मार्टेंसाईट

From Vigyanwiki
AISI 4140 स्टील में मार्टेंसाइट
0.35% कार्बन स्टील, 870 डिग्री सेल्सियस से पानी से बुझाया गया

मार्टेंसाइट इस्पात क्रिस्टलीय संरचना का एक बहुत ही कठोर रूप है। इसका नाम जर्मन :श्रेणी:धातुविज्ञानी एडॉल्फ मार्टेंस के नाम पर रखा गया है। समानता से यह शब्द किसी भी क्रिस्टल संरचना का भी उल्लेख कर सकता है जो प्रसार रहित परिवर्तन द्वारा बनाई गई है।[1]


गुण

आयरन के ऑस्टेनाईट austenite रूप के तीव्र शीतलन (शमन) द्वारा कार्बन स्टील में मार्टेंसाइट इतनी उच्च दर पर बनता है कि कार्बन परमाणुओं के पास सीमेन्टाईट (Fe) बनाने के लिए पर्याप्त मात्रा में क्रिस्टल संरचना से बाहर फैलने का समय नहीं होता है।3सी)। ऑस्टेनाइट गामा-चरण लोहा (γ-Fe) है, जो लोहे और मिश्र धातु तत्वों का एक ठोस समाधान है। शमन के परिणामस्वरूप, घन क्रिस्टल प्रणाली | फेस-सेंटर्ड क्यूबिक ऑस्टेनाइट एक अत्यधिक तनावपूर्ण टेट्रागोनल क्रिस्टल सिस्टम में बदल जाता है | शरीर-केंद्रित टेट्रागोनल रूप जिसे मार्टेंसाइट कहा जाता है जो कार्बन के साथ अतिसंतृप्ति है। अपरूपण विकृति जिसके परिणामस्वरूप बड़ी संख्या में अव्यवस्थाएं उत्पन्न होती हैं, जो स्टील्स का एक प्राथमिक सुदृढ़ीकरण तंत्र है। पर्लाइट स्टील की उच्चतम कठोरता 400 ब्रिनेल स्केल है, जबकि मार्टेंसाइट 700 ब्रिनेल प्राप्त कर सकता है।[2] मार्टेंसिक रासायनिक प्रतिक्रिया शीतलन के दौरान शुरू होती है जब ऑस्टेनाइट मार्टेंसाइट प्रारंभ तापमान (एमs), और मूल ऑस्टेनाइट यांत्रिक रूप से अस्थिर हो जाता है। जैसा कि नमूना बुझ जाता है, ऑस्टेनाइट का तेजी से बड़ा प्रतिशत निम्न परिवर्तन तापमान एम तक मार्टेंसाइट में बदल जाता हैf तक पहुँच जाता है, जिस समय परिवर्तन पूरा हो जाता है।[1] यूटेक्टिक प्रणाली स्टील (0.76% सी) के लिए, ऑस्टेनाइट के 6 और 10% के बीच, जिसे बनाए रखा ऑस्टेनाइट कहा जाता है, रहेगा। बनाए रखा ऑस्टेनाइट का प्रतिशत 0.6% सी स्टील से कम के लिए नगण्य से बढ़ता है, 0.95% सी पर 13% बनाए रखा ऑस्टेनाइट और 1.4% कार्बन स्टील के लिए 30-47% ऑस्टेनाइट बनाए रखा जाता है। मार्टेंसाइट बनाने के लिए बहुत तेजी से शमन आवश्यक है। पतले खंड के यूटेक्टॉइड कार्बन स्टील के लिए, यदि शमन 750 डिग्री सेल्सियस से शुरू होता है और 450 डिग्री सेल्सियस पर समाप्त होता है, तो 0.7 सेकंड (430 डिग्री सेल्सियस/सेकंड की दर) में कोई पर्लाइट नहीं बनेगा, और स्टील मार्टेंसिटिक होगा थोड़ी मात्रा में बरकरार ऑस्टेनाइट।[2] 0-0.6% कार्बन वाले स्टील के लिए, मार्टेंसाइट में तख़्ता का रूप होता है और इसे लैथ मार्टेंसाइट कहा जाता है। 1% से अधिक कार्बन वाले स्टील के लिए, यह प्लेट जैसी संरचना का निर्माण करेगा जिसे प्लेट मार्टेंसाइट कहा जाता है। उन दो प्रतिशत के बीच, अनाज की भौतिक उपस्थिति दोनों का मिश्रण है। मार्टेंसाइट की ताकत कम हो जाती है क्योंकि बरकरार ऑस्टेनाइट की मात्रा बढ़ जाती है। यदि शीतलन दर गंभीर शीतलन दर की तुलना में धीमी है, तो अनाज की सीमाओं से शुरू होकर कुछ मात्रा में पर्लाइट बनेगा, जहां यह एम तक अनाज में विकसित होगा।s तापमान तक पहुँच जाता है, तो शेष ऑस्टेनाइट स्टील में ध्वनि की गति से लगभग आधी गति से मार्टेंसाइट में परिवर्तित हो जाता है।

कुछ मिश्र धातु इस्पात में, स्टील को एम पर काम करके मार्टेंसाइट बनाया जा सकता हैs एम से नीचे शमन करके तापमानs और फिर मूल के 20% से 40% के बीच क्रॉस सेक्शन क्षेत्र को कम करने के लिए प्लास्टिक विरूपण द्वारा काम करना। प्रक्रिया 10 तक अव्यवस्था घनत्व पैदा करती है13/सेमी2। अव्यवस्थाओं की बड़ी संख्या, अवक्षेपों के साथ मिलकर, जो जगह-जगह अव्यवस्थाओं की उत्पत्ति और पिन करती है, एक बहुत कठोर स्टील का उत्पादन करती है। इस संपत्ति का उपयोग अक्सर कड़े सिरेमिक जैसे कि येट्रिया-स्थिर जिरकोनिया और विशेष स्टील्स जैसे टीआरआईपी स्टील्स में किया जाता है। इस प्रकार, मार्टेंसाइट तापीय रूप से प्रेरित या तनाव प्रेरित हो सकता है।[1][3] मार्टेंसाइट चरण के विकास के लिए बहुत कम तापीय सक्रियण ऊर्जा की आवश्यकता होती है क्योंकि प्रक्रिया एक प्रसार रहित परिवर्तन है, जिसके परिणामस्वरूप परमाणु स्थितियों की सूक्ष्म लेकिन तेजी से पुनर्व्यवस्था होती है, और क्रायोजेनिक्स तापमान पर भी होने के लिए जाना जाता है।[1]मार्टेंसाइट में ऑस्टेनाइट की तुलना में कम घनत्व होता है, जिससे कि मार्टेंसिटिक परिवर्तन के परिणामस्वरूप मात्रा में सापेक्ष परिवर्तन होता है।[4] आयतन परिवर्तन की तुलना में काफी अधिक महत्व विकृति (भौतिकी) का है, जिसका परिमाण लगभग 0.26 है और जो मार्टेंसाइट की प्लेटों के आकार को निर्धारित करता है।[5] लौह-कार्बन प्रणाली के संतुलन चरण आरेख में मार्टेंसाइट नहीं दिखाया गया है क्योंकि यह एक संतुलन चरण नहीं है। संतुलन चरण धीमी शीतलन दर से बनते हैं जो प्रसार के लिए पर्याप्त समय की अनुमति देते हैं, जबकि मार्टेंसाइट आमतौर पर बहुत अधिक शीतलन दर से बनता है। चूंकि रासायनिक प्रक्रियाएं (संतुलन की प्राप्ति) उच्च तापमान पर तेज होती हैं, इसलिए गर्मी के प्रयोग से मार्टेंसाइट आसानी से नष्ट हो जाता है। इस प्रक्रिया को टेम्परिंग (धातुकर्म) कहा जाता है। कुछ मिश्रधातुओं में, टंगस्टन जैसे तत्वों को जोड़कर प्रभाव को कम किया जाता है जो सीमेंटाइट न्यूक्लिएशन में हस्तक्षेप करते हैं, लेकिन अधिक बार नहीं, न्यूक्लिएशन को तनाव दूर करने के लिए आगे बढ़ने की अनुमति दी जाती है। चूंकि शमन को नियंत्रित करना मुश्किल हो सकता है, कई स्टील्स को मार्टेंसाइट की अधिकता पैदा करने के लिए बुझाया जाता है, फिर धीरे-धीरे इसकी एकाग्रता को कम करने के लिए टेम्पर्ड किया जाता है जब तक कि वांछित आवेदन के लिए पसंदीदा संरचना प्राप्त नहीं हो जाती। मार्टेंसाइट की सुई जैसी सूक्ष्म संरचना सामग्री के भंगुर व्यवहार की ओर ले जाती है। बहुत अधिक मार्टेंसाइट स्टील भंगुरता छोड़ देता है; बहुत कम इसे नरम छोड़ देता है।

यह भी देखें

संदर्भ

  1. 1.0 1.1 1.2 1.3 Khan, Abdul Qadeer (March 1972) [1972], "3", The effect of morphology on the strength of copper-based martensites (in Deutsch and English), vol. 1 (1 ed.), Leuven, Belgium: A.Q. Khan, University of Leuven, Belgium, p. 300
  2. 2.0 2.1 Baumeister, Avallone, Baumeister (1978). "6". Marks' Standard Handbook for Mechanical Engineers, 8th ed. McGraw Hill. pp. 17, 18. ISBN 9780070041233.{{cite book}}: CS1 maint: multiple names: authors list (link)
  3. Verhoeven, John D. (2007). गैर-धातुकर्मवादी के लिए इस्पात धातुकर्म. American Society for Metals. pp. 26–31. ISBN 9780871708588.
  4. Ashby, Michael F.; David R. H. Jones (1992) [1986]. Engineering Materials 2 (with corrections ed.). Oxford: Pergamon Press. ISBN 0-08-032532-7.
  5. Bhadeshia, H. K. D. H. (2001) [2001]. क्रिस्टल की ज्यामिति (with corrections ed.). London: Institute of Materials. ISBN 0-904357-94-5.


बाहरी संबंध