ट्रांसयूरेनियम तत्व

From Vigyanwiki
Revision as of 13:16, 25 March 2023 by alpha>Indicwiki (Created page with "{{distinguish|Transactinide element}} {{short description|Element whose atomic number is greater than 92}} {{periodic table (micro)|title=Transuranium elements<br/>in the pe...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Transuranium elements
in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Z > 92 (U)

ट्रांसयुरेनियम तत्व (ट्रांसयूरानिक तत्वों के रूप में भी जाना जाता है) 92 से अधिक परमाणु संख्या वाले रासायनिक तत्व हैं, जो यूरेनियम की परमाणु संख्या है। ये सभी तत्व अस्थिर हैं और रेडियोधर्मी अन्य तत्वों में क्षय हो जाते हैं। नेपच्यून और प्लूटोनियम (जो प्रकृति में ट्रेस मात्रा में पाए गए हैं) के अपवाद के साथ, सभी प्राकृतिक रूप से पृथ्वी पर नहीं होते हैं और सिंथेटिक तत्व हैं।

सिंहावलोकन

Periodic table with elements colored according to the half-life of their most stable isotope.
  Elements which contain at least one stable isotope.
  Slightly radioactive elements: the most stable isotope is very long-lived, with a half-life of over two million years.
  Significantly radioactive elements: the most stable isotope has half-life between 800 and 34,000 years.
  Radioactive elements: the most stable isotope has half-life between one day and 130 years.
  Highly radioactive elements: the most stable isotope has half-life between several minutes and one day.
  Extremely radioactive elements: the most stable isotope has half-life less than several minutes.

परमाणु संख्या 1 से 92 तक के तत्वों में से अधिकांश प्रकृति में पाए जा सकते हैं, जिनमें स्थिर समस्थानिक (जैसे हाइड्रोजन) या बहुत लंबे समय तक रहने वाले रेडियो आइसोटोप (जैसे यूरेनियम), या यूरेनियम और थोरियम के क्षय के सामान्य क्षय उत्पादों के रूप में विद्यमान हैं। (जैसे रेडॉन)। अपवाद तत्व टेक्नेटियम, वादा, एस्टैटिन और फ्रैनशियम हैं; चारों प्रकृति में पाए जाते हैं, लेकिन केवल यूरेनियम और थोरियम क्षय श्रृंखलाओं की बहुत छोटी शाखाओं में, और इस प्रकार सभी तत्व 87 को पहले प्रकृति के बजाय प्रयोगशाला में संश्लेषण द्वारा खोजा गया था (और यहां तक ​​​​कि तत्व 87 को इसके शुद्ध नमूनों से खोजा गया था) माता-पिता, सीधे प्रकृति से नहीं)।

उच्च परमाणु संख्या वाले सभी तत्वों को पहले प्रयोगशाला में खोजा गया है, बाद में नेप्च्यूनियम और प्लूटोनियम भी प्रकृति में खोजे गए हैं। वे सभी रेडियोधर्मी हैं, जिनका आधा जीवन पृथ्वी की आयु से बहुत कम है, इसलिए इन तत्वों के किसी भी आदिम परमाणु, यदि वे कभी पृथ्वी के निर्माण के समय मौजूद थे, तो लंबे समय से क्षय हो गए हैं। कुछ यूरेनियम युक्त चट्टान में नेप्टुनियम और प्लूटोनियम की ट्रेस मात्रा, और परमाणु हथियारों के वायुमंडलीय परीक्षणों के दौरान थोड़ी मात्रा में उत्पादन होता है। ये दो तत्व बाद के बीटा क्षय (जैसे यूरेनियम -238 | यूरेनियम अयस्क में न्यूट्रॉन कैप्चर से उत्पन्न होते हैं।238यू + न्यूट्रॉन → यूरेनियम-239|239यू → नेपच्यूनियम-239|239एनपी → प्लूटोनियम-239|239पु)।

प्लूटोनियम से भारी सभी तत्व पूरी तरह सिंथेटिक तत्व हैं; वे परमाणु रिएक्टरों या कण त्वरक में बनाए जाते हैं। जैसे-जैसे परमाणु संख्या बढ़ती है, इन तत्वों का आधा जीवन घटने की सामान्य प्रवृत्ति दर्शाता है। हालाँकि, अपवाद हैं, जिनमें अदालत और dubnium के कई समस्थानिक शामिल हैं। इस श्रृंखला में कुछ भारी तत्व, परमाणु संख्या 110-114 के आसपास, प्रवृत्ति को तोड़ने और स्थिरता के सैद्धांतिक द्वीप को शामिल करते हुए बढ़ी हुई परमाणु स्थिरता को प्रदर्शित करने के लिए सोचा जाता है।[1] भारी ट्रांसयुरानिक तत्वों का उत्पादन करना कठिन और महंगा है, और उनकी कीमतें परमाणु संख्या के साथ तेजी से बढ़ती हैं। 2008 तक, हथियार-ग्रेड प्लूटोनियम की कीमत लगभग $4,000/ग्राम थी,[2] और कलिफ़ोरनियम $60,000,000/ग्राम से अधिक हो गया।[3] आइंस्टिनियम सबसे भारी तत्व है जिसे मैक्रोस्कोपिक मात्रा में उत्पादित किया गया है।[4] ट्रांसयूरानिक तत्व जो खोजे नहीं गए हैं, या खोजे गए हैं, लेकिन अभी तक आधिकारिक तौर पर नाम नहीं दिए गए हैं, शुद्ध और व्यावहारिक रसायन के अंतर्राष्ट्रीय संघ के व्यवस्थित तत्व नामों का उपयोग करते हैं। ट्रान्सुरानिक तत्वों का नामकरण तत्व नामकरण विवाद का स्रोत हो सकता है।

ट्रांसयूरेनियम तत्वों की खोज और नामकरण

अब तक, अनिवार्य रूप से सभी ट्रांसयूरेनियम तत्वों को चार प्रयोगशालाओं में खोजा गया है: संयुक्त राज्य अमेरिका में लॉरेंस बर्कले राष्ट्रीय प्रयोगशाला (तत्व 93-101, 106, और 103-105 के लिए संयुक्त क्रेडिट), रूस में परमाणु अनुसंधान के लिए संयुक्त संस्थान (तत्व) 102 और 114-118, और 103-105 के लिए संयुक्त क्रेडिट), जर्मनी में भारी आयन अनुसंधान के लिए जीएसआई हेल्महोल्ट्ज केंद्र (तत्व 107-112), और जापान में RIKEN (तत्व 113)।

  • 1945-1974 के दौरान कैलिफोर्निया विश्वविद्यालय, बर्कले में विकिरण प्रयोगशाला (अब लॉरेंस बर्कले नेशनल लेबोरेटरी), मुख्य रूप से एडविन मैकमिलन, ग्लेन सीबोर्ग और अल्बर्ट घिरसो के नेतृत्व में:
    • 93. नेपच्यूनियम, एनपी, नेपच्यून ग्रह के नाम पर रखा गया है, क्योंकि यह यूरेनियम का अनुसरण करता है और नेपच्यून गैस विशाल (1940) में अरुण ग्रह का अनुसरण करता है।
    • 94. प्लूटोनियम, पु, तत्कालीन ग्रह प्लूटो के नाम पर,[lower-alpha 1] समान नामकरण नियम का पालन करना क्योंकि यह नेप्च्यूनियम का अनुसरण करता है और प्लूटो सौर मंडल (1940) में नेपच्यून का अनुसरण करता है।
    • 95. रेडियोऐक्टिव , एम, नाम इसलिए दिया गया क्योंकि यह युरोपियम का एक एनालॉग है, और इसलिए इसका नाम उस महाद्वीप के नाम पर रखा गया जहां इसे पहली बार बनाया गया था (1944)।
    • 96. क्यूरियम, सीएम, पियरे क्यूरी और मारिया स्कोलोडोव्स्का-क्यूरी के नाम पर, प्रसिद्ध वैज्ञानिक जिन्होंने पहले रेडियोधर्मी तत्वों (1944) को अलग किया, क्योंकि इसके लाइटर एनालॉग गैडोलीनियम का नाम जोहान गैडोलिन के नाम पर रखा गया था।
    • 97. बर्केलियम, बीके, का नाम बर्कले, कैलिफोर्निया शहर के नाम पर रखा गया, जहां कैलिफोर्निया विश्वविद्यालय, बर्कले स्थित है (1949)।
    • 98. कैलिफोर्नियम, सीएफ, कैलिफोर्निया राज्य के नाम पर रखा गया, जहां विश्वविद्यालय स्थित है (1950)।
    • 99। आइंस्टीनियम, ईएस, सैद्धांतिक भौतिक विज्ञानी अल्बर्ट आइंस्टीन (1952) के नाम पर।
    • 100। फेर्मियम , एफएम, एनरिको फर्मी के नाम पर, भौतिक विज्ञानी जिसने पहली नियंत्रित श्रृंखला प्रतिक्रिया (1952) का उत्पादन किया।
    • 101। मेंडलीव, एमडी, जिसका नाम रूसी रसायनज्ञ दिमित्री मेंडेलीव के नाम पर रखा गया, को रासायनिक तत्वों (1955) की आवर्त सारणी के प्राथमिक निर्माता होने का श्रेय दिया जाता है।
    • 102। रईस , नो, का नाम अल्फ्रेड नोबेल (1958) के नाम पर रखा गया। इस खोज का दावा JINR द्वारा भी किया गया था, जिसने फ्रेडरिक जूलियट-क्यूरी के बाद इसे जूलियोटियम (Jl) नाम दिया था। IUPAC ने निष्कर्ष निकाला कि JINR पहले तत्व को दृढ़ता से संश्लेषित करने वाला था, लेकिन नोबेलियम नाम को साहित्य में गहराई से बनाए रखा।
    • 103। लोरेनसियम, एलआर, का नाम अर्नेस्ट ओ. लॉरेंस के नाम पर रखा गया है, जो एक भौतिक विज्ञानी साइक्लोट्रॉन के विकास के लिए जाने जाते हैं, और वह व्यक्ति जिसके लिए लॉरेंस लिवरमोर राष्ट्रीय प्रयोगशाला और लॉरेंस बर्कले नेशनल लेबोरेटरी (जिसने इन ट्रांसयूरेनियम तत्वों के निर्माण की मेजबानी की) का नाम दिया गया है ( 1961)। इस खोज का दावा JINR द्वारा भी किया गया था, जिसने अर्नेस्ट रदरफोर्ड के नाम पर रदरफोर्डियम (Rf) नाम प्रस्तावित किया था। आईयूपीएसी ने निष्कर्ष निकाला कि क्रेडिट को साझा किया जाना चाहिए, लॉरेंसियम नाम को साहित्य में बनाए रखा जाना चाहिए।
    • 104। रदरफोर्डियम, आरएफ, का नाम अर्नेस्ट रदरफोर्ड के नाम पर रखा गया, जो परमाणु नाभिक (1968) की अवधारणा के लिए जिम्मेदार थे। इस खोज का दावा डबना, रूस (तब सोवियत संघ) में संयुक्त संस्थान फॉर न्यूक्लियर रिसर्च (JINR) द्वारा भी किया गया था, जिसका नेतृत्व मुख्य रूप से जॉर्जी फ्लायरोव ने किया था: उन्होंने इगोर कुरचटोव के बाद तत्व कुरचटोवियम (कू) नाम दिया था। IUPAC ने निष्कर्ष निकाला कि क्रेडिट साझा किया जाना चाहिए।
    • 105। Dubnium, Db, एक तत्व जिसका नाम Dubna शहर के नाम पर रखा गया है, जहाँ JINR स्थित है। मूल रूप से बर्कले समूह (1970) द्वारा ओटो हैन के सम्मान में हैसियम (हा) नाम दिया गया था, लेकिन इंटरनेशनल यूनियन ऑफ प्योर एंड एप्लाइड केमिस्ट्री (1997) द्वारा इसका नाम बदल दिया गया। इस खोज का दावा JINR ने भी किया था, जिसने नील्स बोह्र के नाम पर इसका नाम नील्सबोरियम (Ns) रखा था। IUPAC ने निष्कर्ष निकाला कि क्रेडिट साझा किया जाना चाहिए।
    • 106। सीबोर्गियम, एसजी, का नाम ग्लेन टी. सीबोर्ग के नाम पर रखा गया। यह नाम विवाद का कारण बना क्योंकि सीबोर्ग अभी भी जीवित था, लेकिन अंततः अंतर्राष्ट्रीय रसायनज्ञों (1974) द्वारा स्वीकार किया गया। इस खोज का दावा JINR ने भी किया था। आईयूपीएसी ने निष्कर्ष निकाला कि बर्कले की टीम ने सबसे पहले इस तत्व का ठोस संश्लेषण किया था।

1980-2000 के दौरान मुख्य रूप से गॉटफ्राइड मुन्ज़ेनबर्ग, पीटर आर्मब्रस्टर और सिगर्ड हॉफमैन के नेतृत्व में डार्मस्टाट, हेस्से, जर्मनी में द गेसेलशाफ्ट फर श्वेरियनेनफोरशंग (सोसाइटी फॉर हेवी आयन रिसर्च):

    • 107। बोहरियम, बीएच, डेनिश भौतिक विज्ञानी नील्स बोह्र के नाम पर, परमाणु की संरचना की व्याख्या में महत्वपूर्ण (1981)। इस खोज का दावा JINR ने भी किया था। IUPAC ने निष्कर्ष निकाला कि GSI सबसे पहले इस तत्व को ठोस रूप से संश्लेषित करने वाला था। GSI टीम ने तत्व 105 पर नामकरण विवाद को हल करने के लिए मूल रूप से नील्सबोरियम (Ns) प्रस्तावित किया था, लेकिन इसे IUPAC द्वारा बदल दिया गया था क्योंकि तत्व नाम में वैज्ञानिक के पहले नाम का उपयोग करने के लिए कोई मिसाल नहीं थी।
    • 108। Hassium, Hs, जिसका नाम हेसन के नाम के लैटिन रूप के नाम पर रखा गया है, जर्मनी के जर्मन राज्य जहां यह काम किया गया था (1984)। इस खोज का दावा JINR ने भी किया था। IUPAC ने निष्कर्ष निकाला कि टीJINR में पथप्रदर्शक कार्य को स्वीकार करते हुए, GSI सबसे पहले इस तत्व को ठोस रूप से संश्लेषित करने वाला था।
    • 109। metnerium, माउंट, का नाम एक ऑस्ट्रियाई भौतिक विज्ञानी लिसा मीटनर के नाम पर रखा गया, जो परमाणु विखंडन (1982) का अध्ययन करने वाले शुरुआती वैज्ञानिकों में से एक थे।
    • 110। darmstadtium, डीएस, डार्मस्टाट, जर्मनी के नाम पर रखा गया, जिस शहर में यह काम किया गया था (1994)। इस खोज का दावा JINR द्वारा भी किया गया था, जिसने हेनरी बेकरेल के नाम पर बेकरेलियम का प्रस्ताव रखा था, और LBNL द्वारा, जिसने तत्व 105 पर विवाद को हल करने के लिए हैनियम नाम प्रस्तावित किया था (विभिन्न तत्वों के लिए स्थापित नामों के पुन: उपयोग का विरोध करने के बावजूद)। आईयूपीएसी ने निष्कर्ष निकाला कि जीएसआई सबसे पहले इस तत्व को ठोस रूप से संश्लेषित करने वाला था।
    • 111। एक्स-रे (1994) के खोजकर्ता विल्हेम कॉनराड रॉन्टगन के नाम पर रेन्टजेनियम , आरजी।
    • 112। कॉपरनिकियम, सीएन, खगोलविद निकोलस कोपरनिकस (1996) के नाम पर रखा गया।
  • रिकेन|वाको, साइतामा, जापान में रिकागाकू केनक्यूशो (रिकेन), मुख्य रूप से कोसुके मोरीता के नेतृत्व में:
    • 113। निहोनियम, एनएच, जापान के नाम पर (जापानी भाषा में निहोन) जहां तत्व की खोज की गई थी (2004)। इस खोज का दावा JINR ने भी किया था। IUPAC ने निष्कर्ष निकाला कि RIKEN तत्व को ठोस रूप से संश्लेषित करने वाला पहला व्यक्ति था।
  • 2000 के बाद से लॉरेंस लिवरमोर नेशनल लेबोरेटरी (एलएलएनएल) समेत कई अन्य प्रयोगशालाओं के सहयोग से डबना, रूस में संयुक्त संस्थान फॉर न्यूक्लियर रिसर्च (जेआईएनआर), मुख्य रूप से यूरी की पूंछ गर्म है के नेतृत्व में:
    • 114। फ्लोरोवियम , Fl, सोवियत भौतिक विज्ञानी जॉर्ज फ्लायरोव के नाम पर, JINR (1999) के संस्थापक।
    • 115। मोस्कोवियम, एमसी, मास्को क्षेत्र, रूस के नाम पर रखा गया, जहां तत्व की खोज की गई थी (2004)।
    • 116। लिवरमोरियम, एलवी, लॉरेंस लिवरमोर नेशनल लेबोरेटरी के नाम पर, डिस्कवरी (2000) में JINR के साथ एक सहयोगी।
    • 117। टेनेसीन, टी, टेनेसी के क्षेत्र के नाम पर, जहां तत्व के संश्लेषण के लिए आवश्यक बर्कीलियम लक्ष्य निर्मित किया गया था (2010)।
    • 118. oganesson, ओग, यूरी ओगेनेसियन के नाम पर रखा गया, जिन्होंने 114 से 118 (2002) के तत्वों की खोज में जेआईएनआर टीम का नेतृत्व किया।

अत्यधिक भारी तत्व

आवर्त सारणी में ट्रांसएक्टिनाइड तत्वों की स्थिति।

अतिभारी तत्व, (जिसे अतिभारी परमाणु के रूप में भी जाना जाता है, आमतौर पर संक्षिप्त रूप में SHE) आमतौर पर रदरफोर्डियम (परमाणु संख्या 104) से शुरू होने वाले ट्रांसएक्टिनाइड तत्वों को संदर्भित करता है। उन्हें केवल कृत्रिम रूप से बनाया गया है, और वर्तमान में कोई व्यावहारिक उद्देश्य नहीं है क्योंकि उनका छोटा आधा जीवन बहुत ही कम समय के बाद क्षय का कारण बनता है, कुछ मिनटों से लेकर कुछ मिलीसेकंड तक (डबनियम को छोड़कर, जिसका आधा जीवन है एक दिन में), जो उन्हें अध्ययन करने में भी बेहद कठिन बनाता है।[5][6] 20वीं शताब्दी के उत्तरार्ध के बाद से अत्यधिक भारी परमाणुओं का निर्माण किया गया है, और 21वीं शताब्दी के दौरान प्रौद्योगिकी विकास के रूप में लगातार बनाया जा रहा है। वे कण त्वरक में तत्वों की बमबारी के माध्यम से बनाए जाते हैं। उदाहरण के लिए, कैलिफोर्नियम-249 और कार्बन-12 के परमाणु संलयन से रदरफोर्डियम-261 का निर्माण होता है। ये तत्व परमाणु पैमाने पर मात्रा में निर्मित होते हैं और सामूहिक निर्माण की कोई विधि नहीं पाई गई है।[5]


अनुप्रयोग

अन्य अतिभारी तत्वों को संश्लेषित करने के लिए ट्रांसयूरेनियम तत्वों का उपयोग किया जा सकता है।[7] स्थिरता द्वीप के तत्वों में कॉम्पैक्ट परमाणु हथियारों के विकास सहित संभावित रूप से महत्वपूर्ण सैन्य अनुप्रयोग हैं।[8] संभावित रोजमर्रा के अनुप्रयोग विशाल हैं; एमरिकियम तत्व का उपयोग धूम्र संसूचक और स्पेक्ट्रोमीटर जैसे उपकरणों में किया जाता है।[9][10]


यह भी देखें

संदर्भ

  1. Pluto was a planet at the time of naming, but has since been reclassified as a dwarf planet.
  1. Considine, Glenn, ed. (2002). वैन नोस्ट्रैंड का वैज्ञानिक विश्वकोश (9th ed.). New York: Wiley Interscience. p. 738. ISBN 978-0-471-33230-5.
  2. Morel, Andrew (2008). Elert, Glenn (ed.). "प्लूटोनियम की कीमत". The Physics Factbook. Archived from the original on 20 October 2018.
  3. Martin, Rodger C.; Kos, Steve E. (2001). Applications and Availability of Californium-252 Neutron Sources for Waste Characterization (Report). CiteSeerX 10.1.1.499.1273.
  4. Silva, Robert J. (2006). "Fermium, Mendelevium, Nobelium and Lawrencium". In Morss, Lester R.; Edelstein, Norman M.; Fuger, Jean (eds.). एक्टिनाइड और ट्रांसएक्टिनाइड तत्वों की रसायन (Third ed.). Dordrecht, The Netherlands: Springer Science+Business Media. ISBN 978-1-4020-3555-5.
  5. 5.0 5.1 Heenen, Paul-Henri; Nazarewicz, Witold (2002). "अतिभारी नाभिक की खोज" (PDF). Europhysics News. 33 (1): 5–9. Bibcode:2002ENews..33....5H. doi:10.1051/epn:2002102. Archived (PDF) from the original on 20 July 2018.
  6. Greenwood, Norman N. (1997). "Recent developments concerning the discovery of elements 100–111" (PDF). Pure and Applied Chemistry. 69 (1): 179–184. doi:10.1351/pac199769010179. S2CID 98322292. Archived (PDF) from the original on 21 July 2018.
  7. Lougheed, R. W.; et al. (1985). "Search for superheavy elements using 48Ca + 254Esg reaction". Physical Review C. 32 (5): 1760–1763. Bibcode:1985PhRvC..32.1760L. doi:10.1103/PhysRevC.32.1760. PMID 9953034.
  8. Gsponer, André; Hurni, Jean-Pierre (1997). थर्मोन्यूक्लियर विस्फोटक के भौतिक सिद्धांत, जड़त्वीय बंधन संलयन, और चौथी पीढ़ी के परमाणु हथियारों की खोज (PDF). International Network of Engineers and Scientists Against Proliferation. pp. 110–115. ISBN 978-3-933071-02-6. Archived (PDF) from the original on 6 June 2018.
  9. "Smoke Detectors and Americium", Nuclear Issues Briefing Paper, vol. 35, May 2002, archived from the original on 11 September 2002, retrieved 2015-08-26
  10. Nuclear Data Viewer 2.4, NNDC


अग्रिम पठन