स्क्वेर वेव

From Vigyanwiki
Revision as of 12:15, 20 March 2023 by alpha>Govind0190
Square wave
File:Waveforms.svg
Sine, square, triangle, and sawtooth waveforms
General information
सामान्य परिभाषा
आवेदन के क्षेत्रElectronics, synthesizers
Domain, Codomain and Image
डोमेन
कोडोमेन
Basic features
समताOdd
अवधि1
एंटीडेरिवेटिवTriangle wave
फोरियर श्रेणी

एक स्क्वायर वेव एक गैर-साइनसॉइडल आवधिक तरंग है जिसमें न्यूनतम और अधिकतम समान अवधि के साथ निश्चित न्यूनतम और अधिकतम मानों के बीच एक स्थिर आवृत्ति पर आयाम वैकल्पिक होता है। एक आदर्श स्क्वायर वेव में, न्यूनतम और अधिकतम के बीच संक्रमण तात्कालिक होते हैं।

स्क्वायर वेव पल्स वेव का एक विशेष मामला है जो न्यूनतम और अधिकतम आयामों पर मनमाने ढंग से अवधि की अनुमति देता है। पल्स वेव की कुल अवधि के उच्च अवधि के अनुपात को कर्तव्य चक्र कहा जाता है। एक सच्चे स्क्वायर वेव में 50% कर्तव्य चक्र (समान उच्च और निम्न अवधि) होता है।

इलेक्ट्रॉनिक और सिग्नल प्रोसेसिंग, विशेष रूप से डिजिटल इलेक्ट्रॉनिक्स और डिजिटल सिग्नल प्रोसेसिंग में स्क्वायर तरंगों का प्रायः सामना किया जाता है। इसका स्टोकेस्टिक समकक्ष दो-राज्य प्रक्षेपवक्र है।

उत्पत्ति और उपयोग

डिजिटल डेटा स्विचिंग सर्किट में स्क्वायर तरंगों का सार्वभौमिक रूप से सामना किया जाता है और स्वाभाविक रूप से बाइनरी (दो-स्तरीय) तर्क उपकरणों द्वारा उत्पन्न होता है। द्विध्रुवीय द्विध्रुवी जंक्शन ट्रांजिस्टरBJTs) के विपरीत, स्क्वायर तरंगें आमतौर पर मेटल-ऑक्साइड-सेमीकंडक्टर फील्ड-इफेक्ट ट्रांजिस्टर (MOSFET) उपकरणों द्वारा उत्पन्न होती हैं, जो इलेक्ट्रॉनिक स्विचिंग व्यवहार के तेजी से चालू-बंद व्यवहार के कारण उत्पन्न होती हैं, जो धीरे-धीरे संकेत उत्पन्न करती हैं जो साइन तरंगों के बजाय अधिक निकटता से मिलती-जुलती हैं। चौकोर लहरें।[1] वर्गाकार तरंगों का उपयोग समय संदर्भ या घड़ी संकेतों के रूप में किया जाता है, क्योंकि उनका तेज़ संक्रमण सटीक निर्धारित अंतराल पर तुल्यकालिक तर्क सर्किट को ट्रिगर करने के लिए उपयुक्त होता है। हालाँकि, जैसा कि फ़्रीक्वेंसी-डोमेन ग्राफ़ दिखाता है, वर्गाकार तरंगों में हार्मोनिक्स की एक विस्तृत श्रृंखला होती है; ये विद्युत चुम्बकीय विकिरण या धारा के स्पंदन उत्पन्न कर सकते हैं जो आसपास के अन्य सर्किटों में हस्तक्षेप करते हैं, जिससे शोर या त्रुटियां होती हैं। सटीक एनॉलॉग से डिजिटल परिवर्तित करने वाला उपकरण जैसे बहुत संवेदनशील सर्किट में इस समस्या से बचने के लिए, साइन तरंगों का उपयोग स्क्वायर वेवों के बजाय समय संदर्भ के रूप में किया जाता है।

संगीत के संदर्भ में, उन्हें अक्सर खोखली ध्वनि के रूप में वर्णित किया जाता है, और इसलिए उन्हें उप-संश्लेषण संश्लेषण का उपयोग करके बनाए गए वायु वाद्य यंत्रों के आधार के रूप में उपयोग किया जाता है। इसके अतिरिक्त, विद्युत गिटार पर उपयोग किया जाने वाला विरूपण प्रभाव वेवफॉर्म के सबसे बाहरी क्षेत्रों को क्लिप करता है, जिससे अधिक विरूपण लागू होने पर यह स्क्वायर वेव जैसा दिखता है।

साधारण दो-स्तरीय रैडेमाकर समारोह वर्गाकार तरंगें हैं।

परिभाषाएँ

गणित में वर्गाकार तरंग की कई परिभाषाएँ हैं, जो विच्छिन्नताओं को छोड़कर समतुल्य हैं:

इसे केवल साइनसॉइड के साइन समारोह के रूप में परिभाषित किया जा सकता है:

जो 1 होगा जब साइनसॉइड धनात्मक होगा, -1 जब साइनसॉइड ऋणात्मक होगा, और 0 विच्छेदन पर होगा। यहाँ, T स्क्वायर वेव की अवधि (भौतिकी) है और f इसकी आवृत्ति है, जो समीकरण f = 1/T से संबंधित हैं।

एक स्क्वायर वेव को हैवीसाइड स्टेप फंक्शन u(t) या आयताकार फंक्शन Π(t) के संबंध में भी परिभाषित किया जा सकता है:

सीधे फर्श समारोह का उपयोग करके एक चौकोर तरंग भी उत्पन्न की जा सकती है:
और परोक्ष रूप से:
फूरियर श्रृंखला (नीचे) का उपयोग करके कोई दिखा सकता है कि फर्श फ़ंक्शन को त्रिकोणमितीय रूप में लिखा जा सकता है [2]


फूरियर विश्लेषण

File:SquareWaveFourierArrows.gif
छह तीर स्क्वायर वेव की फूरियर श्रृंखला के पहले छह शब्दों का प्रतिनिधित्व करते हैं। नीचे के दो वृत्त सटीक स्क्वायर वेव (नीला) और इसके फूरियर-श्रृंखला सन्निकटन (बैंगनी) का प्रतिनिधित्व करते हैं।
File:Spectrum square oscillation.jpg
(विषम) एक 1000 हर्ट्ज स्क्वायर वेव के हार्मोनिक्स
File:Fourier Series-Square wave 3 H.png
स्क्वायर वेव की फूरियर श्रृंखला के पहले 3 पदों को दर्शाने वाला ग्राफ

चक्र आवृत्ति के साथ फूरियर श्रृंखला का उपयोग करना f अधिक समय तक t, 1 के आयाम के साथ एक आदर्श स्क्वायर वेव को साइनसोइडल तरंगों के अनंत योग के रूप में दर्शाया जा सकता है:

आदर्श स्क्वायर वेव में केवल विषम-पूर्णांक लयबद्ध आवृत्तियों के घटक होते हैं (रूप का 2π(2k − 1)f). साउथूथ तरंगों और वास्तविक दुनिया के संकेतों में सभी पूर्णांक हार्मोनिक्स होते हैं।

स्क्वायर वेव के फूरियर श्रृंखला प्रतिनिधित्व के अभिसरण की जिज्ञासा गिब्स घटना है। गैर-आदर्श स्क्वायर वेवों में बजने वाली कलाकृतियों को इस घटना से संबंधित दिखाया जा सकता है। गिब्स की घटना को सिग्मा सन्निकटन |σ-सन्निकटन के उपयोग से रोका जा सकता है, जो अनुक्रम को अधिक सुचारू रूप से अभिसरण करने में मदद करने के लिए लैंक्ज़ोस सिग्मा कारकों का उपयोग करता है।

उच्च और निम्न अवस्था के बीच एक आदर्श गणितीय स्क्वायर वेव तुरंत बदल जाती है, और बिना या ओवर-शूटिंग के। भौतिक प्रणालियों में इसे हासिल करना असंभव है, क्योंकि इसके लिए अनंत बैंडविड्थ (सिग्नल प्रोसेसिंग) की आवश्यकता होगी।

File:Fourier series for square wave.gif
हार्मोनिक्स की बढ़ती संख्या के साथ स्क्वायर वेव के योजक संश्लेषण का एनीमेशन

भौतिक प्रणालियों में स्क्वायर तरंगों में केवल परिमित बैंडविड्थ होती है और अक्सर गिब्स घटना के समान बज रहा है (संकेत) प्रभाव या σ-सन्निकटन के समान तरंग प्रभाव प्रदर्शित करते हैं।

स्क्वायर-वेव आकार के उचित अनुमान के लिए, कम से कम मौलिक और तीसरे हार्मोनिक को उपस्थित होने की आवश्यकता है, पांचवें हार्मोनिक वांछनीय होने के साथ। ये बैंडविड्थ आवश्यकताएं डिजिटल इलेक्ट्रॉनिक्स में महत्वपूर्ण हैं, जहां स्क्वायर-वेव-जैसे वेवफॉर्म के लिए परिमित-बैंडविड्थ एनालॉग सन्निकटन का उपयोग किया जाता है। (रिंगिंग ट्रांजिस्टर यहां एक महत्वपूर्ण इलेक्ट्रॉनिक विचार हैं, क्योंकि वे सर्किट की विद्युत रेटिंग सीमाओं से परे जा सकते हैं या कई बार खराब स्थिति वाली दहलीज को पार कर सकते हैं।)

अपूर्ण स्क्वायर वेवों के लक्षण

जैसा कि पहले ही उल्लेख किया गया है, एक आदर्श स्क्वायर वेव में उच्च और निम्न स्तरों के बीच तात्कालिक संक्रमण होता है। व्यवहार में, यह तरंग उत्पन्न करने वाली प्रणाली की भौतिक सीमाओं के कारण कभी हासिल नहीं होता है। सिग्नल के निम्न स्तर से उच्च स्तर तक उठने और फिर से वापस आने में लगने वाले समय को क्रमशः उठने का समय और गिरने का समय कहा जाता है।

यदि प्रणाली अत्यधिक नम है, तो तरंग वास्तव में कभी भी सैद्धांतिक उच्च और निम्न स्तर तक नहीं पहुंच सकती है, और यदि प्रणाली कम नम है, तो यह स्थिर होने से पहले उच्च और निम्न स्तरों के बारे में दोलन करेगी। इन मामलों में, वृद्धि और गिरावट के समय को निर्दिष्ट मध्यवर्ती स्तरों के बीच मापा जाता है, जैसे कि 5% और 95%, या 10% और 90%। किसी सिस्टम की बैंडविड्थ (सिग्नल प्रोसेसिंग) तरंग के संक्रमण समय से संबंधित है; ऐसे सूत्र हैं जो एक को दूसरे से लगभग निर्धारित करने की अनुमति देते हैं।

यह भी देखें

संदर्भ

  1. "आज के पावर-स्विचिंग डिज़ाइनों में MOSFETs को लागू करना". Electronic Design. 23 May 2016. Retrieved 10 August 2019.
  2. https://www.wolframalpha.com/input?i=%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5Cfrac%7B%5Csin%5Cleft%28%5Cleft%282n-1%5Cright%29x%5Cright%29%7D%7B2n-1%7D. {{cite web}}: Missing or empty |title= (help)


बाहरी संबंध