भंवर

From Vigyanwiki
File:Milk vortices.jpg
एक कप में दूध-कॉफी भंवर चलित भर के बदलाव के कारन उत्त्पन्न हुई

सामान्य अभियांत्रिक दृष्टिकोण से ,भंवर [1][2] किसी द्रव में में विद्यमान, एक ऐसा क्षेत्र है, जिसमें प्रवाह,एक अक्ष रेखा, के चारों ओर घूमता है। इस परिभाषा में यह अक्ष रेखा सीधी अथवा झुकी हुई, या घुमावदार हो सकती है[3] [4]तरल पदार्थों में उपद्रव (हलचल) पैदा होने पर, भंवर बनते हैं। धुएं के छल्ले,चलित अथवा स्थिर जल में नाव के खने पर,और एक उष्णकटिबंधीय चक्रवात के समीप की हवाओं, में भंवर देखे जा सकते हैं।

File:Airplane vortex edit.jpg
इस कृषि विमान के पंख से हवा का प्रवाह एक ऐसी तकनीक से दिखाई देता है जिसमें जमीन से उठने वाले रंगीन धुएँ का उपयोग किया जाता है। पंख छोर पर भंवर विमान के जाग्रत भंवर (वोर्टेक्स) का पता लगाता है, जो विमान के पीछे प्रवाह क्षेत्र पर एक शक्तिशाली प्रभाव डालता है। जब वे उतरते हैं तो विमान को एक दूसरे के पीछे निर्धारित दूरी बनाए रखने की आवश्यकता,जाग्रत भंवर के कारण, ही होती है।

चक्रवात और भंवर के बीच का अंतर यह है कि चक्रवात कम वायुमंडलीय दबाव के केंद्र के चारों ओर घूमने वाली हवाओं की एक प्रणाली है, जबकि भंवर एक बवंडर, भंवर या सर्पिल या स्तंभ के रूप में समान रूप से गतिमान पदार्थ है।

द्रव गतिकी में भंवर

भंवर अशांत प्रवाह का एक प्रमुख घटक हैं। वेग का वितरण, वर्टिसिटी (प्रवाह वेग का कर्ल), साथ ही संचलन की अवधारणा का उपयोग, भंवरों को चिह्नित करने के लिए किया जाता है। अधिकांश भंवरों में, द्रव प्रवाह का वेग,अपनी धुरी के समीप, सर्वाधिक होता है और अक्ष से दूरी के व्युत्क्रमानुपाती में घटता है।

बाह्य बलों की अनुपस्थिति में, द्रव के भीतर श्यान घर्षण (विस्कस फ्रिक्शन) प्रवाह को अघूर्णी (इरोटेशनल) भंवरों के संग्रह में व्यवस्थित करता है,संभवतः बड़े मापन के भंवरों सहित बड़े माप के प्रवाहों पर लगाया जाता है। एक बार बनने के बाद,भंवर जटिल पद्धति से चलायमान रह सकते हैं, विस्तरित हो सकते हैं, अचानक दिशा बदलन सकते हैं और पारस्परिक क्रिया कर सकते हैं। एक चलित भंवर, अपने साथ कुछ कोणीय और रैखिक गति, ऊर्जा और द्रव्यमान रखता है।

भंवर के गुण

भ्रमिलता (वर्टिसिटी)

भंवरों की गतिशीलता में एक महत्वपूर्ण अवधारणा है, एक वेक्टर जो द्रव में एक बिंदु पर स्थानीय चक्रीय (रोटरी) गति का वर्णन करता है, जैसा कि उस एक पर्यवेक्षक द्वारा माना जाएगा,जो इन भवंरों के साथ चलायमान होगा। संकल्पनात्मक रूप से, किसी विचाराधीन बिंदु पर भ्रमिलता मापने के लिये,यह जानने का प्रयास किया जाता है की उस बिंदु पर, एक छोटी खुरदरी गेंद,जो द्रव के साथ चलने के लिए स्वतंत्र हो, किस प्रकार घूर्णन कर सकती है।भ्रमिलता (वर्टिसिटी) वेक्टर की दिशा को इस काल्पनिक गेंद (दाहिने हाथ के नियम के अनुसार) के परिभ्रमण (रोटेशन) के अक्ष की दिशा के रूप में परिभाषित किया गया है, जबकि इस वेक्टर की लंबाई गेंद के कोणीय वेग से दोगुनी है।गणितीय रूप से, भ्रमिलता को द्रव के वेग क्षेत्र के कर्ल (या घूर्णी) के रूप में परिभाषित किया जाता है, जिसे आमतौर पर द्वारा दर्शाया जाता है और वेक्टर विश्लेषण सूत्र ,जहाँ ऑपरेटर है और स्थानीय प्रवाह वेग है। [5]

वर्टिसिटी द्वारा मापे गए, स्थानीय घुमाव को,द्रव के उस हिस्से के बाह्य वातावरण या किसी निश्चित अक्ष के संबंध में, कोणीय वेग वेक्टर के साथ, भ्रमित नहीं किया जाना चाहिए। विशेष रूप से,एक भंवर में, ,भंवर के अक्ष के सापेक्ष, द्रव के औसत कोणीय वेग वेक्टर के विपरीत हो सकता है।

भंवर का सिद्धांत

सैद्धांतिक रूप से, एक भंवर में कणों की गति (और, इसलिए,भ्रमिलता) धुरी से दूरी के साथ कई तरह से भिन्न हो सकती है। इस सोच में, दो महत्वपूर्ण विशेष स्थिति हो सकती हैं :

अक्ष से दूरी के अनुपात में बढ़ जाए

यदि द्रव,एक दृढ़ पिंडीय भंवर की तरह घूमता है - अर्थात, यदि कोणीय घूर्णी वेग एक समान है, ताकि अक्ष से दूरी के अनुपात में बढ़ जाए - तब प्रवाह द्वारा ले जाई गई, एक छोटी सी काल्पनिक परीक्षण गेंद भी, अपने केंद्र के चारों ओर घूमेगी, जैसे कि वह उस कठोर पिंड का हिस्सा हो।

इस तरह के प्रवाह में, भ्रमिलता हर जगह समान होती है: इसकी दिशा,घूर्णन (रोटेशन) अक्ष के समानांतर होती है और इसका परिमाण,घूर्णन के केंद्र के चारों ओर द्रव के समान कोणीय वेग के दोगुने के बराबर होता है।

अक्ष से दूरी के व्युत्क्रमानुपाती हो

यदि कण की गति अक्ष से दूरी के व्युत्क्रमानुपाती होती है, तो काल्पनिक परीक्षण गेंद अपने ऊपर नहीं घूमेगी; भंवर अक्ष के चारों ओर एक चक्र में घूमते समय यह समान,अभिविन्यास बनाए रखेगी। इस स्थिति में भ्रमिलता, उस अक्ष से परे, किसी भी बिंदु पर शून्य है,और तब उस प्रवाह को अघूर्णी कहा जाता है।

अघूर्णी भंवर

एक अघूर्णी भंवर के लिए, संचलन किसी भी बंद समोच्च के साथ शून्य है जो भंवर अक्ष को घेरता नहीं है; और एक निश्चित मान है, Γ, किसी भी समोच्च के लिए जो अक्ष को एक बार घेरता है। कण वेग का स्पर्शरेखा घटक तब

सन्दर्भ

  1. "vortex".
  2. "भंवर".
  3. टिंग, एल (1991). "Viscous Vortical Flows : Lecture notes in Physics". स्प्रिंगर-वर्लाग. ISBN 978-3-540-53713-7.
  4. किडा, शिगियो 2001 Life, Structure, and Dynamical Role of Vortical Motion in Turbulence IUTAMim संगोष्ठी,ज़कोपेन,पोलैंड