ़्लॉपी डिस्क कोज़िप ड्राइव की तरह पेश किया गया था। स्वामित्व प्रारूपों के बीच प्रतिस्पर्धा और उन कंप्यूटरों के लिए महंगी ड्राइव खरीदने की आवश्यकता से गोद लेना सीमित था जहां पर डिस्क का उपयोग किया जाएगा। कुछ मामलों में, ड्राइव के उच्च-क्षमता वाले संस्करणों के जारी होने और मीडिया के पिछड़े संगतता नहीं होने के कारण बाजार में प्रवेश में विफलता बढ़ गई थी। उपभोक्ता अप्रमाणित और तेजी से बदलती प्रौद्योगिकियों में महंगा निवेश करने से सावधान रहते थे,और इसीलिए कोई भी तकनीक स्थापित मानक नहीं बन पाई थी ।

Apple ने iMac G3 को 1998 में CD-ROM ड्राइव के साथ पेश किया था लेकिन कोई फ़्लॉपी ड्राइव नहीं थी; इसने USB-कनेक्टेड फ्लॉपी ड्राइव को लोकप्रिय सहायक उपकरण बना दिया गया, क्योंकि iMac के बिना किसी लिखने योग्य और हटाने योग्य मीडिया डिवाइस के आया था।

CD RW को एक विकल्प के रूप में  पेश किया गया था, क्योंकि ये अधिक क्षमता, मौजूदा CD-ROM ड्राइव के साथ संगतता से,और CD-RW के आगमन के साथ-साथ CD और पैकेट लेखन-फ्लॉपी डिस्क के समान पुन: प्रयोज्य होती थी। हालांकि, CD-R/RW ज्यादातर एक अभिलेखीय माध्यम बने रहे, न कि माध्यम पर डेटा के आदान-प्रदान और फाइलों को संपादित करने का माध्यम में थे, क्योंकि पैकेट लेखन के लिए कोई सामान्य मानक नहीं था जो छोटे अपडेट के लिए अनुमति देता था। मैग्नेटो-ऑप्टिकल ड्राइव, मैग्नेटो-ऑप्टिकल डिस्क जैसे किअन्य प्रारूपों में फ्लॉपी डिस्क के लचीलेपन को अधिक क्षमता के साथ जोड़ा गया था, लेकिन लागत के कारण विशिष्ट बने रहे थे। उच्च क्षमता वाली पिछड़ी संगत फ्लॉपी प्रौद्योगिकियां कुछ समय के लिए लोकप्रिय हो गईं थी और उन्हें एक विकल्प के रूप में बेचा गया थी और मानक PC में भी शामिल किया गया था , लेकिन फिर लंबे समय में, उनका उपयोग पेशेवरों और उत्साही लोगों तक ही सीमित किया गया था।

फ्लैश-आधारित USB-थम्ब ड्राइव अंततः एक व्यावहारिक और लोकप्रिय प्रतिस्थापन थे, जो पारंपरिक फाइल सिस्टम और फ्लॉपी डिस्क के सभी सामान्य उपयोग परिदृश्यों का समर्थन करते थे।अन्य समाधानों के विपरीत, किसी भी नए ड्राइव प्रकारऔर विशेष सॉफ़्टवेयर की आवश्यकता नहीं थी जो गोद लेने में बाधा डालता हो, क्योंकि जो कुछ आवश्यक था वह पहले से ही सामान्य USB पोर्ट था।

21वीं सदी की शुरुआत में प्रयोग करें

[[File:Floppy hardware emulator.jpg|thumb|left| एक फ्लॉपी डिस्क हार्डवेयर एमुलेटर , एक 3+12-इंच ड्राइव के समान आकार, उपयोगकर्ता को एक USB इंटरफ़ेस प्रदान करता है 2002 तक, अधिकांश निर्माताओं ने अभी भी स्नीकर नेट फ़ाइल-स्थानांतरण और एक आपातकालीन बूट डिवाइस के लिए उपयोगकर्ता की मांग को पूरा करने के साथ-साथ परिचित डिवाइस होने की सामान्य सुरक्षित भावना को पूरा करने के लिए मानक उपकरण के रूप में फ्लॉपी डिस्क ड्राइव प्रदान किए गए थे।[12] इस समय तक, फ्लॉपी ड्राइव की खुदरा लागत लगभग $20, 2021 में $30 के बराबर तक गिर गई थी, इसलिए सिस्टम से डिवाइस को हटाने के लिए बहुत कम वित्तीय प्रोत्साहन किया गया था। इसके बाद, USB फ्लैश ड्राइव और BIOS बूट के लिए व्यापक समर्थन द्वारा सक्षम, निर्माताओं और खुदरा विक्रेताओं ने मानक उपकरण के रूप में फ्लॉपी डिस्क ड्राइव की उपलब्धता को उत्तरोत्तर कम कर दिया। फरवरी 2003 में, प्रमुख व्यक्तिगत कंप्यूटर विक्रेताओं में से एक, Dell ने घोषणा की कि फ्लॉपी ड्राइव अब डेल आयाम होम कंप्यूटर पर पहले स्थापित नहीं होंगे, हालांकि वे अभी भी एक चयन योग्य विकल्प के रूप में उपलब्ध थे और बाद केमूल उपकरण निर्माता ऐड के रूप में खरीदे जा सकते थे।[13] जनवरी 2007 तक, स्टोर में बिकने वाले केवल 2% कंप्यूटरों में बिल्ट-इन फ़्लॉपी डिस्क ड्राइव थे।[14] फ्लॉपी डिस्क का उपयोग पुराने सिस्टम में आपातकालीन बूट के लिए किया जाता है जिसमें अन्यबूट डिस्क और BIOS अपडेट के लिए समर्थन की कमी होती है, क्योंकि अधिकांश BIOS और फर्मवेयर प्रोग्राम अभी भी बूट डिस्क को बूट करने योग्य फ्लॉपी से निष्पादित किए जा सकता हैं। यदि BIOS अद्यतन विफल हो जाते हैं या भ्रष्ट हो जाते हैं, तो कभी-कभी पुनर्प्राप्ति करने के लिए फ़्लॉपी ड्राइव का उपयोग किया जा सकता है। संगीत और थिएटर उद्योग अभी भी मानक फ्लॉपी डिस्क (जैसे सिंथेसाइज़र, सैंपलर, ड्रम मशीन, सीक्वेंसर और प्रकाश नियंत्रण कंसोल ) की आवश्यकता वाले उपकरणों का उपयोग करते हैं। औद्योगिक स्वचालन उपकरण जैसे प्रोग्राम करने योग्य मशीन उद्योग और औद्योगिक रोबोट में USB इंटरफ़ेस नहीं हो सकता है; डेटा और प्रोग्राम तब डिस्क से लोड किए जाते हैं, जो औद्योगिक वातावरण में क्षतिग्रस्त हो जाते हैं। निरंतर उपलब्धता के लिए लागत और आवश्यकता के कारण इस उपकरण को बदला नहीं जा सकता है; मौजूदा सॉफ्टवेयर इम्यूलेशन और वर्चुअलाइजेशन इस समस्या का समाधान नहीं करते हैं क्योंकि एक अनुकूलित ऑपरेटिंग सिस्टम का उपयोग किया जाता है जिसमें USB डिवाइस के लिए कोई डिवाइस ड्राइवर नहीं होता है। फ्लॉपी डिस्क हार्डवेयर एमुलेटर को फ्लॉपी-डिस्क नियंत्रक को एक USB  पोर्ट में इंटरफेस करने के लिए बनाया जा सकता है जिसका उपयोग फ्लैश ड्राइव के लिए किया जा सकता है।

मई 2016 में, यूनाइटेड स्टेट्स सरकार के जवाबदेही कार्यालय ने एक रिपोर्ट जारी की जिसमें संघीय एजेंसियों के भीतर लीगेसी कंप्यूटर सिस्टम को अपग्रेड करने या बदलने की आवश्यकता को कवर किया गया था। इस लेख के अनुसार, 8-इंच की फ़्लॉपी डिस्क पर चलने वाले पुराने IBM Series/1 मिनीकंप्यूटर अभी भी परमाणु कमांड से चलते हैं और संयुक्त राज्य के परमाणु बलों के संचालन कार्यों को नियंत्रित करते हैं। सरकार ने 2017 के वित्तीय वर्ष के अंत तक कुछ प्रौद्योगिकी को अद्यतन करने की योजना बनाई है।[15][16]

Windows 10 फ़्लॉपी डिस्क ड्राइव के लिए ड्राइवर के साथ नहीं आया; हालाँकि, Windows 10 और 11 Microsoft के एक इंस्टाल करने योग्य डिवाइस ड्राइवर के साथ उनका समर्थन करेंगे।[17] ब्रिटिश एयरवेज बोइंग 747-400 बेड़े, 2020 में अपनी सेवानिवृत्ति तक, एवियोनिक्स सॉफ़्टवेयर लोड करने के लिए 3.5-इंच फ्लॉपी डिस्क का उपयोग करता था।[18] कॉर्पोरेट कंप्यूटिंग वातावरण में कुछ वर्कस्टेशन अभी भी USB पोर्ट को अक्षम करते हुए फ़्लॉपी डिस्क को बनाए रखते हैं, दोनों चालें बेईमान कर्मचारियों द्वारा कॉपी किए जा सकने वाले डेटा की मात्रा को प्रतिबंधित करने के लिए की जाती हैं।[dubious ]

विरासत

एक फ़्लॉपी डिस्क को सेव आइकन के रूप में दर्शाने वाला स्क्रीनशॉट

दो दशकों से अधिक समय तक, फ़्लॉपी डिस्क प्राथमिक बाह्य लिखने योग्य संग्रहण उपकरण था जिसका उपयोग किया जाता था 1990 के दशक से पहले अधिकांश कंप्यूटिंग वातावरण गैर-नेटवर्क वाले थे, और फ़्लॉपी डिस्क कंप्यूटर के बीच डेटा स्थानांतरित करने का प्राथमिक साधन थे, जो अनौपचारिक रूप से स्नीकरनेट के रूप में जानी जाने वाली एक विधि है। हार्ड डिस्क के विपरीत, फ्लॉपी डिस्क को संभाला और देखा जाता है; यहां तक ​​कि एक नौसिखिया उपयोगकर्ता भी एक फ्लॉपी डिस्क की पहचान कर सकता है। इन कारकों के कारण, 3½ इंच की फ़्लॉपी डिस्क की तस्वीर डेटा को बचाने के लिए एक इंटरफ़ेस रूपक बन गई। फ़्लॉपी डिस्क प्रतीक अभी भी फ़ाइलों को सहेजने से संबंधित उपयोगकर्ता इंटरफ़ेस रूपक पर सॉफ़्टवेयर द्वारा उपयोग किया जाता है (जैसे कि Microsoft Office 2021 भले ही भौतिक फ्लॉपी डिस्क काफी हद तक अप्रचलित हैं, जिससे यह एक स्क्यूओमॉर्फ बन जाता है।[19]

डिजाइन

संरचना

8-इंच और 5¼-इंच डिस्क

8 इंच की फ्लॉपी डिस्क के अंदर
सिंगल-साइडेड 5¼-इंच डिस्केट को डबल-साइडेड में कनवर्ट करता है।

8-इंच और 5¼-इंच फ़्लॉपी डिस्क में चुंबकीय रूप से लेपित गोल प्लास्टिक माध्यम होता है जिसमें ड्राइव के स्पिंडल के लिए केंद्र में एक बड़ा गोलाकार छेद होता है। माध्यम एक वर्गाकार प्लास्टिक कवर में समाहित है जिसमें ड्राइव के सिरों को पढ़ने की अनुमति देने के लिए दोनों तरफ एक छोटा आयताकार उद्घाटन होता है और केंद्र में डेटा और एक बड़ा छेद लिखें ताकि चुंबकीय माध्यम को उसके मध्य छेद से घुमाकर घूमने दिया जा सके।

कवर के अंदर कपड़े की दो परतें होती हैं जिनके बीच में चुंबकीय माध्यम सैंडविच होता है। कपड़े को माध्यम और बाहरी आवरण के बीच घर्षण को कम करने के लिए डिज़ाइन किया गया है, और सिर पर जमा होने से बचाने के लिए डिस्क से निकले मलबे के कणों को पकड़ें। कवर आमतौर पर एक भाग वाली शीट होती है, जो फ्लैप से चिपके हुए या एक साथ वेल्डेड स्पॉट के साथ डबल फोल्ड होती है।

डिस्क के किनारे पर एक छोटा सा निशान यह पहचानता है कि यह लिखने योग्य है,

जो इसके ऊपर एक यांत्रिक स्विच या फोटोट्रांसिस्टर (phototransistor) द्वारा पता लगाया गया है; यदि यह मौजूद नहीं है, तो डिस्क को लिखा जा सकता है, 8 इंच की डिस्क में लेखन को सक्षम करने के लिए नॉच को कवर किया गया है जबकि 5¼-इंच डिस्क में लेखन सक्षम करने के लिए नॉच खुला है। डिस्क के मोड को बदलने के लिए नॉच के ऊपर टेप का इस्तेमाल किया जा सकता है। केवल-पढ़ने के लिए डिस्क को लिखने योग्य डिस्क में बदलने के लिए पंच डिवाइस बेचे गए और एक तरफ डिस्क के अप्रयुक्त पक्ष पर लेखन सक्षम करें, ऐसे संशोधित डिस्क को फ़्लिपी डिस्क के रूप में जाना जाने लगा।

डिस्क के केंद्र के पास स्थित एक और LED/फोटो ट्रांजिस्टर जोड़ी जो चुंबकीय डिस्क में प्रति घूर्णन एक बार सूचकांक छेद का पता लगाता है; इसका उपयोग प्रत्येक ट्रैक की कोणीय शुरुआत का पता लगाने के लिए किया जाता है और डिस्क सही गति से घूम रही है या नहीं। शुरुआती 8 इंच और 5 इंच के डिस्क में प्रत्येक क्षेत्र के लिए भौतिक छेद थे और इन्हें कठिन क्षेत्रीकरण कहा जाता था। बाद में सॉफ्ट-सेक्टर डिस्क क्षेत्र में केवल एक इंडेक्स होल होता है, और सेक्टर की स्थिति पैटर्न से डिस्क नियंत्रक या निम्न-स्तरीय सॉफ़्टवेयर द्वारा निर्धारित की जाती है जो एक सेक्टर की शुरुआत को चिह्नित करता है। आम तौर पर, दोनों प्रकार के डिस्क को पढ़ने और लिखने के लिए एक ही ड्राइव का उपयोग किया जाता है, केवल डिस्क और नियंत्रक भिन्न होते हैं। सॉफ्ट सेक्टर का उपयोग करने वाले कुछ ऑपरेटिंग सिस्टम, जैसे कि Apple DOS, इंडेक्स होल का उपयोग नहीं करते हैं, और ऐसी प्रणालियों के लिए डिज़ाइन किए गए ड्राइव में अक्सर संबंधित सेंसर की कमी होती है; यह मुख्य रूप से एक हार्डवेयर लागत-बचत उपाय था।[20]

3½-इंच डिस्क

3½-इंच फ़्लॉपी डिस्क का पिछला भाग पारदर्शी केस में, उसके आंतरिक भाग दिखा रहा है

3½-इंच डिस्क का कोर अन्य दो डिस्क के समान है, लेकिन फ्रंट में डेटा पढ़ने और लिखने के लिए केवल एक लेबल और एक छोटा सा उद्घाटन है, जो शटर द्वारा संरक्षित है एक स्प्रिंग लोडेड धातु या प्लास्टिक कवर, जो ड्राइव में एंट्री करते ही साइड में धकेल दिया। केंद्र में छेद होने के बजाय, इसमें एक मेटल हब है जो ड्राइव के स्पिंडल से जुड़ता है। विशिष्ट 3½-इंच डिस्क चुंबकीय कोटिंग सामग्री हैं:[21]

नीचे बाएँ और दाएँ दो छेद इंगित करते हैं क्या डिस्क सुरक्षित है और क्या उच्च घनत्व है; इन छेदों को पंच किए गए A4 पेपर में छेद के रूप में दूर तक फैलाया जाता है, जो राइट प्रोटेक्टेड हाई डेंसिटी फ्लॉपी को स्टैंडर्ड रिंग बाइंडर्स में क्लिप करने की अनुमति दे रहा है। डिस्क शेल के आयाम काफी वर्गाकार नहीं हैं: इसकी चौड़ाई इसकी गहराई से थोड़ी कम है, ताकि डिस्क को ड्राइव स्लॉट में बग़ल में सम्मिलित करना असंभव हो (अर्थात सही शटर-प्रथम अभिविन्यास से 90 डिग्री घुमाया गया)। शीर्ष दाईं ओर एक विकर्ण पायदान सुनिश्चित करता है कि डिस्क को सही अभिविन्यास में ड्राइव में डाला गया है यह पहले उल्टा या लेबल-एंड नहीं है और ऊपर बाईं ओर एक तीर सम्मिलन की दिशा को इंगित करता है। ड्राइव में आमतौर पर एक बटन होता है, जिसे दबाने पर, यह अलग-अलग बल के साथ डिस्क को बाहर निकालता है, शटर के स्प्रिंग द्वारा प्रदान किए गए इजेक्शन बल के कारण विसंगति। IBM PC कम्पैटिबल्स, कमोडोर्स, Apple II/IIIs, और अन्य गैर-Apple-Macintosh मशीनों में मानक फ़्लॉपी डिस्क ड्राइव के साथ, डिस्क को किसी भी समय मैन्युअल रूप से बाहर निकाला जा सकता है। ड्राइव में एक डिस्क-चेंज स्विच होता है जो डिस्क को बाहर निकालने या डालने पर पता लगाता है। यदि डिस्क बदली जाती है तो इस यांत्रिक स्विच की विफलता डिस्क भ्रष्टाचार का एक सामान्य स्रोत है और ड्राइव (और इसलिए ऑपरेटिंग सिस्टम) नोटिस करने में विफल रहता है।

फ़्लॉपी डिस्क की मुख्य उपयोगिता समस्याओं में से एक इसकी भेद्यता है; एक बंद प्लास्टिक आवास के अंदर भी, डिस्क माध्यम धूल, संघनन और तापमान चरम सीमा के प्रति अत्यधिक संवेदनशील है। सभी चुंबकीय भंडारण के साथ, यह चुंबकीय क्षेत्रों के प्रति संवेदनशील है। खाली डिस्क को चेतावनियों के एक व्यापक सेट के साथ वितरित किया गया है, जो उपयोगकर्ता को चेतावनी देता है कि इसे खतरनाक परिस्थितियों में उजागर न करें। रफ ट्रीटमेंट या डिस्क को ड्राइव से हटाना जबकि चुंबकीय मीडिया अभी भी घूम रहा है, डिस्क, ड्राइव हेड, या संग्रहीत डेटा को नुकसान होने की संभावना है। दूसरी ओर, मानव कंप्यूटर संपर्क विशेषज्ञ डोनाल्ड नॉर्मन द्वारा 3½ इंच की फ्लॉपी की यांत्रिक उपयोगिता के लिए सराहना की गई है:[22]

एक अच्छे डिजाइन का एक सरल उदाहरण कंप्यूटर के लिए साढ़े तीन इंच का चुंबकीय डिस्केट है, हार्ड प्लास्टिक में घिरे फ्लॉपी चुंबकीय सामग्री का एक छोटा सा चक्र। पहले के प्रकार के फ्लॉपी डिस्क में यह प्लास्टिक केस नहीं होता था, जो चुंबकीय सामग्री को दुरुपयोग और क्षति से बचाता है। एक स्लाइडिंग धातु कवर नाजुक चुंबकीय सतह की रक्षा करता है जब डिस्केट उपयोग में नहीं होता है और स्वतः खुल जाता है जब डिस्केट को कंप्यूटर में डाला जाता है। डिस्केट का एक चौकोर आकार होता है: जाहिरा तौर पर इसे मशीन में डालने के आठ संभावित तरीके हैं, जिनमें से केवल एक ही सही है। अगर मैं गलत करूँ तो क्या होगा? मैं डिस्क को बग़ल में डालने का प्रयास करता हूँ। डिजाइनर ने इसके बारे में सोचा। एक छोटे से अध्ययन से पता चलता है कि मामला वास्तव में चौकोर नहीं है: यह आयताकार है, इसलिए आप एक लंबी भुजा नहीं डाल सकते। मैं पीछे की कोशिश करता हूँ। डिस्केट रास्ते के केवल एक हिस्से में जाता है। छोटे प्रोट्रूशियंस, इंडेंटेशन, और कटआउट डिस्केट को पीछे या उल्टा डालने से रोकते हैं: आठ तरीकों में से कोई एक डिस्केट डालने का प्रयास कर सकता है, केवल एक ही सही है, और केवल वही फिट होगा। एक बेहतरीन रचना।

3½‑इंच इकाई . से स्पिंडल मोटर

[[File:Citizen W1D-9364 - read write head-4005.jpg|thumb|एक डिस्क रीड-एंड-राइट हेड |रीड-राइट हेड 3½‑इंच यूनिट से]]

संचालन

फ्लॉपी पर रीड-राइट हेड कैसे लगाया जाता है

ड्राइव में एक स्पिंडल मोटर एक निश्चित गति से चुंबकीय माध्यम को घुमाती है, जबकि एक स्टेपर मोटर-संचालित तंत्र डिस्क की सतह के साथ चुंबकीय रीड/राइट हेड्स को रेडियल रूप से स्थानांतरित करता है। दोनों पढ़ने और लिखने के संचालन के लिए मीडिया को घूमने की आवश्यकता होती है और हेड्स को डिस्क मीडिया से संपर्क करने की आवश्यकता होती है, एक क्रिया जो मूल रूप से डिस्क-लोड सोलनॉइड द्वारा पूरी की जाती है।[23] बाद में ड्राइव ने सिर को तब तक संपर्क से बाहर रखा जब तक कि फ्रंट पैनल लीवर घुमाया नहीं गया (5¼-इंच) या (3½-इंच) डिस्क सम्मिलन पूरा हो गया हो और इस प्रकार डेटा लिखने के लिए, जैसे ही मीडिया घूमता है, सिर में एक कॉइल के माध्यम से करंट भेजा जाता है। सिर का चुंबकीय क्षेत्र मीडिया पर सीधे सिर के नीचे कणों के चुंबकीयकरण को संरेखित करता है। जब करंट को उलट दिया जाता है तो मैग्नेटाइजेशन जो विपरीत दिशा में संरेखित होता है, और एक बिट डेटा को एन्कोड करता है। डेटा पढ़ने के लिए, मीडिया में कणों का चुंबकीयकरण यह हेड कॉइल में एक छोटे से वोल्टेज को प्रेरित करता है क्योंकि वे इसके नीचे से गुजरते हैं। यह छोटा सिग्नल प्रवर्धित किया जाता है और फ्लॉपी डिस्क नियंत्रक को भेजा जाता है, जो दालों की धाराओं को मीडिया से डेटा में परिवर्तित करता है, और यह त्रुटियों के लिए भी जाँच करता है, और इसे होस्ट कंप्यूटर सिस्टम को भेजता है।

स्वरूपण

एक खाली अस्वरूपित डिस्केट में चुंबकीय ऑक्साइड का लेप होता है जिसमें कणों को कोई चुंबकीय क्रम नहीं होता है। स्वरूपण के दौरान, कणों के चुंबकीयकरण को ट्रैक बनाने के लिए संरेखित किया जाता है, प्रत्येक सेक्टर में टूट गया, जो नियंत्रक को डेटा को ठीक से पढ़ने और लिखने में सक्षम बनाता है। पटरियाँ केंद्र के चारों ओर संकेंद्रित वलय हैं, पटरियों के बीच रिक्त स्थान के साथ जहां कोई डेटा नहीं लिखा है; डिस्क ड्राइव में मामूली गति भिन्नता की अनुमति देने के लिए सेक्टरों और ट्रैक के अंत में पैडिंग बाइट्स के साथ अंतराल प्रदान किए जाते हैं, और अन्य समान प्रणालियों से जुड़े डिस्क ड्राइव के साथ बेहतर इंटर ऑपरेबिलिटी की अनुमति देने के लिए।

डेटा के प्रत्येक सेक्टर का एक हेडर होता है जो डिस्क पर सेक्टर लोकेशन की पहचान करता है। एक चक्रीय अतिरेक जाँच (CRC) सेक्टर हेडर में और उपयोगकर्ता डेटा के अंत में लिखा जाता है ताकि डिस्क नियंत्रक संभावित त्रुटियों का पता लगा सके।

कुछ त्रुटियां नरम होती हैं और रीड ऑपरेशन को स्वचालित रूप से पुनः प्रयास करके हल किया जा सकता है; अन्य त्रुटियां स्थायी हैं और डिस्क नियंत्रक ऑपरेटिंग सिस्टम की विफलता का संकेत देगा यदि डेटा को पढ़ने के कई प्रयास अभी भी विफल होते हैं।

सम्मिलन और निष्कासन

डिस्क डालने के बाद, डिस्क को गलती से उभरने से रोकने के लिए ड्राइव के सामने एक कैच या लीवर को मैन्युअल रूप से उतारा जाता है, और स्पिंडल क्लैम्पिंग हब संलग्न करता है, और दो तरफा ड्राइव में, मीडिया के साथ दूसरे पढ़ने/लिखने के प्रमुख को संलग्न करता है।

कुछ 5¼-इंच ड्राइव में, डिस्क का सम्मिलन एक इजेक्शन स्प्रिंग को संपीड़ित और लॉक करता है जो कैच या लीवर को खोलने पर डिस्क को आंशिक रूप से बाहर निकाल देता है। यह अंगूठे और उंगलियों को हटाने के दौरान डिस्क को पकड़ने के लिए एक छोटे अवतल क्षेत्र को सक्षम बनाता है।

नए 5¼-इंच ड्राइव और सभी 3½-इंच ड्राइव स्वचालित रूप से स्पिंडल और हेड्स को संलग्न करते हैं जब एक डिस्क डाली जाती है, तो इजेक्ट बटन के प्रेस के साथ विपरीत करना।

3½ इंच डिस्क ड्राइव में निर्मित Apple Macintosh कंप्यूटर पर, इजेक्शन बटन द्वारा इजेक्शन मोटर को नियंत्रित करने वाले सॉफ़्टवेयर द्वारा बदल दिया जाता है जो केवल तभी कार्य करता है जब ऑपरेटिंग सिस्टम को ड्राइव तक पहुंचने की आवश्यकता नहीं होती है। उपयोगकर्ता डिस्क को बाहर निकालने के लिए फ़्लॉपी ड्राइव की छवि को डेस्कटॉप पर ट्रैश कैन में खींच सकता है। बिजली की विफलता या ड्राइव की खराबी के मामले में, भरी हुई डिस्क को ड्राइव के फ्रंट पैनल के एक छोटे से छेद में एक सीधी पेपर क्लिप डालकर मैन्युअल रूप से हटाया जा सकता है, ठीक वैसे ही जैसे कोई ऐसी ही स्थिति में CD-ROM ड्राइव के साथ करेगा। तीव्र X68000 में सॉफ्ट इजेक्ट 5¼ इंच की ड्राइव्स हैं। कुछ लेट जेनरेशन IBM PS/2 मशीनों में सॉफ्ट इजेक्ट 3½ इंच डिस्क ड्राइव भी थे जिसके लिए डॉस (अर्थात पीसी डॉस 5.02 और उच्चतर) के कुछ मुद्दों ने एक EJECT कमांड की पेशकश की।

ट्रैक जीरो ढूँढना

डिस्क तक पहुँचने से पहले, ड्राइव को डिस्क ट्रैक्स के साथ अपनी हेड पोजीशन को सिंक्रोनाइज करने की जरूरत है। कुछ ड्राइव में, यह ट्रैक ज़ीरो सेंसर के साथ पूरा किया जाता है, जबकि अन्य के लिए इसमें ड्राइव हेड शामिल है जो एक स्थिर संदर्भ सतह से टकराता है।

किसी भी स्थिति में, सिर हिलाया जाता है ताकि यह डिस्क के ट्रैक जीरो पोजिशन के करीब पहुंच जाए। जब सेंसर वाला ड्राइव शून्य ट्रैक पर पहुंच गया हो, सिर तुरंत हिलना बंद कर देता है और सही ढंग से संरेखित होता है। सेंसर के बिना ड्राइव के लिए, तंत्र सिर को ट्रैक शून्य तक पहुंचने के लिए आवश्यक पदों की अधिकतम संभव संख्या को स्थानांतरित करने का प्रयास करता है, यह जानते हुए कि एक बार यह गति पूरी हो जाने के बाद, हेड को ट्रैक जीरो पर रखा जाएगा।

कुछ ड्राइव मैकेनिज्म जैसे कि Apple II 5¼ इंच ड्राइव बिना ट्रैक जीरो सेंसर के, और यह विशिष्ट यांत्रिक शोर उत्पन्न करता है जब सिर को संदर्भ सतह से आगे ले जाने का प्रयास किया जाता है। यह फिजिकल स्ट्राइकिंग Apple II के बूट के दौरान 5¼ इंच की ड्राइव क्लिक के लिए जिम्मेदार है, और इसके डॉस और प्रोडोस की जोरदार खड़खड़ाहट जब डिस्क त्रुटियाँ हुईं और शून्य सिंक्रनाइज़ेशन ट्रैक करने का प्रयास किया गया था।

क्षेत्रों का पता लगाना

सभी 8 इंच और कुछ 5¼ इंच ड्राइव ने सेक्टरों का पता लगाने के लिए एक यांत्रिक विधि का उपयोग किया, जिसे हम हार्ड सेक्टर या सॉफ्ट सेक्टर के रूप में जानते हैं, और यह स्पिंडल होल के किनारे तक जैकेट में छोटे छेद का उद्देश्य है। जब जैकेट में छेद के माध्यम से डिस्क में एक छिद्रित छेद दिखाई देता है, तो एक लाइट बीम सेंसर पता लगाता है।

सॉफ्ट-सेक्टर डिस्क के लिए, केवल एक ही छेद होता है, जिसका उपयोग प्रत्येक ट्रैक के पहले सेक्टर का पता लगाने के लिए किया जाता है। इसके पीछे के अन्य क्षेत्रों को खोजने के लिए क्लॉक टाइमिंग का उपयोग किया जाता है, जिसके लिए ड्राइव मोटर के सटीक गति विनियमन की आवश्यकता होती है।

एक हार्ड सेक्टर डिस्क के लिए, कई छेद होते हैं, प्रत्येक सेक्टर पंक्ति के लिए एक, साथ ही आधे-सेक्टर की स्थिति में एक अतिरिक्त छेद, जिसका उपयोग सेक्टर शून्य को इंगित करने के लिए किया जाता है।

Apple II कंप्यूटर सिस्टम इस मायने में उल्लेखनीय है कि इसमें इंडेक्स होल सेंसर नहीं था और हार्ड या सॉफ्ट सेक्टरिंग की उपस्थिति को नजरअंदाज कर दिया। इसके बजाय, यह प्रत्येक ट्रैक में डेटा को खोजने और सिंक्रनाइज़ करने में कंप्यूटर की सहायता के लिए प्रत्येक सेक्टर के बीच डिस्क पर लिखे गए विशेष दोहराए जाने वाले डेटा सिंक्रोनाइज़ेशन पैटर्न का उपयोग करता है।

1980 के दशक के मध्य के बाद के साढ़े तीन इंच के ड्राइव में सेक्टर इंडेक्स होल का उपयोग नहीं किया गया था, लेकिन इसके बजाय सिंक्रोनाइज़ेशन पैटर्न का भी इस्तेमाल किया।

अधिकांश 3½-इंच ड्राइव एक स्थिर गति ड्राइव मोटर का उपयोग करते हैं और सभी ट्रैक्स में समान संख्या में सेक्टर होते हैं। इसे कभी-कभी लगातार कोणीय वेग (CAV) के रूप में जाना जाता है। डिस्क पर अधिक डेटा फिट करने के लिए, कुछ 3½-इंच ड्राइव (विशेषकर Macintosh बाहरी 400K और 800K ड्राइव डिस्क ड्राइव ) इसके बजाय लगातार रैखिक वेग (CLV) का उपयोग करते हैं, जो एक चर गति ड्राइव मोटर का उपयोग करता है जैसे-जैसे सिर डिस्क के केंद्र से दूर जाता है, यह अधिक धीरे-धीरे घूमता है, जो डिस्क की सतह के सापेक्ष समान गति बनाए रखता है। यह ट्रैक की लंबाई बढ़ने पर अधिक क्षेत्रों को लंबे मध्य और बाहरी ट्रैक पर लिखने की अनुमति देता है।

आकार

जबकि मूल IBM 8-इंच डिस्क वास्तव में इतनी परिभाषित थी, अन्य आकार मीट्रिक सिस्टम में परिभाषित किए गए हैं, उनके सामान्य नाम लेकिन मोटे अनुमान हैं।[24] जबकि मूल IBM 8-इंच की डिस्क वास्तव में इतनी परिभाषित थी,

अन्य आकारों को मीट्रिक प्रणाली में परिभाषित किया गया है, उनके सामान्य नाम हैं लेकिन मोटे तौर पर अनुमानित हैं। फ्लॉपी डिस्क के विभिन्न आकार यांत्रिक रूप से असंगत होते हैं, और डिस्क ड्राइव के केवल एक आकार में फिट हो सकते हैं। आकार के बीच संक्रमण अवधि के दौरान 3+1⁄2-इंच और 5+1⁄4-इंच स्लॉट दोनों के साथ ड्राइव असेंबलियां उपलब्ध थीं, लेकिन उनमें दो अलग-अलग ड्राइव तंत्र शामिल थे। इसके अलावा, दोनों के बीच कई सूक्ष्म आमतौर पर सॉफ्टवेयर संचालित असंगतियां हैं। Apple II कंप्यूटर के साथ उपयोग के लिए स्वरूपित 5+1⁄4-इंच डिस्क अपठनीय होंगे और उन्हें कमोडोर पर बिना स्वरूपित माना जाएगा। जैसे-जैसे कंप्यूटर प्लेटफॉर्म बनने लगे, इंटरचेंजबिलिटी के प्रयास किए जाने लगे। उदाहरण के लिए, Macintosh SE से Power Macintosh G3 में शामिल "सुपर ड्राइव" IBM PC प्रारूप 3+1⁄2 इंच डिस्क को पढ़, लिख और प्रारूपित कर सकता है, लेकिन कुछ IBM संगत कंप्यूटरों में ड्राइव थे जो विपरीत थे। 8-इंच, 5+1⁄4-इंच और 3+1⁄2-इंच ड्राइव विभिन्न आकारों में निर्मित किए गए थे, अधिकांश मानकीकृत ड्राइव बे फिट करने के लिए। सामान्य डिस्क आकार के साथ-साथ विशेष प्रणालियों के लिए गैर शास्त्रीय आकार थे।

8 इंच की फ्लॉपी डिस्क

8 इंच की फ्लॉपी डिस्क

पहले मानक के फ्लॉपी डिस्क का व्यास 8 इंच है,[1] जो एक लचीली प्लास्टिक जैकेट द्वारा संरक्षित है। यह माइक्रोकोड लोड करने के तरीके के रूप में IBM द्वारा उपयोग किया जाने वाला एक रीड ओनली डिवाइस था। <ref>"Floppy Disk". Louisiana State University. Archived from the original on 2014-10-18. Retrieved 2013-12-02.</ref> फ्लॉपी डिस्क पढ़ें/लिखें और उनकी ड्राइव 1972 में उपलब्ध हो गई, लेकिन यह IBM 3740 द्वारा 1973 में डेटा एंट्री सिस्टम की शुरूआत थी <ref>"3740". Archives. IBM. 23 January 2003. Archived from the original on 25 December 2017. Retrieved 13 October 2014.</ref> इसने फ्लॉपी डिस्क की स्थापना शुरू की, जिसे IBM डिस्केट 1 ने सूचना आदान-प्रदान के लिए एक उद्योग मानक के रूप में बुलाया। इस सिस्टम के लिए स्वरूपित डिस्केट 242,944 बाइट्स को स्टोर करता है।<ref>IBM 3740 Data Entry System System Summary and Installation Manual – Physical Planning (PDF). IBM. 1974. p. 2. Archived (PDF) from the original on 2017-02-15. Retrieved 2019-03-07 – via Stuttgart University. The diskette is about 8" (20 cm) square and has a net capacity of 1898 128-character records – about one day's data entry activity. Each of the diskette's 73 magnetic recording tracks available for data entry can hold 26 sectors of up to 128 characters each.</ref> अभियांत्रिकी, व्यवसाय, या वर्ड प्रोसेसिंग के लिए उपयोग किए जाने वाले प्रारंभिक माइक्रो कंप्यूटर अक्सर हटाने योग्य भंडारण के लिए एक या अधिक 8 इंच डिस्क ड्राइव का उपयोग करते थे; CP/M ऑपरेटिंग सिस्टम को 8-इंच ड्राइव वाले माइक्रो कंप्यूटर के लिए विकसित किया गया था।

8 इंच के डिस्क और ड्राइव का परिवार समय के साथ बढ़ता गया और बाद के संस्करण 1.2 MB तक स्टोर कर सकते थे;<ref>"The IBM Diskette General Information Manual". DE: Z80. Archived from the original on 2014-10-28. Retrieved 2014-10-13.</ref> कई माइक्रो कंप्यूटर अनुप्रयोगों को एक डिस्क पर इतनी क्षमता की आवश्यकता नहीं होती है, इसलिए कम लागत वाले मीडिया और ड्राइव के साथ एक छोटे आकार की डिस्क संभव थी। 5+1⁄4-इंच की ड्राइव कई अनुप्रयोगों में 8-इंच आकार में सफल रही, और मूल 8 इंच आकार के समान भंडारण क्षमता के लिए विकसित किया गया है, जो उच्च घनत्व वाले मीडिया और रिकॉर्डिंग तकनीकों का उपयोग करते हैं।

5+14इंच फ्लॉपी डिस्क

5¼-inch floppies, front and back
Uncovered 5+14‑inch disk mechanism with disk inserted.

80 ट्रैक उच्च घनत्व ( संशोधित आवृत्ति मॉडुलन में 1.2 MB) 5+14‑ इंच ड्राइव (मिनी डिस्केट, मिनी डिस्क, या मिनीफ्लॉपी) का हेड गैप 40 ट्रैक डबल डेंसिटी (360 KB अगर) से छोटा है दो तरफा) ड्राइव लेकिन यह 40‑ट्रैक डिस्क को प्रारूपित, पढ़ और लिख भी सकता है जो नियंत्रक को डबल स्टेपिंग का समर्थन करता है और ऐसा करने के लिए एक स्विच भी है। 5+14-इंच 80 ट्रैक ड्राइव को हाइपर ड्राइव भी कहा जाता था।[nb 2] एक खाली 40 ट्रैक डिस्क को 80 ट्रैक ड्राइव पर स्वरूपित और लिखा गया है जिसे बिना किसी समस्या के अपने मूल ड्राइव पर ले जाया जा सकता है, और 40 ट्रैक ड्राइव पर स्वरूपित डिस्क का उपयोग 80 ट्रैक ड्राइव पर किया जा सकता है। 40 ट्रैक ड्राइव पर लिखी गई डिस्क और फिर 80 ट्रैक ड्राइव पर अपडेट किया गया ट्रैक चौड़ाई असंगति के कारण किसी भी 40 ट्रैक ड्राइव पर अपठनीय हो जाता है। अधिक महंगे डबल साइडेड डिस्क की उपलब्धता के बावजूद, सिंगल साइडेड डिस्क को दोनों तरफ लेपित किया गया था। आमतौर पर उच्च कीमत के लिए कारण यह था कि दो तरफा डिस्क मीडिया के दोनों ओर त्रुटि मुक्त प्रमाणित थे।

डबल साइडेड डिस्क का उपयोग सिंगल साइडेड डिस्क के लिए कुछ ड्राइव्स में किया जा सकता है, जब तक कि इंडेक्स सिग्नल की जरूरत नहीं होती। यह एक बार में एक तरफ किया जाता था, उन्हें पलट कर (फ्लिपी डिस्क) अधिक महंगे ड्यूल हेड ड्राइव जिन्हें दोनो तरफ से पढ़ सकते थे, उन्हें बाद में तैयार किया गया, और अंततः सार्वभौमिक रूप से उपयोग किया जाने लगा।

3+12इंच फ्लॉपी डिस्क

a . के आंतरिक भाग 3+12-इंच फ्लॉपी डिस्क।
  1. A hole that indicates a high-capacity disk.
  2. The hub that engages with the drive motor.
  3. A shutter that protects the surface when removed from the drive.
  4. The plastic housing.
  5. A polyester sheet reducing friction against the disk media as it rotates within the housing.
  6. The magnetic coated plastic disk.
  7. A schematic representation of one sector of data on the disk; the tracks and sectors are not visible on actual disks.
  8. The write protection tab (unlabeled) in upper left.
A 3+12-इंच फ्लॉपी डिस्क ड्राइव

1980 के दशक की शुरुआत में, कई निर्माताओं ने विभिन्न स्वरूपों में छोटे फ्लॉपी ड्राइव और मीडिया पेश किए। 21 कंपनियों का एक संघ अंततः 3+12-इंच डिज़ाइन पर बस गया जिसे माइक्रो डिस्केट, माइक्रो डिस्क, या माइक्रो फ़्लॉपी के रूप में जाना जाता है, जो सोनी के डिजाइन के समान है लेकिन स्वरूपित क्षमताओं के साथ सिंगल-साइडेड और डबल-साइडेड मीडिया दोनों का समर्थन करने के लिए सुधार हुआ है यह आमतौर पर क्रमशः 360 KB और 720 KB का होता है। सिंगल-साइडेड ड्राइव्स को 1983 में शिप किया गया,[25] और डबल-साइडेड 1984 में। दो तरफा, उच्च घनत्व 1.44 MB (वास्तव में 1440 KB = 1.41 MIB) डिस्क ड्राइव, जो सबसे लोकप्रिय बन गया, पहली बार 1986 में शिप किया गया।[26] पहले मैकिन्टोश (Macintosh) कंप्यूटरों में सिंगल-साइडेड 3+12-इंच फ़्लॉपी डिस्क का उपयोग किया जाता था, लेकिन 400 KB स्वरूपित क्षमता के साथ। इसके बाद 1986 में अलग-अगल रूप से 800 KB फ्लॉपीज़ द्वारा पीछा किया गया। सिर की स्थिति के साथ डिस्क-रोटेशन गति को बदलकर एक ही रिकॉर्डिंग घनत्व पर उच्च क्षमता हासिल की गई थी ताकि डिस्क की रैखिक गति स्थिर के करीब हो। बाद में मैक निश्चित रोटेशन गति के साथ पीसी प्रारूप में 1.44 MB HD डिस्क भी पढ़ और लिख सकते थे। उच्च क्षमता समान रूप से एकोर्न के जोखिम (DD के लिए 800 KB, HD के लिए 1,600 KB) और एमिगाओएस (DD के लिए 880 KB, HD के लिए 1,760 KB) द्वारा हासिल की गई थी।

सभी 3+12-इंच डिस्क के एक कोने में एक आयताकार छेद होता है जो बाधित होने पर, डिस्क को लिखने में सक्षम बनाता है। एक स्लाइडिंग डिटेंटेड पीस को ड्राइव द्वारा महसूस किए गए आयताकार छेद के हिस्से को ब्लॉक या प्रकट करने के लिए ले जाया जा सकता है। HD 1.44 MB डिस्क के विपरीत कोने में एक दूसरा अबाधित छेद है जो उन्हें उस क्षमता के होने के रूप में पहचानता है।

IBM-संगत PC में, 3+12-इंच फ़्लॉपी डिस्क के तीन घनत्व पश्च-संगत हैं; उच्च-घनत्व ड्राइव निम्न-घनत्व मीडिया को पढ़, लिख और प्रारूपित कर सकते हैं। इससे कम घनत्व पर डिस्क को प्रारूपित करना भी संभव है जिसके लिए इरादा था, लेकिन केवल तभी जब डिस्क को पहले बल्क इरेज़र से पूरी तरह से विचुंबकित किया जाता है, चूंकि उच्च घनत्व प्रारूप चुंबकीय रूप से मजबूत है और डिस्क को कम घनत्व मोड में काम करने से रोकेगा।

उनसे भिन्न घनत्वों पर लेखन जिस पर डिस्क का इरादा था, कभी-कभी छेद को बदलकर या ड्रिलिंग करके, यह संभव था लेकिन निर्माताओं द्वारा समर्थित नहीं था। 3+12-इंच डिस्क के एक तरफ एक छेद को बदला जा सकता है ताकि कुछ डिस्क ड्राइव और ऑपरेटिंग सिस्टम डिस्क को उच्च या निम्न घनत्व में से एक के रूप में मान सकें, द्विदिश अनुकूलता या आर्थिक कारणों से।[clarification needed] [27][28] कुछ कंप्यूटरों, जैसे PS/2 और बलूत का फल आर्किमिडीज ने इन छिद्रों की पूरी तरह से अवहेलना की।[29]

अन्य आकार

अन्य छोटे फ़्लॉपी आकार प्रस्तावित किए गए, विशेष रूप से पोर्टेबल या पॉकेट-आकार के उपकरणों के लिए जिसे एक छोटे स्टोरेज डिवाइस की जरूरत थी।

  • ताबोर निगम और डायसानो द्वारा 3¼-इंच फ्लॉपी अन्यथा 5¼-इंच फ्लॉपी के समान प्रस्तावित किए गए थे।
  • 3½-इंच के निर्माण में समान तीन-इंच डिस्क का निर्माण और उपयोग एक समय के लिए किया गया था, विशेष रूप से एमस्ट्रैड कंप्यूटर और वर्ड प्रोसेसर द्वारा।
  • सोनी द्वारा अपने माविका स्टिल वीडियो कैमरा के उपयोग के लिए वीडियो फ्लॉपी के रूप में जाना जाने वाला दो इंच का नाममात्र आकार पेश किया गया था।[30]जेनिथ मिनिस्पोर्ट पोर्टेबल कंप्यूटर में LT-1 नामक फुजीफिल्म द्वारा निर्मित एक असंगत दो इंच की फ्लॉपी का उपयोग किया गया था।[31]

इनमें से किसी भी आकार ने बाजार में ज्यादा सफलता हासिल नहीं की।[32]

आकार, कार्यकरण और क्षमता

फ्लॉपी डिस्क आकार को अक्सर इंच में संदर्भित किया जाता है, मीट्रिक का उपयोग करने वाले देशों में भी और हालांकि आकार मीट्रिक में परिभाषित किया गया है। 3+1⁄2-इंच डिस्क के ANSI विनिर्देश भाग "90 मिमी (3.5-इंच)" के हकदार हैं हालांकि 90 मिमी 3.54 इंच के करीब है।[33] स्वरूपित क्षमता आमतौर पर किलोबाइट और मेगाबाइट के संदर्भ में निर्धारित की जाती है।

फ्लॉपी डिस्क प्रारूपों का ऐतिहासिक क्रम
डिस्क प्रारूप वर्ष पेश किया गया स्वरूपित भंडारण क्षमता विपणन क्षमता
8-इंच: IBM 23FD (केवल पढ़ने के लिए) 1971 81.664 KB[34] व्यावसायिक रूप से विपणन नहीं किया गया
8-इंच: मेमोरेक्स 650 1972 175 KB[35] 1.5 मेगाबिट पूर्ण ट्रैक[35]
8-इंच: SS SD

IBM 33FD / शुगार्ट 901

1973 242.844 KB[34] 3.1 मेगाबिट अस्वरूपित
8-इंच: DS SD

IBM 43FD / शुगार्ट 850

1976 568.320 KB[34] 6.2 मेगाबिट अस्वरूपित
5+14-इंच (35 ट्रैक) Shugart SA 400 1976[36] 87.5 KB[37] 110 KB
8-इंच DS DD

IBM 53FD / शुगार्ट 850

1977 962–1,184 KB depending upon sector size 1.2 MB
5+14-इंच DD 1978 360 or 800 KB 360 KB
5+14-इंच एप्पल डिस्क II (Pre-DOS 3.3) 1978 113.75 KB (256 byte sectors, 13 sectors/track, 35 tracks) 113 KB
5+14-इंच अटारी DOS 2.0S 1979 90 KB (128 byte sectors, 18 sectors/track, 40 tracks) 90 KB
5+14-Commodore DOS 1.0 (SSDD) 1979[38] 172.5 KB[39] 170 KB
5+14-इंच Commodore DOS 2.1 (SSDD) 1980[40] 170.75 KB[39] 170 KB
5+14-इंच ऐप्पल डिस्क II (DOS 3.3) 1980 140 KB (256 byte sectors, 16 sectors/track, 35 tracks) 140 KB
5+14-इंच एप्पल डिस्क II (Roland Gustafsson's RWTS18) 1988 157.5 KB (768 byte sectors, 6 sectors/track, 35 tracks) गेम प्रकाशकों ने तीसरे पक्ष के कस्टम डॉस को निजी तौर पर अनुबंधित किया।
3+12-इंच HP SS 1982 280 KB (256 byte sectors, 16 sectors/track, 70 tracks) 264 KB
5+14-इंच अटारी DOS 3 1983 127 KB (128 byte sectors, 26 sectors/track, 40 tracks) 130 KB
3-इंच 1982[41][42] ? 125 KB (एसएस/एसडी),

500 KB (डीएस/DD)[42]

3+12-इंच SS DD (रिलीज पर) 1983 360 KB (400 KB on Macintosh) 500 KB
3+12-इंच DS DD 1983 720 KB (800 KB on Macintosh and RISC OS,[43] 880 KB on Amiga) 1 MB
5+14-इंच क्यूडी 1980[44] 720 KB 720 KB
5+14-इंच RX50 (SSQD) circa 1982 400 KB
5+14-इंच HD 1982[45] 1,200 KB 1.2 MB
3-इंच मित्सुमी क्विक डिस्क 1985 128 to 256 KB ?
3-इंच Famicom Disk System (क्विक डिस्क से प्राप्त) 1986 112 KB 128 KB[46]
2-इंच 1989 720 KB[47] ?
2+12- इंच तीव्र CE-1600F,[48] CE-140F (चेसिस: FDU-250, मध्यम: CE-1650F)[49] 1986[48][49][50] turnableप्रति पक्ष 62,464 बाइट्स (512 बाइट सेक्टर, 8 सेक्टर/ट्रैक, 16 ट्रैक, GCR (4/5) रिकॉर्डिंग) के साथ टर्न करने योग्य डिस्केट[48][49] 2× 64 KB(128 KB)[48][49]
5+14-इंच[51] लंबवत 1986[50] 100 KB per inch[50] ?
3+12-इंच HD 1986[52] 1,440 KB (1,760 KB on Amiga) 1.44 MB (2.0 MB अस्वरूपित)
3+12-इंच HD 1987 1,600 KB on RISC OS[43] 1.6 MB
3+12-इंच ED 1987[53] 2,880 KB (3,200 KB on Sinclair QL) 2.88 MB
3+12-इंच Floptical (LS) 1991 20,385 KB 21 MB
3+12-इंच SuperDisk (LS-120) 1996 120.375 MB 120 MB
3+12-इंच SuperDisk (LS-240)

inch SuperDisk (LS-240)

1997 240.75 MB 240 MB
3+12-इंच HiFD 1998/99 ? 150/200 MB
संकेताक्षर: SD = एकल घनत्व; DD = दोहरा घनत्व; क्यूडी = क्वाड घनत्व; HD = उच्च घनत्व; ED = अतिरिक्त उच्च घनत्व;[54][55][56][57][58]LS = Laser Servo; HiFD = High capacity Floppy Disk; SS = Single Sided; DS = Double Sided
स्वरूपित भंडारण क्षमता डिस्क पर सभी क्षेत्रों का कुल आकार है:
  • 8 इंच के लिए फ्लॉपी डिस्क प्रारूपों की सूची देखें IBM 8-इंच प्रारूप इस संख्या में अतिरिक्त, छिपे हुए और अन्यथा आरक्षित क्षेत्र शामिल हैं।
  • 5+14- और  3+12 इंच क्षमता के लिए उद्धृत सबसिस्टम या सिस्टम विक्रेता विवरण से हैं।विपणन क्षमता वह क्षमता है, जो आमतौर पर बिना स्वरूपित होती है, मूल मीडिया ओईएम विक्रेता द्वारा या IBM मीडिया के मामले में, उसके बाद पहला ओईएम। अन्य प्रारूपों को समान ड्राइव और डिस्क से कम या ज्यादा क्षमता मिल सकती है।

डेटा आम तौर पर सेक्टरों (कोणीय ब्लॉक) और ट्रैक्स (स्थिर त्रिज्या पर संकेंद्रित छल्ले) में फ्लॉपी डिस्क को लिखा जाता है। उदाहरण के लिए, 3½-इंच फ़्लॉपी डिस्क का HD स्वरूप 512 बाइट्स प्रति सेक्टर का उपयोग करता है, 18 सेक्टर प्रति ट्रैक, 80 ट्रैक प्रति साइड और दो साइड, कुल 1,474,560 बाइट्स प्रति डिस्क के लिए।[59][failed verification] कुछ डिस्क नियंत्रक उपयोगकर्ता के अनुरोध पर इन मापदंडों को बदल सकते हैं, जो डिस्क पर स्टोरेज बढ़ा रहा है, हालांकि वे अन्य नियंत्रकों के साथ मशीनों पर पढ़ने में सक्षम नहीं हो सकते हैं। उदाहरण के लिए, Microsoft अनुप्रयोगों को अक्सर 3+1⁄2-इंच 1.68 MB वितरण मीडिया प्रारूप डिस्क पर वितरित किया जाता था, जिन्हें 18 के बजाय 21 सेक्टरों के साथ स्वरूपित किया जाता था; उन्हें अभी भी एक मानक नियंत्रक द्वारा पहचाना जा सकता है। IBM पीसी , एमएसएक्स और अधिकांश अन्य माइक्रो कंप्यूटर प्लेटफॉर्म पर, डिस्क को एक स्थिर कोणीय वेग सीएबी (CAV) प्रारूप का उपयोग करके लिखा गया था,[53] एक स्थिर गति से डिस्क कताई के साथ और रेडियल स्थान की परवाह किए बिना प्रत्येक ट्रैक पर समान मात्रा में जानकारी रखने वाले सेक्टर।

एक USB मेमोरी स्टिक के साथ लगभग 80 फ्लॉपी डिस्क का एक बॉक्स। स्टिक डिस्क के पूरे बॉक्स को एक साथ रखने से 130 गुना अधिक डेटा रखने में सक्षम है।

क्योंकि सेक्टरों का कोणीय आकार स्थिर होता है, प्रत्येक सेक्टर में 512 बाइट्स डिस्क के केंद्र के पास अधिक संकुचित होते हैं। उदाहरण के लिए, डिस्क के बाहरी किनारे की ओर प्रति ट्रैक सेक्टरों की संख्या को 18 से 30 तक बढ़ाने के लिए एक अधिक स्थान-कुशल तकनीक होगी, इस प्रकार प्रत्येक क्षेत्र को संग्रहीत करने के लिए उपयोग किए जाने वाले भौतिक डिस्क स्थान की मात्रा को लगभग स्थिर रखते हुए; एक उदाहरण जोन बिट रिकॉर्डिंग है। Apple ने इसे शुरुआती Macintosh कंप्यूटरों में डिस्क को अधिक धीमी गति से घुमाकर लागू किया जब सिर किनारे पर था, डेटा दर को बनाए रखते हुए यह प्रति साइड 400 KB स्टोरेज और डबल साइडेड डिस्क पर अतिरिक्त 80 KB की अनुमति दे रहा है।[60] यह उच्च क्षमता एक नुकसान के साथ आई: प्रारूप में एक अद्वितीय ड्राइव तंत्र और नियंत्रण सर्किटरी का उपयोग किया गया था, जिसका अर्थ है कि मैक डिस्क को अन्य कंप्यूटरों पर नहीं पढ़ा जा सकता है। ऐप्पल अंततः HD फ्लॉपी डिस्क पर अपनी बाद की मशीनों के साथ निरंतर कोणीय वेग पर वापस आ गया, Apple के लिए अभी भी अद्वितीय है क्योंकि वे पुराने चर-गति स्वरूपों का समर्थन करते हैं।

डिस्क स्वरूपण आमतौर पर कंप्यूटर ओएस निर्माता द्वारा आपूर्ति किए गए उपयोगिता प्रोग्राम द्वारा किया जाता है; आम तौर पर, यह डिस्क पर एक फाइल स्टोरेज डायरेक्टरी सिस्टम सेट करता है, और अपने सेक्टर और ट्रैक को इनिशियलाइज़ करता है। दोषों के कारण भंडारण के लिए अनुपयोगी डिस्क के क्षेत्रों को लॉक किया जा सकता है ("खराब क्षेत्रों" के रूप में चिह्नित) ताकि ऑपरेटिंग सिस्टम उनका उपयोग करने का प्रयास न करे। यह समय लेने वाला था इसलिए कई वातावरणों में त्वरित स्वरूपण था जो त्रुटि जाँच प्रक्रिया को छोड़ देता था। जब फ़्लॉपी डिस्क का अक्सर उपयोग किया जाता था, तो लोकप्रिय कंप्यूटरों के लिए पूर्व-स्वरूपित डिस्क बेचे जाते थे। एक फ़्लॉपी डिस्क की अस्वरूपित क्षमता में स्वरूपित डिस्क के सेक्टर और ट्रैक शीर्षक शामिल नहीं होते हैं; उनके बीच भंडारण में अंतर ड्राइव के अनुप्रयोग पर निर्भर करता है। फ्लॉपी डिस्क ड्राइव और मीडिया निर्माता बिना स्वरूपित क्षमता को निर्दिष्ट करते हैं (उदाहरण के लिए, मानक 3+12-इंच HD फ्लॉपी के लिए 2 MB)। यह निहित है कि इसे पार नहीं किया जाना चाहिए, क्योंकि ऐसा करने से प्रदर्शन समस्याओं की सबसे अधिक संभावना होगी। DMF को एक अन्य मानक 3+12-इंच डिस्क पर फिट होने के लिए 1.68 MB की अनुमति देते हुए पेश किया गया था; उपयोगिताएँ तब डिस्क को इस तरह स्वरूपित करने की अनुमति देती दिखाई दीं।

क्योंकि सेक्टरों में निरंतर कोणीय आकार होता है, प्रत्येक सेक्टर में 512 बाइट्स डिस्क के केंद्र के पास अधिक संकुचित होते हैं। उदाहरण के लिए, डिस्क के बाहरी किनारे की ओर प्रति ट्रैक सेक्टरों की संख्या को 18 से बढ़ाकर 30 करने के लिए एक अधिक स्थान-कुशल तकनीक होगी, जिससे प्रत्येक सेक्टर को संग्रहीत करने के लिए उपयोग किए जाने वाले भौतिक डिस्क स्थान की मात्रा को लगभग स्थिर रखा जा सके; एक उदाहरण जोन बिट रिकॉर्डिंग है। ऐप्पल ने शुरुआती मैकिन्टोश कंप्यूटरों में डिस्क को धीरे-धीरे कताई करके, जब सिर किनारे पर था, डेटा दर को बनाए रखते हुए, प्रति पक्ष 400 KB स्टोरेज और दो तरफा डिस्क पर अतिरिक्त 80 KB की अनुमति देकर इसे लागू किया।[60] यह उच्च क्षमता एक नुकसान के साथ आई: प्रारूप में एक अद्वितीय ड्राइव तंत्र और नियंत्रण सर्किटरी का उपयोग किया गया, जिसका अर्थ है कि मैक डिस्क को अन्य कंप्यूटरों पर नहीं पढ़ा जा सकता है। Apple अंततः HD फ्लॉपी डिस्क पर अपनी बाद की मशीनों के साथ निरंतर कोणीय वेग पर वापस लौट आया, जो अभी भी ऐप्पल के लिए अद्वितीय है क्योंकि उन्होंने पुराने चर-गति प्रारूपों का समर्थन किया था।

डिस्क स्वरूपण आमतौर पर कंप्यूटर ऑपरेटिंग सिस्टम निर्माता द्वारा आपूर्ति किए गए उपयोगिता प्रोग्राम द्वारा किया जाता है; आम तौर पर, यह डिस्क पर एक फाइल स्टोरेज डायरेक्टरी सिस्टम सेट करता है, और इसके सेक्टर्स और ट्रैक्स को इनिशियलाइज़ करता है। दोषों के कारण भंडारण के लिए अनुपयोगी डिस्क के क्षेत्रों को लॉक किया जा सकता है (खराब क्षेत्रों के रूप में चिह्नित) ताकि ऑपरेटिंग सिस्टम उनका उपयोग करने का प्रयास न करे। यह समय लेने वाला था इसलिए कई वातावरणों में त्वरित स्वरूपण था जो त्रुटि जाँच प्रक्रिया को छोड़ देता था। जब फ़्लॉपी डिस्क का अक्सर उपयोग किया जाता था, तो लोकप्रिय कंप्यूटरों के लिए पूर्व-स्वरूपित डिस्क बेचे जाते थे। एक फ़्लॉपी डिस्क की अस्वरूपित क्षमता में स्वरूपित डिस्क के सेक्टर और ट्रैक शीर्षक शामिल नहीं होते हैं; उनके बीच भंडारण में अंतर ड्राइव के अनुप्रयोग पर निर्भर करता है। फ़्लॉपी डिस्क ड्राइव और मीडिया निर्माता बिना स्वरूपित क्षमता निर्दिष्ट करते हैं (उदाहरण के लिए, मानक के लिए 2 MB 3+12-इंच HD फ्लॉपी)। यह निहित है कि इसे पार नहीं किया जाना चाहिए, क्योंकि ऐसा करने से प्रदर्शन समस्याओं की सबसे अधिक संभावना होगी। वितरण मीडिया प्रारूप को किसी अन्य मानक पर फिट होने के लिए 1.68 MB की अनुमति देते हुए पेश किया गया था -इंच डिस्क; उपयोगिताएँ तब डिस्क को इस तरह स्वरूपित करने की अनुमति देती दिखाई दीं।

दशमलव उपसर्गों और बाइनरी सेक्टर आकारों के मिश्रण को कुल क्षमता की ठीक से गणना करने के लिए देखभाल की आवश्यकता होती है। जबकि सेमीकंडक्टर मेमोरी स्वाभाविक रूप से दो की शक्तियों का समर्थन करती है (जब भी एक एड्रेस पिन को एकीकृत सर्किट में जोड़ा जाता है तो आकार दोगुना हो जाता है), डिस्क ड्राइव की क्षमता सेक्टर के आकार, प्रति ट्रैक सेक्टर का उत्पाद है, ट्रैक प्रति साइड और साइड्स (जो हार्ड डिस्क ड्राइव में कई प्लेटर्स के साथ 2 से अधिक हो सकते हैं)। हालांकि अन्य क्षेत्र के आकार अतीत में जाने जाते हैं, स्वरूपित सेक्टर आकार अब लगभग हमेशा दो (256 बाइट्स, 512 बाइट्स, आदि) की शक्तियों पर सेट होते हैं। और, कुछ मामलों में, डिस्क क्षमता की गणना केवल बाइट्स के बजाय सेक्टर आकार के गुणकों के रूप में की जाती है, सेक्टरों के दशमलव गुणकों और बाइनरी सेक्टर आकारों के संयोजन के लिए अग्रणी। उदाहरण के लिए, 1.44 MB 3+1⁄2-इंच HD डिस्क में उनके संदर्भ में "एम" उपसर्ग अजीब है, 2,880 512-बाइट सेक्टर (1,440 KiB) की उनकी क्षमता से आ रहा है, जो न तो दशमलव मेगाबाइट और न ही बाइनरी मेबीबाइट (MiB) के अनुरूप है। इसलिए, ये डिस्क 1.47 MB या 1.41 एमआईबी रखते हैं। प्रयोग करने योग्य डेटा क्षमता उपयोग किए गए डिस्क प्रारूप का एक कार्य है, जो बदले में FDD नियंत्रक और उसकी सेटिंग्स द्वारा निर्धारित किया जाता है। ऐसे प्रारूपों के बीच अंतर के परिणामस्वरूप मानक 3+1⁄2-इंच उच्च-घनत्व फ़्लॉपी (और 2M/2MGUI जैसी उपयोगिताओं के साथ लगभग 2 MB तक) पर लगभग 1300 से 1760 KiB (1.80 MB) तक की क्षमता हो सकती है। उच्चतम क्षमता वाली तकनीकों के लिए ड्राइव के बीच ड्राइव हेड ज्योमेट्री के अधिक सख्त मिलान की आवश्यकता होती है, कुछ हमेशा संभव और अविश्वसनीय नहीं। उदाहरण के लिए, LS-240 ड्राइव मानक 3+1⁄2-इंच HD डिस्क पर 32 MB क्षमता का समर्थन करता है,[61] लेकिन यह एक बार लिखने की तकनीक है, और इसके लिए स्वयं के ड्राइव की आवश्यकता होती है।

3+1⁄2-इंच ईडी फ्लॉपी ड्राइव (2.88 MB) की कच्ची अधिकतम अंतरण दर नाममात्र 1,000 किलोबिट/सेकेंड है, या यह सिंगल स्पीड CD-ROM (ऑडियो सीडी का 71%) का लगभग 83% है। यह रीड हेड के नीचे कच्चे डेटा बिट्स की गति का प्रतिनिधित्व करता है; हालांकि, हेडर, गैप और अन्य प्रारूप क्षेत्रों के लिए उपयोग की जाने वाली जगह के कारण प्रभावी गति कुछ कम है और पटरियों के बीच तलाश करने में देरी से इसे और भी कम किया जा सकता है।

यह भी देखें

टिप्पणियाँ

  1. The cost of a hard disk with a controller in the mid 1980s was thousands of dollars, for capacity of 80 MB or less.
  2. "Hyper drive" was an alternative name for 5¼-inch 80-track HD floppy drives with 1.2 MB capacity. The term was used f.e. by Philips Austria for their Philips :YES and Digital Research in conjunction with DOS Plus.


संदर्भ

  1. 1.0 1.1 1.2 Teja, Edward R. (1985). The Designer's Guide to Disk Drives (1st ed.). Reston, Virginia, USA: Reston / Prentice hall. ISBN 0-8359-1268-X.
  2. 2.0 2.1 Fletcher, Richard (2007-01-30). "PC World Announces the End of the Floppy Disk". The Daily Telegraph. Archived from the original on 2012-01-02. Retrieved 2020-08-02.
  3. "1971: Floppy disk loads mainframe computer data". Computer History Museum. Computer History Museum. Archived from the original on 2015-12-08. Retrieved 2015-12-01.
  4. "Five decades of disk drive industry firsts". Archived from the original on 2011-07-26. Retrieved 2012-10-15.
  5. IBM's 370/145 Uncovered; Interesting Curves Revealed, Datamation, November 1, 1970
  6. Watson (2010-05-24). "The Floppy Disk". Canadian Business. Vol. 83, no. 8. p. 17.
  7. 7.0 7.1 7.2 "The Microfloppy—One Key to Portability", Thomas R. Jarrett, Computer Technology Review, winter 1983 (Jan 1984), pp. 245–7
  8. Picture of disk
  9. 1991 Disk/Trend Report, Flexible Disk Drives, Figure 2
  10. Reinhardt, Andy (1996-08-12). "Iomega's Zip drives need a bit more zip". Business Week. No. 33. The McGraw-Hill Companies. ISSN 0007-7135. Archived from the original on 2008-07-06.
  11. "floppy". LinuxCommand.org. 2006-01-04. Archived from the original on 2011-07-27. Retrieved 2011-06-22.
  12. Spring, Tom (2002-07-24). "What Has Your Floppy Drive Done for You Lately? PC makers are still standing by floppy drives despite vanishing consumer demand". PC World. Archived from the original on 2011-12-24. Retrieved 2012-04-04.
  13. "R.I.P. Floppy Disk". BBC News. 2003-04-01. Archived from the original on 2009-02-16. Retrieved 2011-07-19.
  14. Derbyshire, David (2007-01-30). "Floppy disks ejected as demand slumps". The Daily Telegraph. Archived from the original on 2011-05-22. Retrieved 2011-07-19.
  15. "Federal Agencies Need to Address Aging Legacy Systems" (PDF). Report to Congressional Requesters. United States Government Accountability Office. May 2016. Archived (PDF) from the original on 2016-06-02. Retrieved 2016-05-26.
  16. Trujillo, Mario (2016-05-25). "US nuclear emergency messaging system still uses floppy disks". The Hill. Archived from the original on 2016-05-29. Retrieved 2016-05-30.
  17. "How to use Floppy Disk on Windows 10". 2016-03-09. Archived from the original on 2018-11-17. Retrieved 2019-06-11.
  18. Warren, Tom (August 11, 2020). "Boeing 747s still get critical updates via floppy disks: A rare look inside a 20-year-old airliner". The Verge. Vox Media. Retrieved 2021-02-26.
  19. Landphair, Ted (2007-03-10). "So Long, Faithful Floppies". VOA News. Voice of America. Archived from the original on October 10, 2016. Retrieved 2008-12-25.
  20. "The Disk II". Apple II History. 2008-12-02. Archived from the original on 2018-02-19. Retrieved 2018-02-17. Wozniak's technique would allow the drive to do self-synchronization ("soft sectoring"), not have to deal with that little timing hole, and save on hardware.
  21. (M)Tronics SCS (2007-05-20). "Floppy-Disketten-Laufwerke" [Floppy disk drives] (in Deutsch). Archived from the original on 2017-06-19. Retrieved 2017-06-19.
  22. Norman, Donald (1990). "Chapter 1". The Design of Everyday Things. New York, USA: Doubleday. आई॰ऍस॰बी॰ऍन॰ 0-385-26774-6.
  23. Porter, Jim, ed. (2005). "Oral History Panel on 8 inch Floppy Disk Drives" (PDF). p. 4. Archived from the original (PDF) on 2015-05-13. Retrieved 2011-06-22.
  24. X3.162, ANSI, 1994, Information Systems – Unformatted Flexible Disk Cartridge for Information Interchange, 5.25 in (130 mm), 96 Tracks per inch (3.8 Tracks per Millimeter), General, Physical, and Magnetic Requirements (includes ANSI X3.162/TC-1-1995) Specifies the general, physical, and magnetic requirements for interchangeability for the two-sided, 5.25 in (130 mm) flexible disk cartridge
  25. Shea, Tom (1983-06-13). "Shrinking drives increase storage". InfoWorld. pp. 1, 7, 8, 9, 11. Shugart is one of the major subscribers to the 312-inch micro-floppy standard, along with Sony and 20 other company ... Its single-sided SA300 micro-floppy drive offers 500K of unformatted storage. Shugart's Kevin Burr said the obvious next step is to put another 500K of storage on the other side of the diskette and that the firm will come out with a double-sided 1-megabyte micro-floppy drive soon.
  26. 1986 Disk/Trend Report – Flexible Disk Drives. Disk/Trend, Inc. November 1986. p. FSPEC-59. Reports Sony shipped in 1Q 1986
  27. "Managing Disks". Archived from the original on 2006-05-24. Retrieved 2006-05-25.
  28. "A question of floppies". Archived from the original on 2011-10-01. Retrieved 2011-02-20.
  29. "Formatting 720K Disks on a 1.44MB Floppy". Floppy Drive. Archived from the original on 2011-07-23. Retrieved 2011-02-11.
  30. "Sony / Canon 2 Inch Video Floppy". Museum of Obsolete Media. 2013-05-02. Archived from the original on 13 January 2018. Retrieved 4 January 2018.
  31. "2 inch lt1 floppy disk". Museum of Obsolete Media. 2017-07-22. Archived from the original on 4 January 2018. Retrieved 4 January 2018.
  32. Disk/Trend Report-Flexible Disk Drives, Disk/Trend Inc., November 1991, pp. SUM-27
  33. ANSI X3.137, One- and Two-Sided, Unformatted, 90-mm (3.5-inch) 5,3-tpmm (135-tpi), Flexible Disk Cartridge for 7958 bpr Use. General, Physical and Magnetic Requirements.
  34. 34.0 34.1 34.2 Engh, James T. (September 1981). "The IBM Diskette and Diskette Drive". IBM Journal of Research and Development. 25 (5): 701–710. doi:10.1147/rd.255.0701.
  35. 35.0 35.1 "Memorex 650 Flexible Disc File" (PDF). Archived from the original (PDF) on 2011-07-25. Retrieved 2011-06-22.
  36. Sollman, George (July 1978). "Evolution of the Minifloppy Product Family". IEEE Transactions on Magnetics. 14 (4): 160–66. doi:10.1109/TMAG.1978.1059748. ISSN 0018-9464. S2CID 32505773.
  37. "Shugart SA 400 Datasheet". Swtpc. 2007-06-25. Archived from the original on 2014-05-27. Retrieved 2011-06-22.
  38. Beals, Gene (n.d.). "New Commodore Products: A Quick Review" (PDF). PET User Notes. Vol. 2, no. 1. Montgomeryville, Pennsylvania. p. 2. Archived (PDF) from the original on 2016-06-11. Retrieved 2018-10-07.
  39. 39.0 39.1 West, Raeto Collin (January 1982). Programming the PET/CBM: The Reference Encyclopedia For Commodore PET & CBM Users. COMPUTE! Books. p. 167. ISBN 0-942386-04-3. Retrieved 2018-10-07.
  40. Commodore Business Machines (1980-02-05). "cbmsrc / DOS_4040 / dos". GitHub. Retrieved 2018-10-07. {{cite web}}: |author= has generic name (help)
  41. "Chronology of Events in the History of Microcomputers − 1981–1983 Business Takes Over". Archived from the original on 2008-12-07. Retrieved 2008-10-04.
  42. 42.0 42.1 "Three-inch floppy disk product announced" (PDF). Archived from the original (PDF) on 2012-08-08. Retrieved 2008-10-04.
  43. 43.0 43.1 "6. Using floppy and hard discs". RISC OS 3.7 User Guide. January 21, 1997. Retrieved January 4, 2022.[permanent dead link]
  44. Porter, James (December 1982). 1982 Disk/Trend Report – Flexible Disk Drives. Disk/Trend. p. DT13-3. The original 48 tpi drives were joined by 96tpi drives from Tandon, Micro Peripherals and Micropolis in 1980 ...
  45. 1986 Disk/Trend Report, Flexible Disk Drives
  46. "Revisiting the Famicom Disk System". Eurogamer. 27 July 2019.{{cite web}}: CS1 maint: url-status (link)
  47. "Viability of 2-Inch Media Standard for PCs in Doubt". InfoWorld. 11 (31): 21. 1989-07-31.
  48. 48.0 48.1 48.2 48.3 "Model CE-1600F" (PDF). Sharp PC-1600 Service Manual. Yamatokoriyama, Japan: Sharp Corporation, Information Systems Group, Quality & Reliability Control Center. July 1986. pp. 98–104. Archived (PDF) from the original on 2017-03-23. Retrieved 2017-03-12.
  49. 49.0 49.1 49.2 49.3 Sharp Service Manual Model CE-140F Pocket Disk Drive (PDF). Sharp Corporation. 00ZCE140F/SME. Archived (PDF) from the original on 2017-03-11. Retrieved 2017-03-11.
  50. 50.0 50.1 50.2 Bateman, Selby (March 1986). "The Future of Mass Storage". COMPUTE!. No. 70. COMPUTE! Publications, Inc. p. 18. Archived from the original on 2018-07-01. Retrieved 2018-10-07.
  51. JP S6344319A, Kitagami, Osamu & Fujiwara, Hideo, "Production of perpendicular magnetic recording medium", published 1988-02-25, assigned to Hitachi Maxell 
  52. "Vendor Introduces Ultra High-Density Floppy Disk Media". InfoWorld. 8 (45): 19. 1986-11-10.
  53. 53.0 53.1 Mueller, Scott (2004). Upgrading and Repairing PCs, 15th Anniversary Edition. Que Publishing. p. 1380. ISBN 0-7897-2974-1. Retrieved 2011-07-16.
  54. Mueller, Scott (1994). Hardware-Praxis – PCs warten reparieren, aufrüsten und konfigurieren (in Deutsch) (3rd ed.). Addison-Wesley Publishing Company. p. 441. ISBN 3-89319-705-2.
  55. Inc, InfoWorld Media Group (14 October 1991). "InfoWorld". InfoWorld Media Group, Inc. – via Google Books. {{cite web}}: |last= has generic name (help)
  56. Shah, Katen A. (1996) [September 1992, April 1992]. Intel 82077SL for Super-Dense Floppies (PDF) (Application Note) (2 ed.). Intel Corporation, IMD Marketing. AP-358, 292093-002. Archived (PDF) from the original on 2017-06-19. Retrieved 2017-06-19.
  57. Inc, Ziff Davis (10 September 1991). "PC Mag". Ziff Davis, Inc. – via Google Books. {{cite web}}: |last= has generic name (help)
  58. Inc, InfoWorld Media Group (19 March 1990). "InfoWorld". InfoWorld Media Group, Inc. – via Google Books. {{cite web}}: |last= has generic name (help)
  59. "Chapter 8: Floppy Disk Drives" (PDF). Archived (PDF) from the original on 2012-01-27. Retrieved 2011-07-16.
  60. 60.0 60.1 "The Original Macintosh". Folklore. Archived from the original on 2013-12-05. Retrieved 2013-12-03.
  61. "Properties of Storage Systems". Mt. San Antonio College. Archived from the original on 2013-12-07.


इस पृष्ठ में अनुपलब्ध आंतरिक कड़ियों की सूची

  • आनंददायकता
  • ऑप्टिकल डिस्क रिकॉर्डिंग प्रौद्योगिकियां
  • पुरालेख संबंधी
  • प्रति मिनट धूर्णन
  • निरंतर रैखिक वेग
  • डिफ़्रैक्शन ग्रेटिंग
  • आप टिके रहेंगे
  • Phthalocyanine
  • शब्दशः (ब्रांड)
  • अज़ो गॉड
  • निजी कंप्यूटर
  • ऑप्टिकल स्टोरेज टेक्नोलॉजी एसोसिएशन
  • भयावह विफलता
  • USB हत्यारा
  • वीडियोडिस्क
  • एक बार लिखें कई पढ़ें
  • संख्यात्मक छिद्र
  • हाय एमडी
  • आधार - सामग्री संकोचन
  • व्यावसायिक डिस्क
  • फ्लोरोसेंट बहुपरत डिस्क
  • एक बार लिखें कई पढ़ें
  • डिस्क रोट
  • भविष्य कहनेवाला विफलता विश्लेषण
  • फोनोग्राफ रिकॉर्ड का उत्पादन
  • तरल वैकल्पिक रूप से स्पष्ट चिपकने वाला
  • आठ से चौदह मॉडुलन
  • Benq
  • सीडी राइटर
  • पैसा
  • नमूनाकरण दर
  • स्थिर कोणीय वेग
  • जूलियट (फाइल सिस्टम)
  • घूर्णन प्रति मिनट
  • आधा ऊंचाई
  • USB पोर्ट
  • लेंस (प्रकाशिकी)
  • सीरिज़ सर्किट
  • स्वत: नियंत्रण प्राप्त करें
  • रंग
  • प्रति मिनट धूर्णन
  • समानांतर एटीए
  • घंटे
  • उन्नत तकनीकी जोड़
  • रुको (कंप्यूटिंग)
  • लचीला सर्किट
  • हर कोई
  • आप टिके रहेंगे
  • आठ से चौदह मॉडुलन
  • अधिशुल्क भुगतान
  • सोना
  • प्रीग्रूव में निरपेक्ष समय
  • थोड़ा लिखो
  • सूचान प्रौद्योगिकी
  • जानकारी के सिस्टम
  • कंप्यूटिंग हार्डवेयर का इतिहास
  • प्रत्येक से अलग पत्राचार
  • बूलियन बीजगणित
  • फील्ड इफ़ेक्ट ट्रांजिस्टर
  • दावों कहंग
  • एकीकृत परिपथ
  • सेंट्रल प्रोसेसिंग यूनिट
  • जानकारी
  • समारोह (इंजीनियरिंग)
  • दस्तावेज़ फ़ाइल प्रारूप
  • लिनक्स गेमिंग
  • एंड्रॉइड (ऑपरेटिंग सिस्टम)
  • स्थानीय क्षेत्र अंतरजाल
  • जानकारी
  • सूचना अवसंरचना
  • अवधारणा का सबूत
  • सी++
  • पेशा
  • संगणक वैज्ञानिक
  • कार्यकारी प्रबंधक
  • कंसल्टेंसी
  • सॉफ्टवेयर की रखरखाव
  • सॉफ्टवेयर डेवलपमेंट
  • शैक्षिक अनुशासन
  • जटिल प्रणाली
  • सर्विस अटैक से इनकार
  • बड़ा डेटा
  • संगणक तंत्र संस्था
  • कंप्यूटर सेवाएं
  • एक सेवा के रूप में बुनियादी ढांचा
  • एक सेवा के रूप में मंच
  • पैमाने की अर्थव्यवस्थाएं
  • बहुत नाजुक स्थिति
  • सूचना की इकाइयाँ
  • मूल्य (कंप्यूटर विज्ञान)
  • सूचना की इकाई
  • तुलसी कैप
  • विद्युत सर्किट
  • राज्य (कंप्यूटर विज्ञान)
  • बिजली
  • सीरियल ट्रांसमिशन
  • चुंबकीय बुलबुला स्मृति
  • लिफ़्ट
  • चरित्र (कंप्यूटिंग)
  • योटा-
  • शैनन जानकारी
  • टॉर्कः
  • यह यहाँ जिराफ
  • अंधेरे शहर
  • दीदी काँग रेसिंग
  • शव (बैंड)
  • सेंटर ऑफ मास
  • परिवर्णी शब्द
  • रोशनी
  • प्रेरित उत्सर्जन
  • कानून स्थापित करने वाली संस्था
  • अस्थायी सुसंगतता
  • मुक्त अंतरिक्ष ऑप्टिकल संचार
  • फाइबर ऑप्टिक संचार
  • संगति (भौतिकी)
  • सुसंगतता लंबाई
  • परमाणु लेजर
  • सक्रिय लेजर माध्यम
  • प्रकाश किरण
  • रसायन विज्ञान
  • भौतिक विज्ञान
  • उत्साहित राज्य
  • अनिश्चित सिद्धांत
  • थर्मल उत्सर्जन
  • फोनोन
  • फोटोन
  • स्वत: उत्सर्जन
  • वस्तुस्थिति
  • कितना राज्य
  • जनसंख्या का ह्रास
  • फोटान संख्या
  • पॉसों वितरण
  • गाऊसी समारोह
  • टोफाट बीम
  • परावर्तन प्रसार
  • फोकस (प्रकाशिकी)
  • अल्ट्राफास्ट साइंस
  • फेमटोसेकंड केमिस्ट्री
  • दूसरी हार्मोनिक पीढ़ी
  • शारीरिक समीक्षा
  • कोलम्बिया विश्वविद्यालय
  • पैटेंट आवेदन
  • बेल टेलीफोन लेबोरेटरीज
  • शक्ति (भौतिकी)
  • कोलोराडो विश्वविद्यालय बोल्डर
  • आयन लेजर
  • व्युत्क्रम के बिना स्थायी
  • ऑप्टिकल विकिरण का आवृत्ति जोड़ स्रोत
  • राज्यों का घनत्व
  • क्वांटम वेल
  • ईण्डीयुम (III) फॉस्फाइड
  • रमन बिखरना
  • के आदेश पर
  • निउवेजिन
  • परमाणु समावयवी
  • मंगल ग्रह
  • लेजर दृष्टि (आग्नेयास्त्र)
  • मुंहासा
  • विकिरण उपचार
  • खून बह रहा है
  • फेफड़ों की छोटी कोशिकाओं में कोई कैंसर नहीं
  • योनि का कैंसर
  • लेज़र से बाल हटाना
  • परिमाण का क्रम
  • युग्मित उपकरण को चार्ज करें
  • मनुष्य की आंख
  • उस्तरा
  • विकिरण के उत्प्रेरित उत्सर्जन द्वारा ध्वनि प्रवर्धन
  • सुसंगत पूर्ण अवशोषक
  • Intellaser
  • बेरहमी
  • deprotonates
  • कांच पारगमन तापमान
  • मॉलिक्यूलर मास्स
  • ब्रेक (शीट मेटल बेंडिंग)
  • तनाव जंग खुर
  • स्पटर डिपोजिशन
  • बलवे या उपद्रवियों से निबट्ने के लिए पुलिस को उपलब्ध साज
  • रेडियो नियंत्रित हेलीकाप्टर
  • दंगा ढाल
  • बढ़ाया अपक्षय
  • शराब (रसायन विज्ञान)
  • जैविक द्रावक
  • बेलीज़
  • सेमीकंडक्टर
  • एलईडी
  • वाहक पीढ़ी और पुनर्संयोजन
  • ब्लू रे
  • प्रत्यक्ष और अप्रत्यक्ष बैंड अंतराल
  • प्रभारी वाहक
  • रिक्तीकरण क्षेत्र
  • चरण (लहरें)
  • ध्रुवीकरण (लहरें)
  • लेजर पम्पिंग
  • सुसंगतता (भौतिकी)
  • रासायनिक वाष्प निक्षेपन
  • राज्यों का घनत्व
  • तरंग क्रिया
  • ट्यून करने योग्य लेजर
  • स्थिरता अभियांत्रिकी
  • भयावह ऑप्टिकल क्षति
  • दरार (क्रिस्टल)
  • परावर्तक - विरोधी लेप
  • ईण्डीयुम (III) फॉस्फाइड
  • गैलियम (द्वितीय) एंटीमोनाइड
  • बेलगाम उष्म वायु प्रवाह
  • दृश्यमान प्रतिबिम्ब
  • हरा
  • पृथक करना
  • लाह
  • कोणीय गति
  • मिनी सीडी
  • रेखीय वेग
  • lacquerware
  • तोकुगावा को
  • या अवधि
  • एलएसी
  • चमक (सामग्री उपस्थिति)
  • कमज़ोर लाख
  • ऐक्रेलिक रेसिन
  • फ्रान्सीसी भाषा
  • उरुशीओल-प्रेरित संपर्क जिल्द की सूजन
  • तोरिहामा शैल टीला
  • शांग वंश
  • निओलिथिक
  • हान साम्राज्य
  • टैंग वंश
  • गीत राजवंश
  • हान साम्राज्य
  • मित्र ट्रुडे
  • मेलानोरिया सामान्य
  • गोद के समान चिपकनेवाला पीला रोगन
  • इनेमल रंग
  • चीनी मिटटी
  • डिजिटल डाटा
  • USB फ्लैश ड्राइव
  • विरासती तंत्र
  • संशोधित आवृत्ति मॉडुलन
  • कॉम्पैक्ट डिस्क
  • पश्च संगतता
  • परमाणु कमान और नियंत्रण
  • IBM पीसी संगत
  • अंगूठी बांधने की मशीन
  • प्रयोज्य
  • A4 कागज का आकार
  • चक्रीय अतिरेक की जाँच
  • इजेक्ट (डॉस कमांड)
  • अमीगाओएस
  • तथा
  • शुगार्ट बस

अग्रिम पठन

  • Weyhrich, Steven (2005). "The Disk II": A detailed essay describing one of the first commercial floppy disk drives (from the Apple II History website).
  • Immers, Richard; Neufeld, Gerald G. (1984). Inside Commodore DOS: The Complete Guide to the 1541 Disk Operating System. Datamost & Reston Publishing Company (Prentice-Hall). ISBN 0-8359-3091-2.
  • Englisch, Lothar; Szczepanowski, Norbert (1984). The Anatomy of the 1541 Disk Drive. Grand Rapids, Michigan, USA, Abacus Software (translated from the original 1983 German edition, Düsseldorf, Data Becker GmbH). ISBN 0-916439-01-1.
  • Hewlett Packard: 9121D/S Disc Memory Operator's Manual; printed 1 September 1982; part number 09121-90000.


बाहरी संबंध