पॉलिमर इलेक्ट्रोलाइट झिल्ली इलेक्ट्रोलिसिस

From Vigyanwiki
Revision as of 17:17, 25 March 2023 by alpha>Indicwiki (Created page with "{{Short description|Technology for splitting water molecules}} {{Infobox electrolysis |electrolysistype = PEM Electrolysis |electrolysisimage=PEMelectrolysis.jpg |Caption=Diag...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

{{Infobox electrolysis |electrolysistype = PEM Electrolysis |electrolysisimage=PEMelectrolysis.jpg |Caption=Diagram of PEM electrolysis reactions. |acatalyst=Iridium |ccatalyst=Platinum |membranemat=Solid polymer |aptl=Titanium |cptl=Carbon paper/carbon fleece |bppmat=Titanium or gold and
platinum coated titanium |celltemp=50-80°C[1] |cellpress=<30 bar[1] |curdens=0.6-10.0 A/cm2[1][2] |cellvolt=1.75-2.20 V[1] |powdens=to 4.4 W/cm2[1] |cellvolteff=57-69%[1] |specengcomstack=4.2-5.6 kWh/Nm3[1] |specengcomsys=4.5-7.5 kWh/Nm3[1] |ploadrng=0-10%[1] |cellare=<300 cm2[1] |h2prod=30 Nm3/h[1] |lifetimestack=<20,000 h[1] |degrat=<14 µV/h[1] |syslife=10-20 y[1] }पॉलिमर इलेक्ट्रोलाइट झिल्ली (पीईएम) इलेक्ट्रोलिसिस एक ठोस बहुलक इलेक्ट्रोलाइट (एसपीई) से लैस सेल में पानी का इलेक्ट्रोलिसिस है।[3] जो प्रोटॉन के चालन, उत्पाद गैसों को अलग करने और इलेक्ट्रोड के विद्युत इन्सुलेशन के लिए जिम्मेदार है। PEM इलेक्ट्रोलाइज़र को आंशिक भार, कम वर्तमान घनत्व, और कम दबाव के संचालन के मुद्दों को दूर करने के लिए पेश किया गया था जो वर्तमान में क्षारीय इलेक्ट्रोलाइज़र को परेशान कर रहा है।[4][1] इसमें एक प्रोटॉन-विनिमय झिल्ली शामिल है।

ऊर्जा वाहक के रूप में उपयोग किए जाने वाले हाइड्रोजन के उत्पादन के लिए पानी के पानी का इलेक्ट्रोलिसिस एक महत्वपूर्ण तकनीक है। तेजी से गतिशील प्रतिक्रिया समय, बड़ी परिचालन रेंज और उच्च दक्षता के साथ, जल इलेक्ट्रोलिसिस नवीकरणीय ऊर्जा स्रोतों के साथ मिलकर ऊर्जा भंडारण के लिए एक आशाजनक तकनीक है। स्थिरता और पर्यावरणीय प्रभाव के संदर्भ में, PEM इलेक्ट्रोलिसिस को उच्च शुद्धता और कुशल हाइड्रोजन उत्पादन के लिए एक आशाजनक तकनीक माना जाता है क्योंकि यह बिना किसी कार्बन उत्सर्जन के उप-उत्पाद के रूप में केवल ऑक्सीजन का उत्सर्जन करता है।[5]

इतिहास

इलेक्ट्रोलिसिस के लिए पीईएम का उपयोग पहली बार 1960 के दशक में जनरल इलेक्ट्रिक द्वारा पेश किया गया था, जिसे क्षारीय इलेक्ट्रोलिसिस तकनीक की कमियों को दूर करने के लिए विकसित किया गया था।[6] प्रारंभिक प्रदर्शन 1.0 ए/सेमी उपज2 1.88 V पर जो उस समय की क्षारीय इलेक्ट्रोलिसिस तकनीक की तुलना में बहुत कुशल थी। 1970 के दशक के अंत में क्षारीय इलेक्ट्रोलाइज़र 0.215 A/cm के आसपास प्रदर्शन रिपोर्ट कर रहे थे।2 2.06 वी पर,[7] इस प्रकार 1970 के दशक के अंत और 1980 के दशक की शुरुआत में पानी के इलेक्ट्रोलिसिस के लिए पॉलिमर इलेक्ट्रोलाइट्स में अचानक रुचि पैदा हुई। पीईएम जल इलेक्ट्रोलिसिस तकनीक पीईएम ईंधन सेल प्रौद्योगिकी के समान है, जहां ठोस पॉली-सल्फोनेटेड झिल्ली, जैसे नेफियन, फ्यूमपेम, को इलेक्ट्रोलाइट (प्रोटॉन कंडक्टर) के रूप में उपयोग किया जाता था।[8] कार्मो एट अल द्वारा 2013 की समीक्षा में कई परिचालन स्थितियों के साथ प्रारंभिक शोध से लेकर आज तक के ऐतिहासिक प्रदर्शन की गहन समीक्षा कालानुक्रमिक क्रम में पाई जा सकती है।[1]


लाभ

पीईएम इलेक्ट्रोलिसिस के सबसे बड़े फायदों में से एक इसकी उच्च वर्तमान घनत्व पर काम करने की क्षमता है।[1]इसके परिणामस्वरूप कम परिचालन लागत हो सकती है, विशेष रूप से पवन और सौर जैसे बहुत गतिशील ऊर्जा स्रोतों के साथ युग्मित प्रणालियों के लिए, जहां ऊर्जा इनपुट में अचानक स्पाइक्स अन्यथा अप्रयुक्त ऊर्जा का परिणाम होगा। पॉलिमर इलेक्ट्रोलाइट पीईएम इलेक्ट्रोलाइज़र को बहुत पतली झिल्ली (~100-200 माइक्रोन) के साथ संचालित करने की अनुमति देता है, जबकि अभी भी उच्च दबाव की अनुमति देता है, जिसके परिणामस्वरूप कम ओमिक नुकसान होता है, मुख्य रूप से झिल्ली (0.1 एस/सेमी) में प्रोटॉन के चालन के कारण होता है। एक संकुचित हाइड्रोजन उत्पादन।[9] बहुलक इलेक्ट्रोलाइट झिल्ली, इसकी ठोस संरचना के कारण, कम गैस क्रॉसओवर दर प्रदर्शित करता है जिसके परिणामस्वरूप बहुत अधिक उत्पाद गैस शुद्धता होती है।[1]भंडारण सुरक्षा और ईंधन सेल में सीधे उपयोग के लिए उच्च गैस शुद्धता बनाए रखना महत्वपूर्ण है। एच के लिए सुरक्षा सीमा2 मैं नहीं2 मानक स्थितियों पर हैं 4 मोल अंश|mol-% H2 मैं नहीं2.[10]


विज्ञान

एक इलेक्ट्रोलाइज़र बिजली और पानी को हाइड्रोजन और ऑक्सीजन में परिवर्तित करने के लिए एक विद्युत रासायनिक उपकरण है, इन गैसों को बाद में उपयोग के लिए ऊर्जा को स्टोर करने के साधन के रूप में इस्तेमाल किया जा सकता है। यह उपयोग विद्युत ग्रिड स्थिरीकरण से गतिशील विद्युत स्रोतों जैसे पवन टर्बाइनों और सौर कोशिकाओं से लेकर ईंधन सेल वाहनों के लिए ईंधन के रूप में स्थानीयकृत हाइड्रोजन उत्पादन तक हो सकता है। PEM इलेक्ट्रोलाइज़र एक प्रोटॉन विनिमय झिल्ली | सॉलिड पॉलीमर इलेक्ट्रोलाइट (SPE) का उपयोग करता है, जो इलेक्ट्रोड को विद्युत रूप से इन्सुलेट करते हुए एनोड से कैथोड तक प्रोटॉन का संचालन करता है। मानक परिस्थितियों में पानी के अपघटन के लिए आवश्यक गठन की मानक तापीय धारिता 285.9 kJ/mol है। निरंतर इलेक्ट्रोलिसिस प्रतिक्रिया के लिए आवश्यक ऊर्जा का एक हिस्सा तापीय ऊर्जा द्वारा आपूर्ति की जाती है और शेष विद्युत ऊर्जा के माध्यम से आपूर्ति की जाती है।[11]


प्रतिक्रियाएं

एक ऑपरेटिंग इलेक्ट्रोलाइज़र के ओपन सर्किट वोल्टेज का वास्तविक मूल्य 1.23 V और 1.48 V के बीच होगा, जो इस बात पर निर्भर करता है कि सेल/स्टैक डिज़ाइन थर्मल ऊर्जा इनपुट का उपयोग कैसे करता है। हालांकि यह निर्धारित करना या मापना काफी कठिन है क्योंकि एक ऑपरेटिंग इलेक्ट्रोलाइज़र भी आंतरिक विद्युत प्रतिरोधों, प्रोटॉन चालकता, सेल के माध्यम से बड़े पैमाने पर परिवहन और कुछ नाम रखने के लिए उत्प्रेरक उपयोग से अन्य वोल्टेज नुकसान का अनुभव करता है।

एनोड प्रतिक्रिया

पीईएम इलेक्ट्रोलाइजर के एनोड की तरफ होने वाली आधी प्रतिक्रिया को आमतौर पर ऑक्सीजन इवोल्यूशन रिएक्शन (ओईआर) कहा जाता है। यहां तरल जल अभिकारक को उत्प्रेरक को आपूर्ति की जाती है जहां आपूर्ति किए गए पानी को ऑक्सीजन, प्रोटॉन और इलेक्ट्रॉनों में ऑक्सीकृत किया जाता है।


कैथोड प्रतिक्रिया

पीईएम इलेक्ट्रोलाइजर के कैथोड पक्ष पर होने वाली आधी प्रतिक्रिया को आमतौर पर हाइड्रोजन इवोल्यूशन रिएक्शन (एचईआर) के रूप में जाना जाता है। यहां आपूर्ति किए गए इलेक्ट्रॉनों और प्रोटॉन जो झिल्ली के माध्यम से संचालित होते हैं, गैसीय हाइड्रोजन बनाने के लिए संयुक्त होते हैं।

नीचे दिए गए उदाहरण में पीईएम इलेक्ट्रोलिसिस कैसे काम करता है, इसका सरलीकरण दर्शाया गया है, जिसमें पीईएम इलेक्ट्रोलाइजर की पूरी प्रतिक्रिया के साथ-साथ व्यक्तिगत अर्ध-प्रतिक्रियाओं को दिखाया गया है। इस मामले में हाइड्रोजन उत्पादन के लिए इलेक्ट्रोलाइज़र को एक सौर पैनल के साथ जोड़ा जाता है, हालाँकि सौर पैनल को बिजली के किसी भी स्रोत से बदला जा सकता है।

पीईएम इलेक्ट्रोलाइजर सेल का आरेख और संचालन के मूल सिद्धांत।

ऊष्मप्रवैगिकी का दूसरा नियम

ऊष्मप्रवैगिकी के दूसरे नियम के अनुसार प्रतिक्रिया की तापीय धारिता है:

कहाँ प्रतिक्रिया की गिब्स मुक्त ऊर्जा है, प्रतिक्रिया का तापमान है और प्रणाली की एन्ट्रापी में परिवर्तन है।

थर्मोडायनामिक ऊर्जा इनपुट के साथ समग्र सेल प्रतिक्रिया तब बन जाती है:

ऊपर दिखाए गए थर्मल और इलेक्ट्रिकल इनपुट इलेक्ट्रोलिसिस प्रतिक्रिया प्राप्त करने के लिए बिजली द्वारा आपूर्ति की जा सकने वाली ऊर्जा की न्यूनतम मात्रा का प्रतिनिधित्व करते हैं। यह मानते हुए कि प्रतिक्रिया के लिए ऊष्मा ऊर्जा की अधिकतम मात्रा (48.6 kJ/mol) की आपूर्ति की जाती है, प्रतिवर्ती सेल वोल्टेज गणना की जा सकती है।

ओपन सर्किट वोल्टेज (ओसीवी)

कहाँ इलेक्ट्रॉनों की संख्या है और फैराडे स्थिरांक है|फैराडे स्थिरांक है। सेल वोल्टेज की गणना यह मानते हुए कि कोई अपरिवर्तनीयता मौजूद नहीं है और प्रतिक्रिया द्वारा उपयोग की जाने वाली सभी तापीय ऊर्जा को निम्न ताप मान (LHV) कहा जाता है। उच्च ताप मान (HHV) का उपयोग करते हुए वैकल्पिक सूत्रीकरण की गणना यह मानते हुए की जाती है कि इलेक्ट्रोलिसिस प्रतिक्रिया को चलाने के लिए सभी ऊर्जा की आपूर्ति आवश्यक ऊर्जा के विद्युत घटक द्वारा की जाती है जिसके परिणामस्वरूप उच्च प्रतिवर्ती सेल वोल्टेज होता है। एचएचवी का उपयोग करते समय वोल्टेज गणना को थर्मोन्यूट्रल वोल्टेज के रूप में संदर्भित किया जाता है।


वोल्टेज नुकसान

इलेक्ट्रोलिसिस कोशिकाओं का प्रदर्शन, ईंधन कोशिकाओं की तरह, आमतौर पर ध्रुवीकरण घटता के माध्यम से तुलना की जाती है, जो वर्तमान घनत्व के खिलाफ सेल वोल्टेज की साजिश रचने से प्राप्त होती है। पीईएम इलेक्ट्रोलाइजर में बढ़े हुए वोल्टेज के प्राथमिक स्रोत (वही पीईएम ईंधन सेल के लिए भी लागू होता है) को तीन मुख्य क्षेत्रों में वर्गीकृत किया जा सकता है, ओमिक नुकसान, अत्यधिक क्षमता और बड़े पैमाने पर परिवहन नुकसान। पीईएम ईंधन सेल और पीईएम इलेक्ट्रोलाइजर के बीच संचालन के उत्क्रमण के कारण, इन विभिन्न नुकसानों के लिए प्रभाव की डिग्री दो प्रक्रियाओं के बीच भिन्न होती है।[1]

एक पीईएम इलेक्ट्रोलिसिस सिस्टम के प्रदर्शन की तुलना सेल करंट डेंसिटी बनाम ओवरपोटेंशियल की साजिश रचकर की जा सकती है। यह अनिवार्य रूप से एक वक्र में परिणत होता है जो हाइड्रोजन और ऑक्सीजन का उत्पादन करने के लिए आवश्यक सेल क्षेत्र के प्रति वर्ग सेंटीमीटर की शक्ति का प्रतिनिधित्व करता है। PEM ईंधन सेल के विपरीत, PEM इलेक्ट्रोलाइज़र जितना बेहतर होगा, दिए गए वर्तमान घनत्व पर इलेक्ट्रोड क्षमता उतनी ही कम होगी। नीचे दिया गया चित्र 25 सेमी के Forschungszentrum Jülich से अनुकरण का परिणाम है2 थर्मोन्यूट्रल ऑपरेशन के तहत एकल सेल पीईएम इलेक्ट्रोलाइज़र वोल्टेज हानि के प्राथमिक स्रोतों और वर्तमान घनत्व की एक सीमा के लिए उनके योगदान को दर्शाता है।

फ़ाइल:PEM इलेक्ट्रोलिसिस लॉस ब्रेकडाउन.pdf|thumb|upright=3|PEM इलेक्ट्रोलिसिस सेल ऑपरेशन के लिए जिम्मेदार विभिन्न नुकसानों को दर्शाने वाला ध्रुवीकरण वक्र।

ओमिक हानियाँ

ओमिक नुकसान सेल घटकों के आंतरिक प्रतिरोध द्वारा इलेक्ट्रोलीज़ प्रक्रिया के लिए शुरू की गई एक विद्युत अतिपरासारी है। इस नुकसान के लिए इलेक्ट्रोलिसिस प्रतिक्रिया को बनाए रखने के लिए एक अतिरिक्त वोल्टेज की आवश्यकता होती है, इस नुकसान की भविष्यवाणी ओम कानून का पालन करती है। ओम का नियम और ऑपरेटिंग इलेक्ट्रोलाइज़र के वर्तमान घनत्व के लिए एक रैखिक संबंध रखता है।

विद्युत प्रतिरोध के कारण ऊर्जा हानि पूरी तरह से नष्ट नहीं हुई है। प्रतिरोधकता के कारण वोल्टेज की गिरावट जूल हीटिंग के रूप में जानी जाने वाली प्रक्रिया के माध्यम से विद्युत ऊर्जा को ऊष्मा ऊर्जा में बदलने से जुड़ी है। इस ऊष्मा ऊर्जा का अधिकांश भाग अभिकारक जल आपूर्ति के साथ दूर हो जाता है और पर्यावरण में खो जाता है, हालाँकि इस ऊर्जा का एक छोटा सा हिस्सा इलेक्ट्रोलिसिस प्रक्रिया में ऊष्मा ऊर्जा के रूप में पुनः प्राप्त किया जाता है। ऊष्मा ऊर्जा की मात्रा जिसे पुनः प्राप्त किया जा सकता है, सिस्टम संचालन और सेल डिज़ाइन के कई पहलुओं पर निर्भर है।

प्रोटॉन के चालन के कारण ओमिक नुकसान दक्षता के नुकसान में योगदान देता है जो ओहम्स कानून | ओम कानून का पालन करता है, हालांकि जौल हीटिंग प्रभाव के बिना। प्रोटॉन विनिमय झिल्ली की प्रोटॉन चालकता झिल्ली के जलयोजन, तापमान, ताप उपचार और आयनिक अवस्था पर बहुत निर्भर करती है।[12]


फैराडिक नुकसान और क्रॉसओवर

फैराडिक नुकसान उन दक्षता नुकसानों का वर्णन करते हैं जो वर्तमान से संबंधित हैं, जो कि कैथोडिक गैस आउटलेट पर हाइड्रोजन के बिना आपूर्ति की जाती है। उत्पादित हाइड्रोजन और ऑक्सीजन झिल्ली में पारगम्य हो सकते हैं, जिसे क्रॉसओवर कहा जाता है।[12]इलेक्ट्रोड परिणाम में दोनों गैसों का मिश्रण होता है। कैथोड पर, कैथोडिक उत्प्रेरक की प्लेटिनम सतह पर ऑक्सीजन को हाइड्रोजन के साथ उत्प्रेरक रूप से प्रतिक्रिया दी जा सकती है। एनोड पर, हाइड्रोजन और ऑक्सीजन इरिडियम ऑक्साइड उत्प्रेरक पर प्रतिक्रिया नहीं करते।[12]इस प्रकार, ऑक्सीजन में विस्फोटक एनोडिक मिश्रण हाइड्रोजन के कारण सुरक्षा खतरे हो सकते हैं। हाइड्रोजन उत्पादन के लिए आपूर्ति की गई ऊर्जा खो जाती है, जब कैथोड पर ऑक्सीजन के साथ प्रतिक्रिया के कारण हाइड्रोजन खो जाता है और झिल्ली से एनोड तक कैथोड से पारगम्यता मेल खाती है। इसलिए, खोई हुई और उत्पादित हाइड्रोजन की मात्रा का अनुपात फैराडिक नुकसान को निर्धारित करता है। इलेक्ट्रोलाइज़र के दबाव वाले संचालन में, क्रॉसओवर और सहसंबद्ध फैराडिक दक्षता हानियों में वृद्धि होती है।[12]


जल इलेक्ट्रोलिसिस के दौरान हाइड्रोजन संपीड़न

दाबित इलेक्ट्रोलिसिस के कारण हाइड्रोजन का विकास एक समतापीय संपीड़न प्रक्रिया के बराबर है, जो दक्षता के मामले में यांत्रिक समस्थानिक संपीड़न की तुलना में बेहतर है।[12]हालांकि, ऑपरेटिंग दबावों के साथ उपरोक्त फैराडिक नुकसान का योगदान बढ़ता है। इस प्रकार, संपीड़ित हाइड्रोजन का उत्पादन करने के लिए, इलेक्ट्रोलिसिस के दौरान इन-सीटू संपीड़न और गैस के बाद के संपीड़न को दक्षता संबंधी विचारों के तहत विचार करना होगा।

सिस्टम ऑपरेशन

PEM उच्च दबाव इलेक्ट्रोलाइज़र प्रणाली

पीईएम इलेक्ट्रोलाइजर की न केवल अत्यधिक गतिशील परिस्थितियों में बल्कि पार्ट-लोड और ओवरलोड स्थितियों में भी काम करने की क्षमता इस तकनीक में हाल ही में नवीनीकृत रुचि के कारणों में से एक है। विद्युत ग्रिड की मांग अपेक्षाकृत स्थिर और पूर्वानुमेय होती है, हालांकि जब इन्हें पवन और सौर जैसे ऊर्जा स्रोतों से जोड़ा जाता है, तो ग्रिड की मांग शायद ही कभी अक्षय ऊर्जा के उत्पादन से मेल खाती है। इसका मतलब है कि एक बफर या ऑफ-पीक ऊर्जा के भंडारण के माध्यम से पवन और सौर लाभ जैसे नवीकरणीय स्रोतों से उत्पादित ऊर्जा। As of 2021, सबसे बड़ा पीईएम इलेक्ट्रोलाइजर 20 मेगावाट है।[13]


पीईएम दक्षता

पीईएम इलेक्ट्रोलिसिस की विद्युत दक्षता का निर्धारण करते समय, एचएचवी का उपयोग किया जा सकता है।[14] ऐसा इसलिए है क्योंकि उत्प्रेरक परत पानी के साथ भाप के रूप में संपर्क करती है। चूंकि पीईएम इलेक्ट्रोलाइज़र के लिए प्रक्रिया 80 डिग्री सेल्सियस पर संचालित होती है, अपशिष्ट गर्मी को भाप बनाने के लिए सिस्टम के माध्यम से पुनर्निर्देशित किया जा सकता है, जिसके परिणामस्वरूप उच्च समग्र विद्युत दक्षता होती है। एलएचवी का उपयोग क्षारीय इलेक्ट्रोलाइज़र के लिए किया जाना चाहिए क्योंकि इन इलेक्ट्रोलाइज़र के भीतर प्रक्रिया के लिए तरल रूप में पानी की आवश्यकता होती है और हाइड्रोजन और ऑक्सीजन परमाणुओं को एक साथ रखने वाले बंधन को तोड़ने की सुविधा के लिए क्षारीयता का उपयोग करता है। कम ताप मान का उपयोग ईंधन कोशिकाओं के लिए भी किया जाना चाहिए, क्योंकि भाप इनपुट के बजाय आउटपुट है।

प्रतिक्रिया को चलाने के लिए उपयोग की जाने वाली बिजली की प्रति यूनिट हाइड्रोजन के उत्पादन के संदर्भ में, पीईएम इलेक्ट्रोलिसिस में काम करने वाले अनुप्रयोग में लगभग 80% की विद्युत दक्षता है।[15][16] पीईएम इलेक्ट्रोलिसिस की दक्षता 82-86% तक पहुंचने की उम्मीद है[17] 2030 से पहले, इस क्षेत्र में प्रगति के रूप में स्थायित्व बनाए रखते हुए भी गति से जारी है।[18]


यह भी देखें

संदर्भ

  1. 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 Carmo, M; Fritz D; Mergel J; Stolten D (2013). "पीईएम जल इलेक्ट्रोलिसिस पर एक व्यापक समीक्षा". International Journal of Hydrogen Energy. 38 (12): 4901–4934. doi:10.1016/j.ijhydene.2013.01.151.
  2. Villagra, A; Millet P (2019). "An analysis of PEM water electrolysis cells operating at elevated current densities". International Journal of Hydrogen Energy. 44 (20): 9708–9717. doi:10.1016/j.ijhydene.2018.11.179. S2CID 104308293.
  3. 2012 - PEM water electrolysis fundamentals
  4. 2014 - Development of water electrolysis in the European Union
  5. Shiva Kumar, S.; Himabindu, V. (2019-12-01). "Hydrogen production by PEM water electrolysis – A review". Materials Science for Energy Technologies (in English). 2 (3): 442–454. doi:10.1016/j.mset.2019.03.002. ISSN 2589-2991. S2CID 141506732.
  6. Russell, JH; Nuttall LJ; Ficket AP (1973). "ठोस बहुलक इलेक्ट्रोलाइट जल इलेक्ट्रोलिसिस द्वारा हाइड्रोजन का उत्पादन।". American Chemical Society Division of Fuel Chemistry Preprints.
  7. LeRoy, RL; Janjua MB; Renaud R; Leuenberger U (1979). "जल इलेक्ट्रोलाइजर्स में समय-भिन्नता प्रभावों का विश्लेषण।". Journal of the Electrochemical Society. 126 (10): 1674. Bibcode:1979JElS..126.1674L. doi:10.1149/1.2128775.
  8. Abdol Rahim, A. H.; Tijani, Alhassan Salami; Kamarudin, S. K.; Hanapi, S. (2016-03-31). "An overview of polymer electrolyte membrane electrolyzer for hydrogen production: Modeling and mass transport". Journal of Power Sources (in English). 309: 56–65. Bibcode:2016JPS...309...56A. doi:10.1016/j.jpowsour.2016.01.012. ISSN 0378-7753.
  9. Slade, S; Campbell SA; Ralph TR; Walsh FC (2002). "झिल्लियों की एक एक्सट्रूडेड Nafion 1100 EW श्रृंखला की आयनिक चालकता". Journal of the Electrochemical Society. 149 (12): A1556. Bibcode:2002JElS..149A1556S. doi:10.1149/1.1517281. S2CID 14851298.
  10. Schröder, V; Emonts B; Janßen H; Schulze HP (2004). "Explosion Limits of Hydrogen/Oxygen Mixtures at Initial Pressures up to 200 bar". Chemical Engineering & Technology. 27 (8): 847–851. doi:10.1002/ceat.200403174.
  11. Mergel, J; Carmo M; Fritz, D (2013). "Status on Technologies for Hydrogen Production by Water Electrolysis". In Stolten, D (ed.). अक्षय ऊर्जा प्रणालियों के लिए संक्रमण. Weinheim: Wiley-VCH. ISBN 978-3-527-33239-7.
  12. 12.0 12.1 12.2 12.3 12.4 Schalenbach, M; Carmo M; Fritz DL; Mergel J; Stolten D (2013). "Pressurized PEM water electrolysis: Efficiency and gas crossover". International Journal of Hydrogen Energy. 38 (35): 14921–14933. doi:10.1016/j.ijhydene.2013.09.013.
  13. Collins, Leigh (27 January 2021). "कनाडा में एयर लिक्विड द्वारा दुनिया के सबसे बड़े ग्रीन-हाइड्रोजन संयंत्र का उद्घाटन किया गया". Recharge | Latest renewable energy news (in English). Archived from the original on 25 March 2021.
  14. Kruse, Bjørnar. "हाइड्रोजन स्थिति और संभावनाएं" (PDF). bellona.org/. Bellona Norway. Retrieved 22 April 2018.
  15. Bernholz, Jan (September 13, 2018). "RWE के पूर्व, वर्तमान और संभावित भविष्य के ऊर्जा भंडारण अनुप्रयोग" (PDF). RWE. p. 10. Total Efficiency: 70%, or 86% (usage of waste heat)
  16. "ITM – Hydrogen Refuelling Infrastructure – February 2017" (PDF). level-network.com. Archived (PDF) from the original on 17 April 2018. Retrieved 17 April 2018.[dead link]
  17. "पीईएम इलेक्ट्रोलाइजर की लागत में कमी और प्रदर्शन में वृद्धि" (PDF). www.fch.europa.eu. Fuel Cells and Hydrogen Joint Undertaking. Retrieved 17 April 2018.
  18. "Report and Financial Statements 30 April 2016" (PDF). www.itm-power.com. Retrieved 17 April 2018.