माइक्रोवेव
सूक्ष्म तरंग (माइक्रोवेव) विद्युत चुम्बकीय विकिरण का एक रूप है जिसकी तरंग दैर्ध्य लगभग एक मीटर से एक मिलीमीटर तक होती है जो क्रमशः 300 मेगाहर्ट्ज और 300 गीगाहर्ट्ज़ के बीच आवृत्तियों के अनुरूप है।[1][2][3][4][5] विभिन्न स्रोत सूक्ष्म तरंग के रूप में विभिन्न आवृत्ति श्रेणियों को परिभाषित करते हैं; उपरोक्त व्यापक परिभाषा में यूएचएफ (UHF) और ईएचएफ (EHF) (मिलीमीटर तरंग) बैंड दोनों सम्मिलित हैं। रेडियो आवृत्ति इंजीनियरिंग में एक अधिक सामान्य परिभाषा 1 और 100 गीगाहर्ट्ज (0.3 मीटर और 3 मिमी के बीच तरंग दैर्ध्य) के बीच की सीमा है।[2] सभी मामलों में, सूक्ष्म तरंग में कम से कम संपूर्ण एसएचएफ (SHF) बैंड (3 से 30 GHz, या 10 से 1 सेमी) शामिल होता है। सूक्ष्म तरंग सीमा में आवृत्तियों को अक्सर उनके आईईईई (IEEE) दृश्य बैंड (रडार बैंड) पदनामों द्वारा संदर्भित किया जाता है: एस, सी, एक्स, कू, के, या का बैंड, या इसी तरह के नाटो (NATO) या ईयू (EU) पदनामों द्वारा।
सूक्ष्म तरंग में उपसर्ग सूक्ष्म (माइक्रो) सूक्ष्ममीटर (माइक्रोमीटर) सीमा में तरंग दैर्ध्य का सुझाव देने के लिए नहीं है। बल्कि, यह इंगित करता है कि सूक्ष्म तरंग प्रौद्योगिकी से पहले उपयोग की जाने वाली रेडियो तरंगों की तुलना में सूक्ष्म तरंग "छोटे" (कम तरंग दैर्ध्य वाले) होते हैं। दूर अवरक्त, टेराहर्ट्ज विकिरण, सूक्ष्म तरंग के बीच की सीमाएं, और अति उच्च आवृत्ति रेडियो तरंगें काफी मनमानी हैं और अध्ययन के विभिन्न क्षेत्रों के बीच विभिन्न प्रकार से उपयोग की जाती हैं।
सूक्ष्म तरंग दृष्टि की रेखा से यात्रा करते हैं; कम आवृत्ति वाली रेडियो तरंगों के विपरीत वे पहाड़ियों के चारों ओर विवर्तित नहीं होते हैं, पृथ्वी की सतह का जमीनी तरंगों के रूप में अनुसरण करते हैं, या आयनमंडल से परावर्तित होते हैं, इसलिए स्थलीय सूक्ष्म तरंग संचार लिंक दृश्य क्षितिज द्वारा लगभग 40 मील (64 किमी) तक सीमित हैं। बैंड के उच्च अंत में, वे वातावरण में गैसों द्वारा अवशोषित होते हैं, व्यावहारिक संचार दूरी को लगभग एक किलोमीटर तक सीमित करना। आधुनिक तकनीक में सूक्ष्म तरंग का व्यापक रूप से उपयोग किया जाता है, उदाहरण के लिए बिंदु से बिंदु संचार लिंक, बेतार संचार, सूक्ष्म तरंग रेडियो रिले संचार, रडार, उपग्रह और अंतरिक्ष यान संचार, चिकित्सा डायथर्मी और कैंसर उपचार, सुदूरवर्ती संवेदन, रेडियो खगोल विज्ञान, कण त्वरक, वर्णक्रम विज्ञान, औद्योगिक हीटिंग, टकराव से बचाव प्रणाली, गेराज दरवाजा खोलने वाले और बिना चाबी के प्रवेश प्रणाली, और सूक्ष्म तरंग ओवन में खाना पकाने के लिए।
विद्युत चुम्बकीय वर्णक्रम
सूक्ष्म तरंग विद्युत चुम्बकीय वर्णक्रम में सामान्य रेडियो तरंगों के ऊपर और अवरक्त प्रकाश के नीचे आवृत्ति के साथ एक स्थान पर कब्जा कर लेते हैं:
| विद्युत चुम्बकीय वर्णक्रम | ||||
|---|---|---|---|---|
| नाम | तरंग दैर्घ्य | (आवृत्ति (हर्ट्ज)) | (फोटॉन ऊर्जा (ईवी)) | |
| (गामा किरण) | < 0.01 nm | > 30 EHz | > 124 keV | |
| (एक्स-किरण) | 0.01 nm – 10 nm | 30 EHz – 30 PHz | 124 keV – 124 eV | |
| (पराबैंगनी किरण) | 10 nm – 400 nm | 30 PHz – 750 THz | 124 eV – 3 eV | |
| (दृश्य प्रकाश) | 400 nm – 750 nm | 750 THz – 400 THz | 3 eV – 1.7 eV | |
| (अवरक्त किरण) | 750 nm – 1 mm | 400 THz – 300 GHz | 1.7 eV – 1.24 meV | |
| सूक्ष्म तरंग | 1 mm – 1 m | 300 GHz – 300 MHz | 1.24 meV – 1.24 µeV | |
| (रेडियो) | ≥ 1 m | ≤ 300 MHz | ≤ 1.24 µeV | |
विद्युत चुम्बकीय वर्णक्रम के विवरण में, कुछ स्रोत सूक्ष्म तरंग को रेडियो तरंगों के रूप में वर्गीकृत करते हैं, जो रेडियो तरंग बैंड का एक उपसमुच्चय है; जबकि अन्य सूक्ष्म तरंग और रेडियो तरंगों को अलग-अलग प्रकार के विकिरण के रूप में वर्गीकृत करते हैं। यह एक मनमाना भेद है।
प्रसार
सूक्ष्म तरंग पूरी तरह से दृष्टि पथों की रेखा से यात्रा करते हैं; कम आवृत्ति वाली रेडियो तरंगों के विपरीत, वे जमीनी तरंगों के रूप में यात्रा नहीं करते हैं जो पृथ्वी के समोच्च का अनुसरण करती हैं, या आयनमंडल (आकाश तरंग) से परावर्तित हो जाता है।[6] हालांकि बैंड के निचले सिरे पर वे उपयोगी स्वागत के लिए पर्याप्त इमारत की दीवारों से गुजर सकते हैं, आम तौर पर पहले फ़्रेज़नेल ज़ोन के लिए साफ़ किए गए रास्ते के अधिकारों की आवश्यकता होती है। इसलिए पृथ्वी की सतह पर सूक्ष्म तरंग संचार लिंक दृश्य क्षितिज द्वारा लगभग 30-40 मील (48-64 किमी) तक सीमित हैं। सूक्ष्म तरंग वातावरण में नमी द्वारा अवशोषित होते हैं, और क्षीणन आवृत्ति के साथ बढ़ता है, बैंड के उच्च अंत में एक महत्वपूर्ण कारक (बारिश फीका) बन जाता है। लगभग 40 गीगाहर्ट्ज़ से शुरू होकर, वायुमंडलीय गैसें भी सूक्ष्म तरंग को अवशोषित करना शुरू कर देती हैं, इसलिए इस आवृत्ति से ऊपर सूक्ष्म तरंग हस्तांतरण कुछ किलोमीटर तक सीमित है। एक वर्णक्रमीय बैंड संरचना विशिष्ट आवृत्तियों पर अवशोषण शिखर का कारण बनती है (दाईं ओर ग्राफ देखें)। 100 GHz से ऊपर, पृथ्वी के वायुमंडल द्वारा विद्युत चुम्बकीय विकिरण का अवशोषण इतना अधिक है कि यह प्रभाव में अपारदर्शी है, जब तक तथाकथित अवरक्त और प्रकाशिकी (ऑप्टिकल) विंडो आवृत्ति सीमा में वातावरण फिर से पारदर्शी नहीं हो जाता।
क्षोभमंडल प्रकीर्णन (ट्रोपोस्कैटर)
आकाश में एक कोण पर निर्देशित सूक्ष्म तरंग किरण में, जैसे ही किरण क्षोभमंडल से होकर गुजरती है, बिजली की एक छोटी मात्रा बेतरतीब ढंग से बिखर जाएगी।[6] क्षोभमंडल के उस क्षेत्र पर केंद्रित एक उच्च लाभ एंटीना के साथ क्षितिज से परे एक संवेदनशील रिसीवर सिग्नल उठा सकता है। इस तकनीक का उपयोग क्षोभमंडल प्रकीर्णन (ट्रोपोस्कैटर) संचार प्रणालियों में 0.45 और 5 गीगाहर्ट्ज के बीच आवृत्तियों पर क्षितिज से परे, 300 किमी तक की दूरी पर संचार करने के लिए किया गया है।
एंटेना
सूक्ष्म तरंग की छोटी तरंग दैर्ध्य वहनीय उपकरणों के लिए सर्वदिशात्मक एंटेना को 1 से 20 सेंटीमीटर लंबे से बहुत छोटा बनाने की अनुमति देती है, इसलिए तार रहित उपकरणों के लिए सूक्ष्म तरंग आवृत्तियों का व्यापक रूप से उपयोग किया जाता है जैसे सेल फोन, कॉर्डलेस फोन, और लैपटॉप के लिए ताररहित लैन (वाई-फाई) एक्सेस, और ब्लूटूथ इयरफ़ोन। इस्तेमाल किए गए एंटेना में शॉर्ट व्हिप एंटेना, रबर डकी एंटेना, स्लीव द्विध्रुवीय, पैच एंटेना शामिल हैं। और यह भी तेजी से सेल फोन में इस्तेमाल किया जाने वाला मुद्रित परिपथ उलटा एफ एंटीना (पीआईएफए-PIFA) है।
उनकी छोटी तरंग दैर्ध्य भी सूक्ष्म तरंग के संकीर्ण किरण को आधे मीटर से 5 मीटर व्यास तक आसानी से छोटे उच्च लाभ एंटेना द्वारा उत्पादित करने की अनुमति देती है। इसलिए, सूक्ष्म तरंग के किरण का उपयोग बिंदु से बिंदु संचार लिंक और रडार के लिए किया जाता है। संकीर्ण किरण का एक लाभ यह है कि वे समान आवृत्ति का उपयोग करके आस-पास के उपकरणों में हस्तक्षेप नहीं करते हैं, जो आस-पास के प्रेषक (ट्रांसमीटर) द्वारा आवृत्ति के पुन: उपयोग की अनुमति दे रहा है। परवलयिक ("डिश") एंटेना सूक्ष्म तरंग आवृत्तियों पर सबसे व्यापक रूप से उपयोग किए जाने वाले निर्देश एंटेना हैं, लेकिन हॉर्न एंटेना, स्लॉट एंटेना और लेंस एंटेना का भी उपयोग किया जाता है। उपभोक्ता उपकरणों में फ्लैट माइक्रोस्ट्रिप एंटेना का तेजी से उपयोग किया जा रहा है। सूक्ष्म तरंग आवृत्तियों पर व्यावहारिक एक अन्य निर्देश एंटीना चरणबद्ध सरणी है, जो एंटेना का एक कंप्यूटर नियंत्रित सरणी है जो एक किरण का उत्पादन करता है जिसे इलेक्ट्रॉनिक रूप से विभिन्न दिशाओं में चलाया जा सकता है।
सूक्ष्म तरंग आवृत्ति पर हस्तांतरण लाइनें जिनका उपयोग एंटेना से कम आवृत्ति वाली रेडियो तरंगों को ले जाने के लिए किया जाता है, जैसे समाक्षीय केबल और समानांतर तार लाइनें, और अत्यधिक बिजली हानि भी होती है, इसलिए जब कम क्षीणन की आवश्यकता होती है तो सूक्ष्म तरंग को वेवगाइड नामक धातु के पाइप द्वारा ले जाया जाता है। वेवगाइड रन की उच्च लागत और रखरखाव आवश्यकताओं के कारण, कई सूक्ष्म तरंग एंटेना में प्रेषक (ट्रांसमीटर) का आउटपुट चरण या रिसीवर का आरएफ (RF) फ्रंट एंड एंटीना पर स्थित होता है।
डिजाइन और विश्लेषण
सूक्ष्म तरंग शब्द का विद्युतचुम्बकीय परिपथ सिद्धांत में भी अधिक तकनीकी अर्थ है।[7][8] उपकरण और तकनीकों को गुणात्मक रूप से "सूक्ष्म तरंग" के रूप में वर्णित किया जा सकता है जब संकेतों की तरंग दैर्ध्य लगभग परिपथ के आयामों के समान होती है, ताकि गांठदार तत्व परिपथ सिद्धांत गलत हो और इसके बजाय वितरित परिपथ तत्व और संचरण लाइन सिद्धांत रचना और विश्लेषण के लिए अधिक उपयोगी तरीके हैं।
परिणामस्वरूप व्यावहारिक सूक्ष्म तरंग परिपथ कम आवृत्ति वाले रेडियो तरंगों के साथ उपयोग किए जाने वाले असतत प्रतिरोध संधारित्र और कुचालक से दूर चले जाते हैं। कम आवृत्तियों पर उपयोग किए जाने वाले खुले तार और समाक्षीय संचरण लाइनें उन्हें तरंग गाइड और स्ट्रिपलाइन द्वारा प्रतिस्थापित किया जाता है, और गांठ वाले तत्व ट्यून किए गए परिपथ को कैविटी रेज़ोनेटर या रेज़ोनेंट स्टब्स द्वारा प्रतिस्थापित किया जाता है।[7] बदले में और भी उच्च आवृत्तियों पर जहां विद्युत चुम्बकीय तरंगों की तरंग दैर्ध्य उन्हें संसाधित करने के लिए उपयोग की जाने वाली संरचनाओं के आकार की तुलना में छोटी हो जाती है, सूक्ष्म तरंग तकनीक अपर्याप्त हो जाती है और प्रकाशिकी के तरीकों का उपयोग किया जाता है।
सूक्ष्म तरंग स्रोत
उच्च शक्ति वाले सूक्ष्म तरंग स्रोत सूक्ष्म तरंग उत्पन्न करने के लिए विशेष वैक्यूम ट्यूब का उपयोग करते हैं। ये उपकरण कम आवृत्ति वाली वैक्यूम ट्यूब से विभिन्न सिद्धांतों पर काम करते हैं, ये विद्युत या चुंबकीय क्षेत्रों को नियंत्रित करने के प्रभाव में निर्वात में इलेक्ट्रॉनों की प्राक्षेपिक गति का उपयोग कर रहे हैं, और इसमें मैग्नेट्रोन (सूक्ष्म तरंग ओवन में प्रयुक्त), क्लेस्ट्रॉन, यात्रा तरंग ट्यूब (ट्रैवलिंग वेव ट्यूब) (टीडब्ल्यूटी TWT), और जाइरोट्रॉन भी शामिल हैं। ये उपकरण (डिवाइस) वर्तमान संशोधित मोड के बजाय घनत्व संग्राहक मोड में काम करते हैं। इसका मतलब यह है कि वे अपने माध्यम से बैलिस्टिक रूप से उड़ने वाले इलेक्ट्रॉनों के गुच्छों के आधार पर काम करते हैं।
इलेक्ट्रॉनों की एक सतत धारा का उपयोग करने के बजाय। कम शक्ति वाले सूक्ष्म तरंग स्रोत ठोस राज्य उपकरणों का उपयोग करते हैं[9] जैसे कि क्षेत्र प्रभाव ट्रांजिस्टर (कम से कम कम आवृत्तियों पर), सुरंग डायोड, गन डायोड और इमपैट (IMPATT) डायोड। कम शक्ति के स्रोत बेंचटॉप उपकरण, रैकमाउंट उपकरण, एम्बेड करने योग्य मापांक (मॉड्यूल) और कार्ड स्तर प्रारूप में उपलब्ध हैं। एक मेसर एक ठोस अवस्था वाला उपकरण है जो लेजर के समान सिद्धांतों का उपयोग करके सूक्ष्म तरंग को बढ़ाता है, जो उच्च आवृत्ति प्रकाश तरंगों को बढ़ाता है।
सभी गर्म वस्तुएं निम्न स्तर के सूक्ष्म तरंग ब्लैक बॉडी विकिरण का उत्सर्जन करती हैं, यह उनके तापमान पर निर्भर करता है, इसलिए मौसम विज्ञान और सुदूर संवेदन में, सूक्ष्म तरंग रेडियोमीटर का उपयोग वस्तुओं या इलाके के तापमान को मापने के लिए किया जाता है।[10] सूर्य[11] और अन्य खगोलीय रेडियो स्रोत जैसे कैसिओपिया ए निम्न स्तर के सूक्ष्म तरंग विकिरण का उत्सर्जन करते हैं जिसमें उनके मेकअप की जानकारी होती है, जिसका रेडियो खगोलविदों द्वारा रेडियो टेलीस्कोप नामक रिसीवर का उपयोग करके अध्ययन किया जाता है।[10] कॉस्मिक सूक्ष्म तरंग पृष्ठभूमि विकिरण (सीएमबीआर CMBR), उदाहरण के लिए, एक कमजोर सूक्ष्म तरंग का शोर यह खाली जगह भर रहा है जो ब्रह्मांड विज्ञान के ब्रह्मांड की उत्पत्ति के बिग बैंग सिद्धांत पर जानकारी का एक प्रमुख स्रोत है।
सूक्ष्म तरंग का उपयोग
बिंदु से बिंदु दूरसंचार (अर्थात गैर-प्रसारण उपयोग) के लिए सूक्ष्म तरंग प्रौद्योगिकी का व्यापक रूप से उपयोग किया जाता है। सूक्ष्म तरंग इस उपयोग के लिए विशेष रूप से उपयुक्त हैं क्योंकि वे रेडियो तरंगों की तुलना में अधिक आसानी से संकरे किरण में केंद्रित होते हैं, जिससे आवृत्ति का पुन: उपयोग होता है; उनकी तुलनात्मक रूप से उच्च आवृत्तियाँ व्यापक बैंडविड्थ और उच्च डेटा संचरण दर की अनुमति देती हैं,और एंटीना का आकार कम आवृत्तियों की तुलना में छोटा होता है क्योंकि एंटीना का आकार प्रेषित आवृत्ति के व्युत्क्रमानुपाती होता है। अंतरिक्ष यान संचार में सूक्ष्म तरंग का उपयोग किया जाता है, और दुनिया के अधिकांश डेटा, टीवी और टेलीफोन संचार ग्राउंड स्टेशनों और संचार उपग्रहों के बीच सूक्ष्म तरंग द्वारा लंबी दूरी तक प्रेषित होते हैं। सूक्ष्म तरंग का उपयोग सूक्ष्म तरंग ओवन और रडार तकनीक में भी किया जाता है।
संचार
फाइबर आकाश स्थांतरण के आगमन से पहले, सबसे लंबी दूरी की टेलीफोन कॉल एटी एंड टी लॉन्ग लाइन्स जैसे वाहकों द्वारा चलाए जा रहे सूक्ष्म तरंग रेडियो रिले लिंक के संचार के माध्यम से की जाती थी। 1950 के दशक की शुरुआत में, प्रत्येक सूक्ष्म तरंग रेडियो चैनल पर 5,400 टेलीफोन चैनल भेजने के लिए आवृति विभाजन बहुसंकेत (फ़्रीक्वेंसी डिवीजन मल्टीप्लेक्सिंग) का उपयोग किया गया था, 70 किमी तक की दूरी पर, अगली साइट पर हॉप के लिए दस रेडियो चैनलों को एक एंटेना में संयोजित किया गया है।
तार रहित लैन प्रोटोकॉल, जैसे ब्लूटूथ और आईईईई (IEEE) 802.11 विनिर्देश वाई-फाई के लिए उपयोग किए जाते हैं, यह 2.4 GHz आईएसएम (ISM) बैंड में सूक्ष्म तरंग का भी उपयोग करता है, हालांकि 802.11 ए5 (a5) GHz सीमा में आईएसएम (ISM) बैंड और यू-एनआईआई (U- NII) आवृत्तियों का उपयोग करता है। 3.5–4.0 GHz सीमा में कई देशों में लाइसेंस प्राप्त लंबी दूरी (लगभग 25 किमी तक) तार रहित इंटरनेट एक्सेस सेवाओं का उपयोग लगभग एक दशक से किया जा रहा है। एफसीसीसी (FCC) ने हाल ही में उन वाहकों के लिए वर्णक्रम तैयार किया है जो 3.65 GHz पर जोर देने के साथ अमेरिका में इस श्रेणी में सेवाएं प्रदान करना चाहते हैं। देश भर में दर्जनों सेवा प्रदाता इस बैंड में काम करने के लिए एफसीसी से लाइसेंस प्राप्त कर रहे हैं या पहले ही प्राप्त कर चुके हैं। विनमैक्स (WIMAX) सेवा की पेशकश जो 3.65 GHz बैंड पर की जा सकती है, व्यावसायिक ग्राहकों को संयोजकता (कनेक्टिविटी) के लिए एक और विकल्प देगी।
मेट्रोपॉलिटन एरिया संचार मैन-(MAN) प्रोटोकॉल, जैसे कि वाईमैक्स (सूक्ष्म तरंग एक्सेस के लिए दुनिया भर में अंतरप्रचालनीयता (इंटरऑपरेबिलिटी)) आईईईई (IEEE) 802.16, जैसे मानकों पर आधारित हैं। इसे 2 और 11 GHz के बीच संचालित करने के लिए डिज़ाइन किया गया है। वाणिज्यिक कार्यान्वयन 2.3 गीगाहर्ट्ज़, 2.5 गीगाहर्ट्ज़, 3.5 गीगाहर्ट्ज़ और 5.8 गीगाहर्ट्ज़ सीमा में हैं।
आईईईई (IEEE) 802.20 या एटीआईएस/एएनएसआई (ATIS/ANSI) एचसी-एसडीएमए (HC-SDMA) (जैसे आईबर्स्ट) जैसे मानकों के विनिर्देशों के आधार पर मोबाइल ब्रॉडबैंड तार रहित एक्सेस (एमबीडब्ल्यूए) प्रोटोकॉल गतिशीलता देने और मोबाइल फोन के समान प्रवेश विशेषताओं के निर्माण में 1.6 और 2.3 गीगाहर्ट्ज के बीच काम करते हैं। लेकिन बहुत अधिक वर्णक्रमीय दक्षता के साथ।[12]
कुछ मोबाइल फोन संचार, जैसे जीएसएम, अमेरिका और अन्य जगहों पर क्रमशः 1.8 और 1.9 गीगाहर्ट्ज के आसपास कम माइक्रोवेव/उच्च-यूएचएफ (UHF) आवृत्तियों का उपयोग करते हैं। डीवीबी (DVB) एसएच (SH) और एसडीएमबी (SDMB) 1.452 से 1.492 गीगाहर्ट्ज़ का उपयोग करते हैं, जबकि यू.एस. (U.S.) में मालिकाना/असंगत उपग्रह रेडियो यह डार्स (DARS) के लिए लगभग 2.3 GHz का उपयोग करता है।
सूक्ष्म तरंग रेडियो का उपयोग प्रसारण और दूरसंचार प्रसारण में किया जाता है क्योंकि, उनकी छोटी तरंग दैर्ध्य के कारण, अत्यधिक दिशात्मक एंटेना छोटे होते हैं और इसलिए वे लंबी तरंग दैर्ध्य (कम आवृत्तियों) की तुलना में अधिक व्यावहारिक होंगे। सूक्ष्म तरंग वर्णक्रम में बाकी रेडियो वर्णक्रम की तुलना में अधिक बैंडविड्थ है; 300 मेगाहर्ट्ज से नीचे प्रयोग करने योग्य बैंडविड्थ 300 मेगाहर्ट्ज से कम है जबकि कई गीगाहर्ट्ज़ का उपयोग 300 मेगाहर्ट्ज से ऊपर किया जा सकता है। आमतौर पर, सूक्ष्म तरंग का उपयोग टेलीविजन समाचारों में एक विशेष रूप से सुसज्जित वैन से एक दूरस्थ स्थान से एक टेलीविजन स्टेशन तक एक संकेत प्रसारित करने के लिए किया जाता है। प्रसारण सहायक सेवा (बीएएस bas), रिमोट पिकअप यूनिट (आरपीयू RPU), और स्टूडियो/ प्रेषक (ट्रांसमीटर) लिंक (एसटीएल STL) देखें
अधिकांश उपग्रह संचार प्रणालियाँ सूक्ष्म तरंग वर्णक्रम के सी (C), एक्स (X), केऐ (Ka), या केयू (Ku) बैंड में काम करती हैं। ये आवृत्तियाँ बड़ी बैंडविड्थ की अनुमति देती हैं
भीड़भाड़ वाले यूएचएफ आवृत्तियों से बचने और ईएचएफ (EHF) आवृत्तियों के वायुमंडलीय अवशोषण से नीचे रहने के दौरान। सैटेलाइट टीवी या तो पारंपरिक बड़े डिश फिक्स्ड सैटेलाइट सर्विस के लिए सी बैंड में या डायरेक्ट-ब्रॉडकास्ट सैटेलाइट के लिए केयू बैंड में काम करता है। सैन्य संचार मुख्य रूप से एक्स (X) या केयू (KU) बैंड लिंक पर चलता है, जिसमें केऐ (Ka) बैंड का उपयोग मिलस्टार के लिए किया जाता है।
नेविगेशन
चीनी बेईडो सहित क्षेत्रीय नेविगेशन सैटेलाइट सिस्टम जीएनएसएस (GNSS), अमेरिकन वैश्विक स्थान-निर्धारण प्रणाली (1978 में पेश किया गया) और रूसी ग्लोनास ने लगभग 1.2 गीगाहर्ट्ज़ और 1.6 गीगाहर्ट्ज़ के बीच विभिन्न बैंडों में नेविगेशनल सिग्नल प्रसारित किए।
रडार
रडार एक रेडियोस्थान निर्धारण (रेडियोलोकेशन) तकनीक है जिसमें एक प्रेषक (ट्रांसमीटर) द्वारा उत्सर्जित रेडियो तरंगों का एक पुंज किसी वस्तु से उछलता है और यह एक गृहीता (रिसीवर) के पास लौटता है, यह वस्तु के स्थान, सीमा, गति और अन्य विशेषताओं को निर्धारित करने की अनुमति दे रहा है। सूक्ष्म तरंग की छोटी तरंग दैर्ध्य वस्तुओं से मोटर वाहनों, जहाजों और विमानों के आकार के बड़े प्रतिबिंबों का कारण बनती है। इसके अलावा, इन तरंग दैर्ध्य पर, उच्च लाभ वाले एंटेना जैसे परवलयिक एंटेना वस्तुओं का सटीक पता लगाने के लिए आवश्यक संकीर्ण किरणविड्थ का उत्पादन करने के लिए आवश्यक होते हैं जो आसानी से छोटे होते हैं, यह उन्हें वस्तुओं को स्कैन करने के लिए तेजी से चालू करने की अनुमति दे रहा है। इसलिए, सूक्ष्म तरंग आवृत्तियां रडार में उपयोग की जाने वाली मुख्य आवृत्तियां हैं। सूक्ष्म तरंग रडार व्यापक रूप से हवाई यातायात नियंत्रण, मौसम पूर्वानुमान, जहाजों के नेविगेशन और गति सीमा प्रवर्तन जैसे अनुप्रयोगों के लिए उपयोग किया जाता है। लंबी दूरी के रडार कम सूक्ष्म तरंग आवृत्तियों का उपयोग करते हैं क्योंकि बैंड के ऊपरी छोर पर वायुमंडलीय अवशोषण सीमा को सीमित करता है, लेकिन मिलीमीटर तरंगों का उपयोग छोटी दूरी के रडार जैसे कि टक्कर से बचाव प्रणाली के लिए किया जाता है।
रेडियो खगोल विज्ञान
खगोलीय रेडियो स्रोतों द्वारा उत्सर्जित माइक्रोवेव; ग्रह, तारे, आकाशगंगाएँ और नीहारिकाएँ इनका अध्ययन रेडियो खगोल विज्ञान में बड़े डिश एंटेना के साथ किया जाता है जिन्हें रेडियो टेलीस्कोप कहा जाता है। स्वाभाविक रूप से होने वाले सूक्ष्म तरंग विकिरण प्राप्त करने के अलावा, सौर मंडल में ग्रहों से सूक्ष्म तरंग को उछालने के लिए सक्रिय रडार प्रयोगों में रेडियो टेलीस्कोप का उपयोग किया गया है, चंद्रमा से दूरी निर्धारित करने के लिए या बादल कवर के माध्यम से शुक्र की अदृश्य सतह का नक्शा बनाने के लिए।
हाल ही में पूरा किया गया सूक्ष्म तरंग रेडियो टेलीस्कोप अटाकामा लार्ज मिलीमीटर एरे है, यह चिली में 5,000 मीटर (16,597 फीट) से अधिक ऊंचाई पर स्थित है, और यह ब्रह्मांड को मिलीमीटर और सबमिलीमीटर तरंग दैर्ध्य सीमा में देखता है। दुनिया की अब तक की सबसे बड़ी जमीन पर आधारित खगोल विज्ञान परियोजना, इसमें 66 से अधिक व्यंजन शामिल हैं और इसे यूरोप, उत्तरी अमेरिका, पूर्वी एशिया और चिली के अंतरराष्ट्रीय सहयोग से बनाया गया था।[13][14]
सूक्ष्म तरंग रेडियो खगोल विज्ञान का एक प्रमुख हालिया फोकस 1964 में रेडियो खगोलविदों अर्नो पेनज़ियास और रॉबर्ट विल्सन द्वारा खोजे गए ब्रह्मांडीय सूक्ष्म तरंग पृष्ठभूमि विकिरण (सीएमबीआर-CMBR) का मानचित्रण कर रहा है। यह मंद पृष्ठभूमि विकिरण, जो ब्रह्मांड को भरता है और लगभग सभी दिशाओं में समान है, बिग बैंग से "अवशेष विकिरण" है, और यह प्रारंभिक ब्रह्मांड की स्थितियों के बारे में जानकारी के कुछ स्रोतों में से एक है। ब्रह्मांड के विस्तार और इस प्रकार शीतलन के कारण, मूल रूप से उच्च ऊर्जा विकिरण को रेडियो वर्णक्रम के सूक्ष्म तरंग क्षेत्र में स्थानांतरित कर दिया गया है। पर्याप्त रूप से संवेदनशील रेडियो टेलीस्कोप सीएमबीआर को एक बेहोश संकेत के रूप में पहचान सकते हैं जो किसी तारे, आकाशगंगा या अन्य वस्तु से संबंधित नहीं है।[15]
हीटिंग और पावर एप्लिकेशन
एक सूक्ष्म तरंग ओवन भोजन के माध्यम से 2.45 गीगाहर्ट्ज (12 सेमी) की आवृत्ति पर सूक्ष्म तरंग विकिरण पारित करता है, यह मुख्य रूप से पानी में ऊर्जा के अवशोषण द्वारा ढांकता हुआ ताप पैदा कर रहा है। 1970 के दशक के अंत में पश्चिमी देशों में सूक्ष्म तरंग ओवन आम रसोई के उपकरण बन गए, यह कम खर्चीले कैविटी मैग्नेट्रोन के विकास का अनुसरण कर रहा है। तरल अवस्था में पानी में कई आणविक अंतःक्रियाएं होती हैं जो अवशोषण शिखर को चौड़ा करता है। वाष्प चरण में, पृथक पानी के अणु सूक्ष्म तरंग ओवन की आवृत्ति का लगभग दस गुना लगभग 22 गीगाहर्ट्ज़ पर अवशोषित करते हैं।
सूक्ष्म तरंग हीटिंग का उपयोग औद्योगिक प्रक्रियाओं में उत्पादों को सुखाने और इलाज के लिए किया जाता है।
कई अर्धचालक प्रसंस्करण तकनीकें प्रतिक्रियाशील आयन नक़्क़ाशी और प्लाज्मा वर्धित रासायनिक वाष्प जमाव (PECVD) जैसे उद्देश्यों के लिए प्लाज्मा उत्पन्न करने के लिए सूक्ष्म तरंग का उपयोग करती हैं।
गैस को प्लाज्मा में तोड़ने में मदद करने के लिए तारकीय और टोकामक प्रायोगिक संलयन रिएक्टरों में सूक्ष्म तरंग का उपयोग किया जाता है, और इसे बहुत अधिक तापमान पर गर्म करें। आवृत्ति को 2-200 GHz के बीच कहीं भी चुंबकीय क्षेत्र में इलेक्ट्रॉनों के द्विताणुत्वर (साइक्लोट्रॉन) प्रतिध्वनि के लिए ट्यून किया जाता है, इसलिए इसे अक्सर इलेक्ट्रॉन द्विताणुत्वर (साइक्लोट्रॉन), अनुनाद ताप (ईसीआरएच ECRH) के रूप में जाना जाता है। आगामी आईटीईआर (IETER) तापनाभिकीय रिऐक्टर[16] 170 गीगाहर्ट्ज सूक्ष्म तरंग के 20 मेगावाट तक का उपयोग करेगा।
सूक्ष्म तरंग का उपयोग लंबी दूरी पर बिजली संचारित करने के लिए किया जा सकता है, और द्वितीय विश्व युद्ध के बाद संभावनाओं की जांच के लिए शोध किया गया था। नासा ने 1970 और 1980 के दशक की शुरुआत में बड़े सौर सरणियों के साथ सौर ऊर्जा उपग्रह (एसपीएस SPS) सिस्टम का उपयोग करने की संभावनाओं पर शोध करने के लिए काम किया। जो कि सूक्ष्म तरंग के माध्यम से पृथ्वी की सतह तक बिजली पहुंचाएगा।
कम घातक हथियार मौजूद हैं जो मानव त्वचा की एक पतली परत को असहनीय तापमान तक गर्म करने के लिए मिलीमीटर तरंगों का उपयोग करते हैं ताकि लक्षित व्यक्ति को दूर ले जाया जा सके। 95 गीगाहर्ट्ज़ फ़ोकस किरण का दो सेकंड का विस्फोट त्वचा को 0.4 मिलीमीटर (1/64 इंच) की गहराई पर 54 डिग्री सेल्सियस (129 डिग्री फ़ारेनहाइट) के तापमान तक गर्म करता है। संयुक्त राज्य वायु सेना और मरीन वर्तमान में निश्चित प्रतिष्ठानों में इस प्रकार की सक्रिय इनकार प्रणाली का उपयोग कर रहे हैं।[17]
स्पेक्ट्रोस्कोपी
सूक्ष्म तरंग विकिरण का उपयोग इलेक्ट्रॉन अनुचुंबकीय अनुनाद (ईपीआर या ईएसआर) स्पेक्ट्रोस्कोपी (किरणों के वर्ण-क्रम को मापने की विद्या) में किया जाता है, यह आमतौर पर एक्स-बैंड क्षेत्र (~ 9 गीगाहर्ट्ज) में 0.3 टी के चुंबकीय क्षेत्रों के संयोजन के साथ होता है। यह तकनीक रासायनिक प्रणालियों में अयुग्मित इलेक्ट्रॉनों के बारे में जानकारी प्रदान करती है, जैसे मुक्त कण या संक्रमण धातु आयन जैसे सीयू (Cu) (II)। सूक्ष्म तरंग विकिरण का उपयोग घूर्णी स्पेक्ट्रोस्कोपी करने के लिए भी किया जाता है और इसे इलेक्ट्रोकैमिस्ट्री के साथ जोड़ा जा सकता है जैसे कि सूक्ष्म तरंग वर्धित विद्युत रसायन।
सूक्ष्म तरंग आवृत्ति बैंड
सूक्ष्म तरंग वर्णक्रम में आवृत्तियों के बैंड अक्षरों द्वारा निर्दिष्ट किए जाते हैं। दुर्भाग्य से, कई असंगत बैंड पदनाम प्रणालियां हैं, और यहां तक कि एक प्रणाली के भीतर भी कुछ अक्षरों के अनुरूप आवृत्ति सीमा अलग-अलग अनुप्रयोग क्षेत्रों के बीच कुछ भिन्न होती है।[18][19] राडार सेटों में प्रयुक्त बैंडों के एक शीर्ष गुप्त यू.एस. (U.S.) वर्गीकरण में पत्र प्रणाली की उत्पत्ति द्वितीय विश्व युद्ध में हुई थी; यह सबसे पुरानी पत्र प्रणाली, आईईईई (IEEE) रडार बैंड की उत्पत्ति है। ग्रेट ब्रिटेन की रेडियो सोसायटी (आरएसजीबी) द्वारा सूक्ष्म तरंग आवृत्ति (फ्रीक्वेंसी) बैंड पदनामों का एक सेट नीचे सारणीबद्ध है:
| पद Designation | आवृति सीमा Frequency range | तरंग दैर्ध्य सीमा Wavelength range | विशिष्ट उपयोग Typical uses |
|---|---|---|---|
| एल बैंड L band | 1 to 2 GHz | 15 cm to 30 cm | सैन्य टेलीमेट्री, जीपीएस (GPS), मोबाइल फोन (जीएसएम GSM), शौकिया रेडियो |
| एस बैंड (S band) | 2 to 4 GHz | 7.5 cm to 15 cm | मौसम रडार, सतह जहाज रडार, कुछ संचार उपग्रह, सूक्ष्म तरंग ओवन, सूक्ष्म तरंग उपकरण/संचार, रेडियो खगोल विज्ञान, मोबाइल फोन, तार रहित लैन, ब्लूटूथ, ज़िगबी (GIGBI), जीपीएस (GPS), शौकिया रेडियो |
| सी बैंड C band | 4 to 8 GHz | 3.75 cm to 7.5 cm | लंबी दूरी की रेडियो दूरसंचार |
| एक्स बैंड X band | 8 to 12 GHz | 25 mm to 37.5 mm | उपग्रह संचार, रडार, स्थलीय ब्रॉडबैंड, अंतरिक्ष संचार, शौकिया रेडियो, आणविक घूर्णी स्पेक्ट्रोस्कोपी |
| केयू बैंड Ku band | 12 to 18 GHz | 16.7 mm to 25 mm | उपग्रह संचार, आणविक घूर्णी स्पेक्ट्रोस्कोपी |
| के बैंडK band | 18 to 26.5 GHz | 11.3 mm to 16.7 mm | रडार, उपग्रह संचार, खगोलीय अवलोकन, ऑटोमोटिव रडार, आणविक घूर्णी स्पेक्ट्रोस्कोपी |
| केए बैंडKa band | 26.5 to 40 GHz | 5.0 mm to 11.3 mm | उपग्रह संचार, आणविक घूर्णी स्पेक्ट्रोस्कोपी |
| क्यू बैंड Q band | 33 to 50 GHz | 6.0 mm to 9.0 mm | उपग्रह संचार, स्थलीय सूक्ष्म तरंग संचार, रेडियो खगोल विज्ञान, मोटर वाहन रडार, आणविक घूर्णी स्पेक्ट्रोस्कोपी |
| यू बैंड U band | 40 to 60 GHz | 5.0 mm to 7.5 mm | |
| वी बैंड V band | 50 to 75 GHz | 4.0 mm to 6.0 mm | मिलीमीटर तरंग रडार अनुसंधान, आणविक घूर्णी स्पेक्ट्रोस्कोपी और अन्य प्रकार के वैज्ञानिक अनुसंधान |
| डब्ल्यू बैंड W band | 75 to 110 GHz | 2.7 mm to 4.0 mm | उपग्रह संचार, मिलीमीटर-लहर रडार अनुसंधान, सैन्य रडार लक्ष्यीकरण और ट्रैकिंग अनुप्रयोग, और कुछ गैर-सैन्य अनुप्रयोग, ऑटोमोटिव रडार |
| एफ बैंड F band | 90 to 140 GHz | 2.1 mm to 3.3 mm | एसएचएफ (SHF) प्रसारण: रेडियो खगोल विज्ञान, सूक्ष्म तरंग उपकरण / संचार, तार रहित लैन (LAN), सबसे आधुनिक रडार, संचार उपग्रह, उपग्रह टेलीविजन प्रसारण, डीबीएस (DBS), शौकिया रेडियो |
| डी बैंड D band | 110 to 170 GHz | 1.8 mm to 2.7 mm | ईएचएफ (EHF) प्रसारण: रेडियो खगोल विज्ञान, उच्च आवृत्ति सूक्ष्म तरंग रेडियो रिले, सूक्ष्म तरंग रिमोट सेंसिंग, शौकिया रेडियो, निर्देशित-ऊर्जा हथियार, मिलीमीटर तरंग स्कैनर |
अन्य परिभाषाएँ मौजूद हैं।[20]
पी बैंड (P Band) शब्द का प्रयोग कभी-कभी एल बैंड के नीचे यूएचएफ (UHF) आवृत्तियों के लिए किया जाता है लेकिन अब यह प्रति आईईईई (IEEE) स्था. 521 अप्रचलित है।
जब द्वितीय विश्व युद्ध के दौरान के बैंड में पहली बार रडार विकसित किए गए थे, यह ज्ञात नहीं था कि पास में एक अवशोषण बैंड था (वायुमंडल में जल वाष्प और ऑक्सीजन के कारण)। इस समस्या से बचने के लिए, मूल के (K) बैंड को निचले बैंड, केयू (Ku) और ऊपरी बैंड केए (Ka) में विभाजित किया गया था.[21]
सूक्ष्म तरंग आवृत्ति माप
सूक्ष्म तरंग आवृत्ति को इलेक्ट्रॉनिक या यांत्रिक तकनीकों द्वारा मापा जा सकता है।
आवृत्ति काउंटर या उच्च आवृत्ति हेटेरोडाइन तंत्र का उपयोग किया जा सकता है। यहां अज्ञात आवृत्ति की तुलना कम आवृत्ति जनरेटर, सुसंगत जनरेटर और मिक्सर के उपयोग से ज्ञात कम आवृत्ति के सुसंगत से की जाती है।
माप की सटीकता संदर्भ स्रोत की सटीकता और स्थिरता द्वारा सीमित है।
यांत्रिक विधियों के लिए एक ट्यून करने योग्य गुंजयमान यंत्र की आवश्यकता होती है जैसे अवशोषण तरंगमापी, जिसका भौतिक आयाम और आवृत्ति के बीच एक ज्ञात संबंध है।
एक प्रयोगशाला सेटिंग में, लेचर लाइनों का उपयोग समानांतर तारों से बनी हस्तांतरण लाइन पर तरंग दैर्ध्य को सीधे मापने के लिए किया जा सकता है, फिर आवृत्ति की गणना की जा सकती है। तरंगदैर्घ्य को सीधे मापने के लिए एक स्लॉटेड वेवगाइड या स्लॉटेड समाक्षीय लाइन का उपयोग करना एक समान तकनीक है। इन उपकरणों में एक अनुदैर्ध्य स्लॉट के माध्यम से लाइन में पेश की गई एक जांच होती है ताकि जांच लाइन के ऊपर और नीचे यात्रा करने के लिए स्वतंत्र हो। स्लॉटेड लाइनें मुख्य रूप से लाइन पर वोल्टेज स्टैंडिंग वेव अनुपात की माप के लिए अभिप्रेत हैं। हालाँकि, बशर्ते एक स्थायी लहर मौजूद हो, उनका उपयोग नोड्स के बीच की दूरी को मापने के लिए भी किया जा सकता है, जो आधी तरंग दैर्ध्य के बराबर है। इस पद्धति की सटीकता नोडल स्थानों के निर्धारण द्वारा सीमित है।
स्वास्थ्य पर प्रभाव
सूक्ष्म तरंग गैर-आयनीकरण विकिरण हैं, जिसका अर्थ है कि सूक्ष्म तरंग फोटॉन में अणुओं को आयनित करने या रासायनिक बंधनों को तोड़ने या डीएनए (DNA) को नुकसान पहुंचाने के लिए पर्याप्त ऊर्जा नहीं होती है, जैसे कि आयनकारी विकिरण जैसे कि एक्स रे या पराबैंगनी कर सकते हैं।[22] शब्द "विकिरण" एक स्रोत से निकलने वाली ऊर्जा को संदर्भित करता है न कि रेडियोधर्मिता को। सूक्ष्म तरंग के अवशोषण का मुख्य प्रभाव सामग्री को गर्म करना है; विद्युत चुम्बकीय क्षेत्र ध्रुवीय अणुओं को कंपन करने का कारण बनते हैं। यह निर्णायक रूप से नहीं दिखाया गया है कि सूक्ष्म तरंग (या अन्य गैर-आयनीकरण विद्युत चुम्बकीय विकिरण) का निम्न स्तरों पर महत्वपूर्ण प्रतिकूल जैविक प्रभाव पड़ता है। कुछ लेकिन सभी नहीं, अध्ययनों से पता चलता है कि लंबे समय तक एक्सपोजर का कैंसरजन्य प्रभाव हो सकता है।[23]
द्वितीय विश्व युद्ध के दौरान, यह देखा गया कि रडार प्रतिष्ठानों के विकिरण पथ में व्यक्तियों ने सूक्ष्म तरंग विकिरण के जवाब में क्लिक और भनभनाहट का अनुभव किया। 1970 के दशक में नासा द्वारा किए गए शोध से पता चला है कि यह आंतरिक कान के कुछ हिस्सों में थर्मल विस्तार के कारण होता है। 1955 में डॉ. जेम्स लवलॉक सूक्ष्म तरंग डायथर्मी का उपयोग करके चूहों को 0 और 1 डिग्री सेल्सियस (32 और 34 डिग्री फारेनहाइट) तक ठंडा करने में सक्षम थे।[24]
जब सूक्ष्म तरंग के संपर्क में आने से चोट लगती है, यह आमतौर पर शरीर में प्रेरित ढांकता हुआ हीटिंग के परिणामस्वरूप होता है। सूक्ष्म तरंग विकिरण के संपर्क में आने से इस तंत्र द्वारा मोतियाबिंद हो सकता है, क्योंकि सूक्ष्म तरंग हीटिंग आंख के क्रिस्टलीय लेंस में प्रोटीन को निरूपित करता है[25] (उसी तरह) वह गर्मी अंडे की सफेदी को सफेद और अपारदर्शी बना देती है)। आंख के लेंस और कॉर्निया विशेष रूप से कमजोर होते हैं क्योंकि उनमें रक्त वाहिकाएं नहीं होती हैं जो गर्मी को दूर ले जा सकती हैं। सूक्ष्म तरंग विकिरण की भारी खुराक के संपर्क में (जैसे कि एक ओवन से जिसे दरवाजे के खुले होने पर भी संचालन की अनुमति देने के लिए छेड़छाड़ की गई है) अन्य ऊतकों में भी गर्मी की क्षति पैदा कर सकता है, जिसमें गंभीर जलन भी शामिल है जो तुरंत स्पष्ट नहीं हो सकती है उच्च नमी सामग्री वाले गहरे ऊतकों को गर्म करने के लिए सूक्ष्म तरंग की प्रवृत्ति के कारण।
इतिहास
हर्ट्जियन ऑप्टिक्स
सूक्ष्म तरंग पहली बार 1890 के दशक में भौतिकविदों द्वारा किए गए कुछ शुरुआती रेडियो प्रयोगों में उत्पन्न हुए थे, जिन्होंने उन्हें "अदृश्य प्रकाश" के रूप में सोचा था।[26] जेम्स क्लर्क मैक्सवेल ने अपने 1873 के विद्युत चुंबकत्व के सिद्धांत में, जिसे अब मैक्सवेल के समीकरण कहा जाता है, उन्होंने भविष्यवाणी की थी कि एक युग्मित विद्युत क्षेत्र और चुंबकीय क्षेत्र एक विद्युत चुम्बकीय तरंग के रूप में अंतरिक्ष में यात्रा कर सकते हैं, और प्रस्तावित किया कि प्रकाश में लघु तरंग दैर्ध्य की विद्युत चुम्बकीय तरंगें शामिल हैं। 1888 में, जर्मन भौतिक विज्ञानी हेनरिक हर्ट्ज़ एक आदिम स्पार्क गैप रेडियो प्रेषक (ट्रांसमीटर) का उपयोग करके रेडियो तरंगों के अस्तित्व का प्रदर्शन करने वाले पहले व्यक्ति थे।[27] मैक्सवेल के सिद्धांत का परीक्षण करने के लिए हर्ट्ज़ और अन्य प्रारंभिक रेडियो शोधकर्ता रेडियो तरंगों और प्रकाश तरंगों के बीच समानता की खोज में रुचि रखते थे। उन्होंने यूएचएफ (UFH) और सूक्ष्म तरंग सीमा में लघु तरंग दैर्ध्य रेडियो तरंगों के उत्पादन पर ध्यान केंद्रित किया, जिसके साथ वे अपनी प्रयोगशालाओं में उत्कृष्ट प्रकाशिकी प्रयोगों की नकल कर सकते थे, यह प्रकाश किरणों जैसी रेडियो तरंगों को अपवर्तित और विवर्तित करने के लिए पैराफिन, सल्फर और पिच और तार विवर्तन झंझरी से बने प्रिज्म और लेंस जैसे अर्धसूत्रीविभाजन घटकों का उपयोग कर रहा है। हर्ट्ज़ ने 450 मेगाहर्ट्ज तक की तरंगों[28] का उत्पादन किया; उनके दिशात्मक 450 मेगाहर्ट्ज प्रेषक (ट्रांसमीटर) में 26 सेमी पीतल की छड़ द्विध्रुवीय एंटीना होता है जिसमें सिरों के बीच एक स्पार्क गैप होता है, यह एक घुमावदार जस्ता शीट से बने एक परवलयिक एंटीना की फोकल लाइन पर निलंबित है, जो एक प्रेरण कॉइल से उच्च वोल्टेज दालों द्वारा संचालित होता है।[27] उनके ऐतिहासिक प्रयोगों ने प्रदर्शित किया कि प्रकाश जैसी रेडियो तरंगें अपवर्तन, विवर्तन, ध्रुवीकरण, व्यतिकरण और खड़ी तरंगों को प्रदर्शित करती हैं।[28] यह साबित कर रहा है कि रेडियो तरंगें और प्रकाश तरंगें दोनों मैक्सवेल की विद्युत चुम्बकीय तरंगों के रूप थे।
- Hertz spark gap transmitter and parabolic antenna.png
Heinrich Hertz's 450 MHz spark transmitter, 1888, consisting of 23 cm dipole and spark gap at focus of parabolic reflector
Jagadish Chandra Bose in 1894 was the first person to produce millimeter waves; his spark oscillator (in box, right) generated 60 GHz (5 mm) waves using 3 mm metal ball resonators.
- Refraction of Hertzian waves by paraffin prism.png
Microwave spectroscopy experiment by John Ambrose Fleming in 1897 showing refraction of 1.4 GHz microwaves by paraffin prism, duplicating earlier experiments by Bose and Righi.
Augusto Righi's 12 GHz spark oscillator and receiver, 1895
1894 में भारतीय भौतिक विज्ञानी "जगदीश चंद्र बोस" ने सूक्ष्म तरंग के साथ पहला प्रयोग किया। वह 60 गीगाहर्ट्ज़ (5 मिलीमीटर) तक की आवृत्तियों को उत्पन्न करने वाली मिलीमीटर तरंगें उत्पन्न करने वाले पहले व्यक्ति थे। यह एक 3 मिमी धातु बॉल स्पार्क थरथरानवाला का उपयोग कर रहा है।[29][28]
बोस ने अपने प्रयोगों में उपयोग के लिए वेवगाइड, हॉर्न एंटेना और अर्धसंवाहक (कंडक्टर) क्रिस्टल संसूचक का भी आविष्कार किया। स्वतंत्र रूप से 1894 में, ओलिवर लॉज और ऑगस्टो रिघी ने क्रमशः 1.5 और 12 गीगाहर्ट्ज़ सूक्ष्म तरंग के साथ प्रयोग किया, यह छोटे धातु बॉल चिंगारी गुंजयमान यंत्र (स्पार्क रेज़ोनेटर) द्वारा उत्पन्न होता है।[28] 1895 में रूसी भौतिक विज्ञानी प्योत्र लेबेदेव ने 50 GHz मिलीमीटर तरंगें उत्पन्न कीं।[28] 1897 में लॉर्ड रेले ने संवाहक (कंडक्टर) ट्यूबों और मनमानी आकार की ढांकता हुआ छड़ों के माध्यम से फैलने वाली विद्युत चुम्बकीय तरंगों की गणितीय सीमा मूल्य समस्या को हल किया।[30][31][32][33] जिसने वेवगाइड के माध्यम से फैलने वाले सूक्ष्म तरंग के मोड और कटऑफ आवृत्ति दी।[27]
चूंकि सूक्ष्म तरंग दृष्टि पथ की रेखा तक सीमित थे, वे दृश्य क्षितिज से परे संवाद नहीं कर सके, और तब उपयोग में आने वाले स्पार्क प्रेषक (ट्रांसमीटर) की कम शक्ति ने उनकी व्यावहारिक सीमा को कुछ मील तक सीमित कर दिया। 1896 के बाद रेडियो संचार के बाद के विकास ने कम आवृत्तियों को नियोजित किया, जो क्षितिज से परे जमीनी तरंगों के रूप में यात्रा कर सकता है और योण क्षेत्र (आयनोस्फीयर) को आकाश तरंगों के रूप में परावर्तित कर सकता है, और सूक्ष्म तरंग आवृत्तियों की इस समय और अधिक खोज नहीं की गई थी।
पहला सूक्ष्म तरंग संचार प्रयोग
सूक्ष्म तरंग आवृत्तियों का व्यावहारिक उपयोग 1940 और 1950 के दशक तक पर्याप्त स्रोतों की कमी के कारण नहीं हुआ था, चूंकि रेडियो प्रेषक (ट्रांसमीटर) में प्रयुक्त ट्रायोड वैक्यूम ट्यूब (वाल्व) इलेक्ट्रॉनिक ऑस्किलेटर अत्यधिक इलेक्ट्रॉन पारगमन समय और अंतराइलेक्ट्रोडी धारिता (इंटरइलेक्ट्रोड कैपेसिटेंस) के कारण कुछ सौ मेगाहर्ट्ज़ से अधिक आवृत्तियों का उत्पादन नहीं कर सका।[27] 1930 के दशक तक, नए सिद्धांतों का उपयोग करते हुए पहली कम शक्ति वाली सूक्ष्म तरंग वैक्यूम ट्यूब विकसित की गई थी; बरखौसेन कुर्ज़ ट्यूब और स्प्लिट-एनोड मैग्नेट्रोन।[27] ये कुछ गीगाहर्ट्ज़ तक की आवृत्तियों पर कुछ वाट बिजली उत्पन्न कर सकते थे और सूक्ष्म तरंग के साथ संचार में पहले प्रयोगों में उपयोग किए गए थे।
- English Channel microwave relay antennas 1931.jpg
Antennas of 1931 experimental 1.7 GHz microwave relay link across the English Channel.
Experimental 700 MHz transmitter 1932 at Westinghouse labs transmits voice over a mile.
- Southworth demonstrating waveguide.jpg
Southworth (at left) demonstrating waveguide at IRE meeting in 1938, showing 1.5 GHz microwaves passing through the 7.5 m flexible metal hose registering on a diode detector.
- Wilmer Barrow & horn antenna 1938.jpg
The first modern horn antenna in 1938 with inventor Wilmer L. Barrow
1931 में आंद्रे सी. क्लेवियर की अध्यक्षता में एक एंग्लो फ्रांसीसी संघ ने डोवर, यूके और कैलिस, फ्रांस के बीच अंग्रेजी चैनल 40 मील (64 किमी) के पार पहला प्रयोगात्मक सूक्ष्म तरंग रिले लिंक का प्रदर्शन किया।[34][35] सिस्टम ने टेलीफ़ोनी, टेलीग्राफ और प्रतिकृति डेटा को द्विदिश 1.7 गीगाहर्ट्ज़ किरण पर एक आधा वाट की शक्ति के साथ प्रेषित किया, जो कि 10 फुट (3 मीटर) धातु के व्यंजन के फोकस पर लघु बरखौसेन कुर्ज़ ट्यूबों द्वारा निर्मित है।
इन नई छोटी तरंग दैर्ध्य को अलग करने के लिए एक शब्द की आवश्यकता थी, जिसे पहले "शॉर्ट वेव" बैंड में शामिल किया गया था, जिसका मतलब 200 मीटर से छोटी सभी लहरें थीं। अर्ध प्रकाशिकी (ऑप्टिकल) तरंगों और लघु तरंग (शार्ट-वेव) अति लघु (अल्ट्राशॉर्ट) तरंगों का संक्षेप में उपयोग किया गया था, लेकिन यह पकड़ में नहीं आया। सूक्ष्म तरंग शब्द का पहली बार प्रयोग 1931 में हुआ था।[35][36]
रडार
द्वितीय विश्व युद्ध से पहले और उसके दौरान मुख्य रूप से गोपनीयता में रडार के विकास के परिणामस्वरूप तकनीकी प्रगति हुई जिसने सूक्ष्म तरंग को व्यावहारिक बना दिया।[27] सेंटीमीटर सीमा में तरंगदैर्ध्य छोटे रडार एंटेना देने के लिए आवश्यक थे जो विमान पर फिट होने के लिए पर्याप्त सघन थे ताकि दुश्मन के विमानों को स्थानीयकृत करने के लिए एक संकीर्ण पर्याप्त किरण चौड़ाई हो। यह पाया गया कि रेडियो तरंगों को ले जाने के लिए इस्तेमाल की जाने वाली पारंपरिक ट्रांसमिशन लाइनों में सूक्ष्म तरंग आवृत्तियों पर अत्यधिक बिजली की हानि होती थी, और बेल लैब्स में जॉर्ज साउथवर्थ और एमआईटी (MIT) में विल्मर बैरो ने स्वतंत्र रूप से 1936 में वेवगाइड का आविष्कार किया था।[30] बैरो ने 1938 में हॉर्न एंटीना का आविष्कार एक वेवगाइड में या बाहर सूक्ष्म तरंग को कुशलता से विकीर्ण करने के साधन के रूप में किया था। सूक्ष्म तरंग रिसीवर में, एक गैर-रेखीय घटक की आवश्यकता थी जो इन आवृत्तियों पर एक संसूचक (डिटेक्टर) और मिक्सर के रूप में कार्य करेगा, चूंकि वैक्यूम ट्यूबों में बहुत अधिक समाई थी। इस आवश्यकता को पूरा करने के लिए शोधकर्ताओं ने एक अप्रचलित तकनीक को पुनर्जीवित किया, बिंदु संपर्क क्रिस्टल संसूचक (कैट विशकर डिटेक्टर) जो कि वैक्यूम ट्यूब रिसीवर से पहले सदी के अंत में क्रिस्टल रेडियो में एक डिमोडुलेटर के रूप में इस्तेमाल किया गया था।[27][37] अर्धसंवाहक (कंडक्टर) जंक्शनों की कम धारिता ने उन्हें सूक्ष्म तरंग आवृत्तियों पर कार्य करने की अनुमति दी। 1930 के दशक में पहले आधुनिक सिलिकॉन और जर्मेनियम डायोड को सूक्ष्म तरंग संसूचक (डिटेक्टर) के रूप में विकसित किया गया था। और उनके विकास के दौरान सीखे गए अर्धचालक भौतिकी के सिद्धांतों ने युद्ध के बाद अर्धचालक इलेक्ट्रॉनिक्स का नेतृत्व किया।[27]
- R&B Magnetron.jpg
Randall and Boot's prototype cavity magnetron tube at the University of Birmingham, 1940. In use the tube was installed between the poles of an electromagnet
- Prototype klystron cutaway.jpg
First commercial klystron tube, by General Electric, 1940, sectioned to show internal construction
- AI Mk. VIIIA radar in Bristol Beaufighter VIF CH16665.jpg
British Mk. VIII, the first microwave air intercept radar, in nose of British fighter. Microwave radar, powered by the new magnetron tube, significantly shortened World War II.
- US Army Signal Corps AN-TRC-1, 5, 6, & 8 microwave relay station 1945.jpg
Mobile US Army microwave relay station 1945 demonstrating relay systems using frequencies from 100 MHz to 4.9 GHz which could transmit up to 8 phone calls on a beam.
द्वितीय विश्व युद्ध की शुरुआत में सूक्ष्म तरंग के पहले शक्तिशाली स्रोतों का आविष्कार किया गया था: 1937 में स्टैनफोर्ड विश्वविद्यालय में रसेल और सिगर्ड वेरियन द्वारा क्लिस्ट्रॉन ट्यूब, और 1940 में ब्रिटेन के बर्मिंघम विश्वविद्यालय में जॉन रान्डेल और हैरी बूट द्वारा कैविटी मैग्नेट्रोन ट्यूब।[27] 1941 के अंत में ब्रिटिश युद्धक विमानों पर दस सेंटीमीटर (3 गीगाहर्ट्ज़) सूक्ष्म तरंग रडार का उपयोग किया गया था और यह गेम चेंजर साबित हुआ। ब्रिटेन के 1940 के अपने अमेरिकी सहयोगी (टिज़र्ड मिशन) के साथ अपनी सूक्ष्म तरंग तकनीक को साझा करने के फैसले ने युद्ध को काफी छोटा कर दिया। एमआईटी विकिरण प्रयोगशाला 1940 में मैसाचुसेट्स प्रौद्योगिकी संस्थान में गुप्त रूप से रडार पर शोध करने के लिए स्थापित की गई थी, इसने सूक्ष्म तरंग का उपयोग करने के लिए आवश्यक बहुत से सैद्धांतिक ज्ञान का उत्पादन किया। पहला सूक्ष्म तरंग रिले सिस्टम युद्ध के अंत के निकट मित्र देशों की सेना द्वारा विकसित किया गया था और यूरोपीय थिएटर में सुरक्षित युद्धक्षेत्र संचार संचार के लिए उपयोग किया गया था।
विश्व युद्ध के बाद II
द्वितीय विश्व युद्ध के बाद, व्यावसायिक रूप से सूक्ष्म तरंग का तेजी से दोहन किया गया।[27] उनकी उच्च आवृत्ति के कारण उनके पास बहुत बड़ी सूचना वहन क्षमता (बैंडविड्थ) थी; एक सूक्ष्म तरंग किरण में हजारों फोन कॉल्स हो सकती हैं। 1950 और 60 के दशक में अमेरिका और यूरोप में शहरों के बीच टेलीफोन कॉल का आदान-प्रदान करने और टेलीविजन कार्यक्रमों को वितरित करने के लिए अंतरमहाद्वीपीय सूक्ष्म तरंग रिले संचार बनाए गए थे। नए टेलीविजन प्रसारण उद्योग में, 1940 के दशक से सूक्ष्म तरंग डिश का उपयोग मोबाइल उत्पादन ट्रकों से बैकहॉल वीडियो फीड को वापस स्टूडियो में प्रसारित करने के लिए किया जाता था, यह पहले दूरस्थ टीवी प्रसारण की अनुमति दे रहा है। पहला संचार उपग्रह 1960 के दशक में प्रक्षेपित किया गया था। जो सूक्ष्म तरंग किरण का उपयोग करके पृथ्वी पर व्यापक रूप से अलग-अलग बिंदुओं के बीच टेलीफोन कॉल और टेलीविजन को रिले करता था। 1964 में, अर्नो पेनज़ियास और रॉबर्ट वुडरो विल्सन ने बेल लैब्स, होल्मडेल, न्यू जर्सी में एक उपग्रह हॉर्न एंटीना में शोर की जांच करते हुए ब्रह्मांडीय सूक्ष्म तरंग पृष्ठभूमि विकिरण की खोज की।
सूक्ष्म तरंग रडार बन गया केंद्रीय प्रौद्योगिकी जिसका उपयोग हवाई यातायात नियंत्रण, समुद्री पथ प्रदर्शन (नेविगेशन), विमान-रोधी रक्षा, प्रक्षेपणास्त्र (बैलिस्टिक मिसाइल) का पता लगाने और बाद में कई अन्य उपयोगों में किया जाता है। रडार और उपग्रह संचार ने आधुनिक सूक्ष्म तरंग एंटेना के विकास को प्रेरित किया; परवलयिक एंटीना (सबसे आम प्रकार), कैसग्रेन एंटीना, लेंस एंटीना, स्लॉट एंटीना और चरणबद्ध सरणी।
1930 के दशक में वेस्टिंगहाउस में आई. एफ. मौरोमत्सेफ द्वारा सामग्री को जल्दी से गर्म करने और खाना पकाने की छोटी तरंगों की क्षमता की जांच की गई थी, और 1933 के शिकागो वर्ल्ड फेयर में 60 मेगाहर्ट्ज रेडियो प्रेषक (ट्रांसमीटर) के साथ खाना पकाने का प्रदर्शन किया गया था।[38] 1945 में रेथियॉन में रडार पर काम करने वाले एक अभियांत्रिक (इंजीनियर) पर्सी स्पेंसर ने देखा मैग्नेट्रोन थरथरानवाला से सूक्ष्म तरंग विकिरण ने उसकी जेब में एक कैंडी बार पिघला दिया। उन्होंने सूक्ष्म तरंग से खाना पकाने की जांच की और सूक्ष्म तरंग ओवन का आविष्कार किया, यह एक मैग्नेट्रोन से युक्त होता है जो भोजन से युक्त एक बंद धातु गुहा में सूक्ष्म तरंग खिलाता है, जिसका 8 अक्टूबर 1945 को रेथियॉन द्वारा पेटेंट कराया गया था। उनके खर्च के कारण सूक्ष्म तरंग ओवन का उपयोग शुरू में संस्थागत रसोई में किया जाता था, लेकिन 1986 तक यू.एस. में लगभग 25% परिवारों के पास एक घर था। सूक्ष्म तरंग हीटिंग का व्यापक रूप से प्लास्टिक निर्माण जैसे उद्योगों में एक औद्योगिक प्रक्रिया के रूप में उपयोग किया जाता है, और सूक्ष्म तरंग हाइपरथर्मी में कैंसर कोशिकाओं को मारने के लिए एक चिकित्सा चिकित्सा के रूप में।
रूडोल्फ कोम्फनर और जॉन पियर्स द्वारा 1943 में विकसित ट्रैवलिंग तरंग ट्यूब (TWT) ने 50 GHz तक के सूक्ष्म तरंग का एक उच्च शक्ति ट्यून करने योग्य स्रोत प्रदान किया, और यह सबसे व्यापक रूप से उपयोग की जाने वाली तरंग ट्यूब सूक्ष्म तरंग ओवन में उपयोग किए जाने वाले सर्वव्यापी मैग्नेट्रोन के अलावा) बन गई है। जाइरोट्रॉन ट्यूब परिवार रूस में विकसित हुआ और यह मिलीमीटर तरंग आवृत्तियों में मेगावाट बिजली का उत्पादन कर सकता है और इसका उपयोग औद्योगिक ताप और प्लाज्मा अनुसंधान, और कण त्वरक और परमाणु संलयन रिएक्टरों को शक्ति देने के लिए किया जाता है।
सॉलिड स्टेट सूक्ष्म तरंग उपकरण (डिवाइस)
1950 के दशक में अर्धसंवाहक (कंडक्टर) इलेक्ट्रॉनिक्स के विकास ने पहले ठोस अवस्था वाले सूक्ष्म तरंग उपकरणों को जन्म दिया जो एक नए सिद्धांत द्वारा काम करता है; नकारात्मक प्रतिरोध (युद्ध से पहले के कुछ सूक्ष्म तरंग ट्यूबों ने भी नकारात्मक प्रतिरोध का इस्तेमाल किया था)।[27] प्रतिक्रिया थरथरानवाला और दो बंदरगाह प्रवर्धक (एम्पलीफायर) जो कम आवृत्तियों पर उपयोग किए गए थे, वे सूक्ष्म तरंग आवृत्तियों पर अस्थिर हो गए, और डायोड जैसे एक पोर्ट उपकरण (डिवाइस) पर आधारित नकारात्मक प्रतिरोध ऑसिलेटर और एम्पलीफायरों ने बेहतर काम किया।
1957 में जापानी भौतिक विज्ञानी लियो एसाकी द्वारा आविष्कार किया गया सुरंग डायोड (टनल डायोड) कुछ मिलीवाट सूक्ष्म तरंग शक्ति का उत्पादन कर सकता था। इसके आविष्कार ने सूक्ष्म तरंग ऑसिलेटर्स के रूप में उपयोग के लिए बेहतर नकारात्मक प्रतिरोध अर्धचालक उपकरणों की खोज शुरू कर दी, जिसके परिणामस्वरूप 1956 में डब्ल्यू.टी. रीड और राल्फ एल। जॉनसन द्वारा IMPATT डायोड और जे.बी. गन द्वारा 1962 में गन डायोड का आविष्कार किया गया।[27] डायोड आज सबसे व्यापक रूप से उपयोग किए जाने वाले सूक्ष्म तरंग स्रोत हैं। दो कम शोर ठोस राज्य नकारात्मक प्रतिरोध सूक्ष्म तरंग प्रवर्धक (एम्पलीफायर) विकसित किए गए थे;
रूबी मेसर का आविष्कार 1953 में चार्ल्स एच. टाउन्स, जेम्स पी. गॉर्डन, और एच.जे. ज़ीगर द्वारा किया गया था, और वेरैक्टर पैरामीट्रिक प्रवर्धक (एम्पलीफायर), जिसे 1956 में मैरियन हाइन्स द्वारा विकसित किया गया था।[27] इनका उपयोग रेडियो टेलीस्कोप और सैटेलाइट ग्राउंड स्टेशनों में कम शोर वाले सूक्ष्म तरंग रिसीवर के लिए किया जाता था। मेसर ने परमाणु घड़ियों के विकास का नेतृत्व किया, जो परमाणुओं द्वारा उत्सर्जित एक सटीक सूक्ष्म तरंग आवृत्ति का उपयोग करके समय रखते हैं जो दो ऊर्जा स्तरों के बीच एक इलेक्ट्रॉन संक्रमण से गुजर रहा है। नकारात्मक प्रतिरोध प्रवर्धक (एम्पलीफायर) परिपथ को नए गैर-पारस्परिक वेवगाइड घटकों के आविष्कार की आवश्यकता होती है, जैसे संचारक (सर्कुलेटर), विलगक (आइसोलेटर्स) और दिशात्मक युग्मक (डायरेक्शनल कप्लर्स)। 1969 में कुरोकावा ने नकारात्मक प्रतिरोध परिपथ में स्थिरता के लिए गणितीय शर्तों को व्युत्पन्न किया जिसने सूक्ष्म तरंग थरथरानवाला डिजाइन का आधार बनाया।[39]
सूक्ष्म तरंग एकीकृत परिपथ
1970 के दशक से पहले सूक्ष्म तरंग उपकरण और परिपथ भारी और महंगे थे, इसलिए सूक्ष्म तरंग आवृत्तियां आम तौर पर प्रेषक (ट्रांसमीटर) के आउटपुट चरण और रिसीवर के आरएफ फ्रंट एंड तक सीमित थीं, और संकेतों को प्रसंस्करण के लिए कम मध्यवर्ती आवृत्ति के लिए विषमयुग्मित किया गया था। 1970 के दशक से वर्तमान तक की अवधि में छोटे सस्ते सक्रिय ठोस अवस्था वाले सूक्ष्म तरंग घटकों का विकास देखा गया है जिसे परिपथ बोर्डों पर लगाया जा सकता है, जिससे परिपथ सूक्ष्म तरंग आवृत्तियों पर महत्वपूर्ण सिग्नल प्रोसेसिंग कर सकते हैं। इसने सैटेलाइट टेलीविजन, केबल टेलीविजन, जीपीएस उपकरण (डिवाइस) और आधुनिक तार रहित उपकरण (डिवाइस) जैसे स्मार्टफोन, वाई-फाई और ब्लूटूथ को संभव बनाया है। जो सूक्ष्म तरंग का उपयोग करके संचार से जुड़ते हैं।
माइक्रोस्ट्रिप, सूक्ष्म तरंग आवृत्तियों पर प्रयोग करने योग्य एक प्रकार की ट्रांसमिशन लाइन, इसका आविष्कार 1950 के दशक में मुद्रित परिपथ के साथ किया गया था।[27] मुद्रित परिपथ बोर्डों पर आकार की एक विस्तृत श्रृंखला को सस्ते में बनाने की क्षमता ने संधारित्र (कैपेसिटर),
कुचालक (इंडक्टर्स), गुंजयमान स्टब्स (रेजोनेंट स्टब्स), स्प्लिटर्स, दिशात्मक युग्मक (डायरेक्शनल कप्लर्स), द्विसंकेतक (डिप्लेक्सर्स), फिल्टर और एंटेना के माइक्रोस्ट्रिप संस्करणों को बनाने की अनुमति दी, इस प्रकार सघन सूक्ष्म तरंग परिपथ के निर्माण की अनुमति देता है।[27]
सूक्ष्म तरंग आवृत्तियों पर संचालित ट्रांजिस्टर 1970 के दशक में विकसित किए गए थे। सेमीसंवाहक (कंडक्टर) गैलियम आर्सेनाइड (GaAs) में सिलिकॉन की तुलना में बहुत अधिक इलेक्ट्रॉन गतिशीलता होती है,[27] इसलिए इस सामग्री से बने उपकरण सिलिकॉन के समान उपकरणों की आवृत्ति के 4 गुना पर काम कर सकते हैं।
1970 के दशक की शुरुआत में गैलियम आर्सेनाइड (GaAs) का उपयोग पहले सूक्ष्म तरंग ट्रांजिस्टर बनाने के लिए किया गया था,[27]और यह तब से सूक्ष्म तरंग अर्धचालकों पर हावी है। मेसफेट (MESFETs) (धातु-अर्धचालक क्षेत्र-प्रभाव ट्रांजिस्टर), गेट के लिए स्कॉटटकी संधि (Schottky) का उपयोग करते हुए तेजी से गैलियम आर्सेनाइड (GaAs) क्षेत्र प्रभाव ट्रांजिस्टर, ये 1968 में विकसित किए गए थे और 100 GHz की कटऑफ आवृत्तियों तक पहुँच चुके हैं, और अब सबसे व्यापक रूप से उपयोग किए जाने वाले सक्रिय सूक्ष्म तरंग उपकरण हैं।[27] उच्च आवृत्ति सीमा वाले ट्रांजिस्टर का एक अन्य परिवार एचईएमटी (HEMT) (उच्च इलेक्ट्रॉन गतिशीलता ट्रांजिस्टर) है, जो दो अलग-अलग अर्धचालकों से बना एक क्षेत्र प्रभाव ट्रांजिस्टर है, अल गा अस (AlGaAs) और गैलियम आर्सेनाइड (GaAs), विषमसंधि (हेटेरोजंक्शन) तकनीक का उपयोग करते हुए, और इसी तरह के एचबीटी (HBT) (हेटेरोजंक्शन बाइपोलर ट्रांजिस्टर)।[27]
गैलियम आर्सेनाइड (GaAs) को अर्द्ध रोधक बनाया जा सकता है, जिससे इसे क्रियाधार (सब्सट्रेट) के रूप में इस्तेमाल किया जा सकता है निष्क्रिय घटकों के साथ-साथ ट्रांजिस्टर वाले कौन से परिपथ, इसे शिलामुद्रण द्वारा गढ़ा जा सकता है।[27] 1976 तक इसने पहले एकीकृत परिपथ (ICs) का नेतृत्व किया, जो सूक्ष्म तरंग आवृत्तियों पर कार्य करता था, जिसे मोनोलिथिक सूक्ष्म तरंग एकीकृत परिपथ (इंटीग्रेटेड परिपथ) (MMIC) कहा जाता है।[27] इन्हें माइक्रोस्ट्रिप पीसीबी परिपथ से अलग करने के लिए "मोनोलिथिक" शब्द जोड़ा गया था, जिसे "सूक्ष्म तरंग एकीकृत परिपथ" एमआईसी (MIC) कहा जाता था। तब से सिलिकॉन एमएमआईसी (MMICs) भी विकसित किए गए हैं। आज एमएमआईसी (MMICs) एनालॉग और डिजिटल उच्च आवृत्ति इलेक्ट्रॉनिक्स दोनों के वर्कहॉर्स बन गए हैं, जिससे सिंगल चिप सूक्ष्म तरंग रिसीवर, ब्रॉडबैंड प्रवर्धक (एम्पलीफायर), मोडेम और माइक्रोप्रोसेसर के उत्पादन को सक्षम किया जा सकता है।
यह भी देखें
- ब्लॉक अपकंटेर्टर (BUC)
- कॉस्मिक माइक्रोवेव पृष्ठभूमि
- इलेक्ट्रॉन साइक्लोट्रॉन प्रतिध्वनि
- अंतर्राष्ट्रीय माइक्रोवेव बिजली संस्थान
- कम-शोर ब्लॉक डाउनकनेवर्टर | कम-शोर ब्लॉक कनवर्टर (LNB)
- मेसर
- माइक्रोवेव श्रवण प्रभाव
- माइक्रोवेव गुहा
- माइक्रोवेव रसायन विज्ञान
- माइक्रोवेव रेडियो रिले
- माइक्रोवेव ट्रांसमिशन
- रेन फीका
- आरएफ स्विच मैट्रिक्स
- बात (सुनने का उपकरण)
संदर्भ
- ↑ Hitchcock, R. Timothy (2004). Radio-frequency and Microwave Radiation. American Industrial Hygiene Assn. p. 1. ISBN 978-1931504553.
- ↑ 2.0 2.1 Kumar, Sanjay; Shukla, Saurabh (2014). Concepts and Applications of Microwave Engineering. PHI Learning Pvt. Ltd. p. 3. ISBN 978-8120349353.
- ↑ Jones, Graham A.; Layer, David H.; Osenkowsky, Thomas G. (2013). National Association of Broadcasters Engineering Handbook, 10th Ed. Taylor & Francis. p. 6. ISBN 978-1136034107.
- ↑ Pozar, David M. (1993). Microwave Engineering Addison–Wesley Publishing Company. ISBN 0-201-50418-9.
- ↑ Sorrentino, R. and Bianchi, Giovanni (2010) Microwave and RF Engineering, John Wiley & Sons, p. 4, ISBN 047066021X.
- ↑ 6.0 6.1 Seybold, John S. (2005). Introduction to RF Propagation. John Wiley and Sons. pp. 55–58. ISBN 978-0471743682.
- ↑ 7.0 7.1 Golio, Mike; Golio, Janet (2007). RF and Microwave Passive and Active Technologies. CRC Press. pp. I.2–I.4. ISBN 978-1420006728.
- ↑ Karmel, Paul R.; Colef, Gabriel D.; Camisa, Raymond L. (1998). Introduction to Electromagnetic and Microwave Engineering. John Wiley and Sons. p. 1. ISBN 9780471177814.
- ↑ Microwave Oscillator Archived 2013-10-30 at the Wayback Machine notes by Herley General Microwave
- ↑ 10.0 10.1 Sisodia, M. L. (2007). Microwaves : Introduction To Circuits, Devices And Antennas. New Age International. pp. 1.4–1.7. ISBN 978-8122413380.
- ↑ Liou, Kuo-Nan (2002). An introduction to atmospheric radiation. Academic Press. p. 2. ISBN 978-0-12-451451-5. Retrieved 12 July 2010.
- ↑ "IEEE 802.20: Mobile Broadband Wireless Access (MBWA)". Official web site. Retrieved August 20, 2011.
- ↑ "ALMA website". Retrieved 2011-09-21.
- ↑ "Welcome to ALMA!". Retrieved 2011-05-25.
- ↑ Wright, E.L. (2004). "Theoretical Overview of Cosmic Microwave Background Anisotropy". In W. L. Freedman (ed.). Measuring and Modeling the Universe. Carnegie Observatories Astrophysics Series. Cambridge University Press. p. 291. arXiv:astro-ph/0305591. Bibcode:2004mmu..symp..291W. ISBN 978-0-521-75576-4.
- ↑ "The way to new energy". ITER. 2011-11-04. Retrieved 2011-11-08.
- ↑ Silent Guardian Protection System. Less-than-Lethal Directed Energy Protection. raytheon.com
- ↑ "Frequency Letter bands". Microwave Encyclopedia. Microwaves101 website, Institute of Electrical and Electronics Engineers (IEEE). 14 May 2016. Retrieved 1 July 2018.
- ↑ Golio, Mike; Golio, Janet (2007). RF and Microwave Applications and Systems. CRC Press. pp. 1.9–1.11. ISBN 978-1420006711.
- ↑ See "eEngineer – Radio Frequency Band Designations". Radioing.com. Retrieved 2011-11-08., PC Mojo – Webs with MOJO from Cave Creek, AZ (2008-04-25). "Frequency Letter bands – Microwave Encyclopedia". Microwaves101.com. Archived from the original on 2014-07-14. Retrieved 2011-11-08., Letter Designations of Microwave Bands.
- ↑ Skolnik, Merrill I. (2001) Introduction to Radar Systems, Third Ed., p. 522, McGraw Hill. 1962 Edition full text
- ↑ Nave, Rod. "Interaction of Radiation with Matter". HyperPhysics. Retrieved 20 October 2014.
- ↑ Goldsmith, JR (December 1997). "Epidemiologic evidence relevant to radar (microwave) effects". Environmental Health Perspectives. 105 (Suppl. 6): 1579–1587. doi:10.2307/3433674. JSTOR 3433674. PMC 1469943. PMID 9467086.
- ↑ Andjus, R.K.; Lovelock, J.E. (1955). "Reanimation of rats from body temperatures between 0 and 1 °C by microwave diathermy". The Journal of Physiology. 128 (3): 541–546. doi:10.1113/jphysiol.1955.sp005323. PMC 1365902. PMID 13243347.
- ↑ Lipman, Richard M.; Tripathi, Brenda J.; Tripathi, Ramesh C. (November–December 1988). "Cataracts Induced by Microwave and Ionizing Radiation". Survey of Ophthalmology. 33 (3): 206–207. doi:10.1016/0039-6257(88)90088-4. PMID 3068822.
- ↑ Hong, Sungook (2001). Wireless: From Marconi's Black-box to the Audion. MIT Press. pp. 5–9, 22. ISBN 978-0262082983.
- ↑ 27.00 27.01 27.02 27.03 27.04 27.05 27.06 27.07 27.08 27.09 27.10 27.11 27.12 27.13 27.14 27.15 27.16 27.17 27.18 27.19 27.20 Roer, T.G. (2012). Microwave Electronic Devices. Springer Science and Business Media. pp. 1–12. ISBN 978-1461525004.
- ↑ 28.0 28.1 28.2 28.3 28.4 Sarkar, T. K.; Mailloux, Robert; Oliner, Arthur A. (2006). History of Wireless. John Wiley and Sons. pp. 474–486. ISBN 978-0471783015.
- ↑ Emerson, D.T. (February 1998). "The work of Jagdish Chandra Bose: 100 years of MM-wave research". National Radio Astronomy Observatory.
- ↑ 30.0 30.1 Packard, Karle S. (September 1984). "The Origin of Waveguides: A Case of Multiple Rediscovery" (PDF). IEEE Transactions on Microwave Theory and Techniques. MTT-32 (9): 961–969. Bibcode:1984ITMTT..32..961P. CiteSeerX 10.1.1.532.8921. doi:10.1109/tmtt.1984.1132809. Retrieved March 24, 2015.
- ↑ Strutt, William (Lord Rayleigh) (February 1897). "On the passage of electric waves through tubes, or the vibrations of dielectric cylinders". Philosophical Magazine. 43 (261): 125–132. doi:10.1080/14786449708620969.
- ↑ Kizer, George (2013). Digital Microwave Communication: Engineering Point-to-Point Microwave Systems. John Wiley and Sons. p. 7. ISBN 978-1118636800.
- ↑ Lee, Thomas H. (2004). Planar Microwave Engineering: A Practical Guide to Theory, Measurement, and Circuits, Vol. 1. Cambridge University Press. pp. 18, 118. ISBN 978-0521835268.
- ↑ "Microwaves span the English Channel" (PDF). Short Wave Craft. Vol. 6, no. 5. New York: Popular Book Co. September 1935. pp. 262, 310. Retrieved March 24, 2015.
- ↑ 35.0 35.1 Free, E.E. (August 1931). "Searchlight radio with the new 7 inch waves" (PDF). Radio News. Vol. 8, no. 2. New York: Radio Science Publications. pp. 107–109. Retrieved March 24, 2015.
- ↑ Ayto, John (2002). 20th century words. p. 269. ISBN 978-7560028743.
- ↑ Riordan, Michael; Lillian Hoddeson (1988). Crystal fire: the invention of the transistor and the birth of the information age. US: W. W. Norton & Company. pp. 89–92. ISBN 978-0-393-31851-7.
- ↑ "Cooking with Short Waves" (PDF). Short Wave Craft. 4 (7): 394. November 1933. Retrieved 23 March 2015.
- ↑ Kurokawa, K. (July 1969). "Some Basic Characteristics of Broadband Negative Resistance Oscillator Circuits". Bell System Tech. J. 48 (6): 1937–1955. doi:10.1002/j.1538-7305.1969.tb01158.x. Retrieved December 8, 2012.
बाहरी संबंध
- EM Talk, Microwave Engineering Tutorials and Tools
- Millimeter Wave and Microwave Waveguide dimension chart.
Lua error in Module:Navboxes at line 53: attempt to call local 'p' (a table value).
Lua error in Module:Navboxes at line 53: attempt to call local 'p' (a table value).