ऑक्सीडेटिव जोड़

From Vigyanwiki
Revision as of 14:35, 5 March 2023 by alpha>Pallvic

आक्सीकृत योगात्मक अभिक्रिया और अपचयीकृत विलोपन ऑर्गोनोमेटिक रसायन में अभिक्रियाओं के दो महत्वपूर्ण और संबंधित वर्ग हैं।[1][2][3][4] आक्सीकृत योगात्मक अभिक्रिया एक ऐसी अभिक्रिया है जो धातु केंद्र के ऑक्सीकरण अवस्था और समन्वय संख्या दोनों को बढ़ाती है। आक्सीकृत योगात्मक अभिक्रिया प्रायः उत्प्रेरक चक्र में पहला चरण होता है, इसके विपरीत अभिक्रिया, अपचयीकृत विलोपन के संयोजन के साथ।[5] अपचयीकृत विलोपन, आक्सीकृत योगात्मक अभिक्रिया का विपरीत है।


संक्रमण धातु रसायन में भूमिका

संक्रमण धातुओं के लिए, आक्सीकृत अभिक्रिया के परिणामस्वरूप डी में कमी आती है कम इलेक्ट्रॉन वाले कॉन्फ़िगरेशन के लिए, प्रायः 2e कम इसमें प्रायः २ इलेक्ट्रान काम होते हैं। उन धातुओं के लिए आक्सीकृत योगात्मक अभिक्रिया का समर्थन किया जाता है जो (i) मूल और/या (ii) आसानी से ऑक्सीकृत होते हैं। अपेक्षाकृत कम ऑक्सीकरण अवस्था वाली धातुएँ प्रायः इन आवश्यकताओं में से एक को पूरा करती हैं, लेकिन उच्च ऑक्सीकरण अवस्था वाली धातुएँ भी आक्सीकृत योग से गुजरती हैं, जैसा कि क्लोरीन के साथ Pt (II) के ऑक्सीकरण द्वारा दिखाया गया है:

[PtCl4]2− + Cl2 → [PtCl6]2−

क्लासिकल ऑर्गोनोमेटिक केमिस्ट्री में, धातु की औपचारिक ऑक्सीकरण अवस्था और कॉम्प्लेक्स की इलेक्ट्रॉन संख्या दोनों में दो की वृद्धि होती है।[6] एक-इलेक्ट्रॉन परिवर्तन भी संभव हैं और वास्तव में कुछ आक्सीकृत योगात्मक अभिक्रिया अभिक्रियाएं 1e परिवर्तनों की श्रृंखला के माध्यम से आगे बढ़ती हैं। हालांकि आक्सीकृत योगात्मक अभिक्रिया कई अलग-अलग सबस्ट्रेट्स में धातु के सम्मिलन के साथ हो सकते हैं, आक्सीकृत एडिशंस आमतौर पर एच-एच, एच-एक्स और सी-एक्स बॉन्ड के साथ देखे जाते हैं क्योंकि ये सबस्ट्रेट्स व्यावसायिक अनुप्रयोगों के लिए सबसे अधिक प्रासंगिक हैं।

आक्सीकृत योगात्मक अभिक्रिया के लिए आवश्यक है कि धातु परिसर में रिक्त समन्वय स्थल हो। इस कारण से, चार और पांच-समन्वित परिसरों के लिए आक्सीकृत योगात्मक अभिक्रिया आम हैं।

अपचयीकृत विलोपन आक्सीकृत एडिशन का उल्टा है।[7] नवगठित एक्स-वाई बंधन मजबूत होने पर अपचयीकृत विलोपन का समर्थन किया जाता है। अपचयीकृत विलोपन के लिए दो समूहों (X और Y) को धातु के समन्वय क्षेत्र पर पारस्परिक रूप से आसन्न होना चाहिए। अपचयीकृत विलोपन C-H और C-C बॉन्ड बनाने वाली कई अभिक्रियाओं का प्रमुख उत्पाद-विमोचन चरण है।[5]


आक्सीकृत योगात्मक अभिक्रिया के तंत्र

धातु केंद्र और सबस्ट्रेट्स पर निर्भर कई मार्गों के माध्यम से आक्सीकृत योगात्मक अभिक्रिया आगे बढ़ते हैं।

संगठित मार्ग

हाइड्रोजन और हाइड्रोकार्बन जैसे गैर-ध्रुवीय सबस्ट्रेट्स के आक्सीकृत योग ठोस अभिक्रिया मार्गों के माध्यम से आगे बढ़ते दिखाई देते हैं। इस तरह के सबस्ट्रेट्स में पाई बांड की कमी होती है। ऑक्सीकृत परिसर बनाने के लिए। परिणामी ligands पारस्परिक रूप से सीआईएस होंगे,[2]हालांकि बाद में आइसोमेराइजेशन हो सकता है।

Concerted OA.pngयह तंत्र होमोन्यूक्लियर अणु जैसे एच के अतिरिक्त पर लागू होता है2. कई सी-एच सक्रियण अभिक्रियाएं भी एम-(सी-एच) एगोस्टिक इंटरेक्शन के गठन के माध्यम से एक ठोस तंत्र का पालन करती हैं।[2]

एक प्रतिनिधि उदाहरण वास्का के परिसर, ट्रांस-आईआरसीएल (सीओ) [पी (सी) के साथ हाइड्रोजन की अभिक्रिया है6H5)3]2. इस परिवर्तन में, इरिडियम अपनी औपचारिक ऑक्सीकरण अवस्था को +1 से +3 में बदल देता है। उत्पाद औपचारिक रूप से तीन आयनों से बंधा हुआ है: एक क्लोराइड और दो हाइड्राइड लिगेंड। जैसा कि नीचे दिखाया गया है, प्रारंभिक धातु परिसर में 16 वैलेंस इलेक्ट्रॉन और चार की समन्वय संख्या होती है जबकि उत्पाद छह-समन्वयित 18 इलेक्ट्रॉन परिसर होता है।

Oxidation of Vaska's complex with dihydrogen.pngएच-एच σ*-ऑर्बिटल, यानी एक सिग्मा कॉम्प्लेक्स में इलेक्ट्रॉन बैक डोनेशन के कारण पिरामिडनुमा त्रिकोण डायहाइड्रोजेन इंटरमीडिएट का निर्माण एच-एच बॉन्ड के क्लीवेज के बाद होता है।[8] यह प्रणाली रासायनिक संतुलन में भी है, धातु केंद्र की एक साथ कमी के साथ हाइड्रोजन गैस के उन्मूलन से रिवर्स अभिक्रिया आगे बढ़ रही है।[9]

H-H σ*-ऑर्बिटल में H-H बांड को विभाजित करने के लिए इलेक्ट्रॉन बैक डोनेशन इस अभिक्रिया का पक्ष लेने के लिए इलेक्ट्रॉन-समृद्ध धातुओं का कारण बनता है।[9]ठोस तंत्र एक सीआईएस डाइहाइड्राइड का उत्पादन करता है, जबकि अन्य आक्सीकृत योगात्मक अभिक्रिया मार्गों की रूढ़िवादिता आमतौर पर सीआईएस व्यसनों का उत्पादन नहीं करती है।

एसN2-टाइप

कुछ आक्सीकृत योग कार्बनिक रसायन विज्ञान में प्रसिद्ध बिमोलेक्युलर न्यूक्लियोफिलिक प्रतिस्थापन अभिक्रियाओं के समान रूप से आगे बढ़ते हैं। सब्सट्रेट में कम विद्युतीय परमाणु पर धातु केंद्र द्वारा न्यूक्लियोफिलिक हमले से [एम-आर] बनाने के लिए आर-एक्स बांड की दरार होती है।+ प्रजातियां। इस कदम के बाद धनायन धातु केंद्र के लिए आयनों का तेजी से समन्वय होता है। उदाहरण के लिए, मिथाइल आयोडाइड के साथ स्क्वायर प्लानर कॉम्प्लेक्स की अभिक्रिया:

General SN2-type oxidative addition reaction.pngइस तंत्र को प्रायः ध्रुवीय और इलेक्ट्रोफिलिक सबस्ट्रेट्स, जैसे अल्काइल हलाइड्स और हलोजन के अतिरिक्त माना जाता है।[2]


आयोनिक

आक्सीकृत योगात्मक अभिक्रिया का आयनिक तंत्र एस के समान हैN2 प्रकार है जिसमें इसमें दो अलग-अलग लिगेंड अंशों का चरणवार जोड़ शामिल है। मुख्य अंतर यह है कि आयनिक तंत्र में सबस्ट्रेट्स शामिल होते हैं जो धातु केंद्र के साथ किसी भी बातचीत से पहले समाधान में अलग हो जाते हैं। आयनिक आक्सीकृत योग का एक उदाहरण हाइड्रोक्लोरिक एसिड का योग है।[2]


रेडिकल

इसके अलावा एसN2-प्रकार की अभिक्रियाएँ, एल्काइल हलाइड्स और समान सबस्ट्रेट्स एक धातु केंद्र में एक कट्टरपंथी (रसायन विज्ञान) तंत्र के माध्यम से जोड़ सकते हैं, हालांकि कुछ विवरण विवादास्पद हैं।[2]आम तौर पर एक कट्टरपंथी तंत्र द्वारा आगे बढ़ने के लिए स्वीकार की जाने वाली अभिक्रियाओं को जाना जाता है। एक उदाहरण लेडनोर और सहकर्मियों द्वारा प्रस्तावित किया गया था।[10] दीक्षा

अज़ोबिसिसोब्यूट्रोनिट्राइल | [(सीएच3)2सी (सीएन) एन]2→ 2 (सीएच3)2(सीएन) सी + एन2
(सीएच3)2(सीएन) सी + PhBr → (सीएच3)2(सीएन) सीबीआर + पीएच.डी

प्रचार

पीएच.डी + [पं.(पीपीएच3)2] → [पं.(पीपीएच3)2पीएच]
[पीटी (पीपीएच3)2पीएच] + PhBr → [Pt(PPh3)2पीएचबीआर] + पीएच.डी

अनुप्रयोग

सजातीय कटैलिसीस (यानी, समाधान में) दोनों में कई उत्प्रेरक अभिक्रियाओं में आक्सीकृत योगात्मक अभिक्रिया और अपचयीकृत विलोपन का आह्वान किया जाता है, जैसे कि मोनसेंटो अभिक्रिया और विल्किंसन के उत्प्रेरक का उपयोग करके एल्केन हाइड्रोजनीकरण। प्रायः यह सुझाव दिया जाता है कि विषम कटैलिसीस के तंत्र में आक्सीकृत योगात्मक अभिक्रिया जैसी अभिक्रियाएं भी शामिल होती हैं, उदा। प्लैटिनम धातु द्वारा उत्प्रेरित हाइड्रोजनीकरण। धातु हालांकि बैंड संरचनाओं द्वारा विशेषता है, इसलिए ऑक्सीकरण अवस्था अर्थपूर्ण नहीं हैं। एल्काइल समूह के न्यूक्लियोफिलिक जोड़ के लिए आक्सीकृत योगात्मक अभिक्रिया की भी आवश्यकता होती है। सुजुकी युग्मन, नेगीशी युग्मन और सोनोगाशिरा कपलिंग जैसी कई क्रॉस-कपलिंग अभिक्रियाओं में आक्सीकृत सम्मिलन भी एक महत्वपूर्ण कदम है।

संदर्भ

  1. Jay A. Labinger "Tutorial on Oxidative Addition" Organometallics, 2015, volume 34, pp 4784–4795. doi:10.1021/acs.organomet.5b00565
  2. 2.0 2.1 2.2 2.3 2.4 2.5 Crabtree, Robert (2005). The Organometallic Chemistry of the Transition Metals. Wiley-Interscience. pp. 159–180. ISBN 0-471-66256-9.
  3. Miessler, Gary L.; Tarr, Donald A. Inorganic Chemistry (3rd ed.).[ISBN missing]
  4. Shriver, D. F.; Atkins, P. W. Inorganic Chemistry.[ISBN missing]
  5. 5.0 5.1 Hartwig, J. F. (2010). Organotransition Metal Chemistry, from Bonding to Catalysis. New York: University Science Books. ISBN 978-1-891389-53-5.
  6. IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "oxidative addition". doi:10.1351/goldbook.O04367
  7. IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "reductive elimination". doi:10.1351/goldbook.R05223
  8. Kubas, Gregory J. (2001-08-31). Metal Dihydrogen and σ-Bond Complexes: Structure, Theory, and Reactivity. Kluwer. ISBN 0-306-46465-9.
  9. 9.0 9.1 Johnson, Curtis; Eisenberg, Richard (1985). "Stereoselective Oxidative Addition of Hydrogen to Iridium(I) Complexes. Kinetic Control Based on Ligand Electronic Effects". Journal of the American Chemical Society. 107 (11): 3148–3160. doi:10.1021/ja00297a021.
  10. Hall, Thomas L.; Lappert, Michael F.; Lednor, Peter W. (1980). "Mechanistic studies of some oxidative-addition reactions: free-radical pathways in the Pt0-RX, Pt0-PhBr, and PtII-R′SO2X Reactions (R = alkyl, R′ = aryl, X = halide) and in the related rhodium(I) or iridium(I) Systems". J. Chem. Soc., Dalton Trans. (8): 1448–1456. doi:10.1039/DT9800001448.


अग्रिम पठन

  • Ananikov, Valentine P.; Musaev, Djamaladdin G.; Morokuma, Keiji (2005). "Theoretical Insight into the C−C Coupling Reactions of the Vinyl, Phenyl, Ethynyl, and Methyl Complexes of Palladium and Platinum". Organometallics. 24 (4): 715. doi:10.1021/om0490841.


बाहरी संबंध