संक्षारण (कोरोसिओंन)

From Vigyanwiki
एक बोल्ट और अखरोट सहित उजागर धातु पर जंग

संक्षारण(जंग) एक प्राकृतिक प्रक्रिया है जो एक परिष्कृत धातु को अधिक रासायनिक रूप से स्थिर ऑक्साइड में परिवर्तित करती है। यह उनके पर्यावरण के साथ रासायनिक या विद्युत रासायनिक प्रतिक्रिया द्वारा सामग्री (प्रायः धातु) का क्रमिक विनाश है। इंजीनियरिंग जंग को नियंत्रित करने और रोकने के लिए समर्पित क्षेत्र है।

शब्द के सबसे सामान्य उपयोग में, इसका अर्थ ऑक्सीजन, हाइड्रोजन या हाइड्रॉक्साइड जैसे ऑक्सीडेंट के साथ प्रतिक्रिया में धातु के विद्युत रासायनिक ऑक्सीकरण होता है। जंग लगना, लोहे के ऑक्साइड का निर्माण, विद्युत रासायनिक जंग का एक प्रसिद्ध उदाहरण है। इस प्रकार की क्षति प्रायः मूल धातु के ऑक्साइड (s) या नमक (s) का उत्पादन करती है और एक विशिष्ट नारंगी रंग में परिणाम देती है। जंग धातुओं के अलावा अन्य सामग्रियों में भी हो सकता है, जैसे कि सिरेमिक्स या पॉलिमर, हालांकि इस संदर्भ में, "अवनति" शब्द अधिक सामान्य है। जंग सामग्री और संरचनाओं के उपयोगी गुणों को कम करता है। जिसमें तरल पदार्थ और गैसों की ताकत, उपस्थिति और पारगम्यता शामिल है।

कई संरचनात्मक मिश्रित धातु केवल हवा में नमी के संपर्क में आने से ही खराब हो जाते हैं, लेकिन कुछ पदार्थों के संपर्क में आने से प्रक्रिया बहुत प्रभावित हो सकती है। एक गड्ढे या दरार बनाने के लिए जंग को स्थानीय रूप से केंद्रित किया जा सकता है, या यह एक विस्तृत क्षेत्र में अधिक या कम समान रूप से सतह को खराब कर सकता है। क्योंकि जंग एक प्रसार-नियंत्रित प्रक्रिया है, यह खुली सतहों पर होता है। फलस्वरूप, उजागर सतह की गतिविधि को कम करने के तरीके, जैसे कि निष्क्रियता और क्रोमेट (अम्ल का लवण) रूपांतरण, एक सामग्री के जंग प्रतिरोध को बढ़ा सकते हैं। हालांकि, कुछ जंग तंत्र कम दिखाई देते हैं और कम अनुमानित होते हैं।

जंग का रसायन जटिल है, इसे एक विद्युत रासायनिक घटना माना जा सकता है। लोहे से बनी वस्तु की सतह पर एक विशेष स्थान पर जंग के दौरान, ऑक्सीकरण होता है और यह स्थान एनोड के रूप में व्यवहार करता है। इस एनोडिक स्थान पर छोड़े गए इलेक्ट्रॉन धातु के माध्यम से चलते हैं और धातु दूसरे स्थान पर जाते हैं और H+ की उपस्थिति में उस स्थान पर ऑक्सीजन को कम करते हैं (जो कि कार्बोनिक एसिड (H2CO3) से उपलब्ध माना जाता है। वायुमंडल की नम हवा की स्थिति में पानी में हवा से कार्बन डाइऑक्साइड के विघटन के कारण गठित। पानी में हाइड्रोजन आयन वायुमंडल से अन्य अम्लीय ऑक्साइड के घुलने के कारण भी उपलब्ध हो सकता है)। यह स्थान कैथोड के रूप में व्यवहार करता है।

गैल्वेनिक संक्षारण

एक एल्यूमीनियम प्लेट का गैल्वेनिक संक्षारण तब हुआ जब प्लेट एक हल्के स्टील संरचनात्मक समर्थन से जुड़ी थी।

गैल्वेनिक जंग तब होता है जब दो अलग -अलग धातुओं में एक दूसरे के साथ भौतिक या विद्युत संपर्क होता है और एक सामान्य इलेक्ट्रोलाइट में डूब जाता है, या जब एक ही धातु को विभिन्न सांद्रता के साथ इलेक्ट्रोलाइट के संपर्क में लाया जाता है। एक गैल्वेनिक युगल में, अधिक सक्रिय धातु (एनोड) त्वरित दर पर और अधिक महान धातु (कैथोड) धीमी दर पर संक्षारित होती है। जब अलग से डूब जाता है, तो प्रत्येक धातु अपनी दर से संक्षारित होती है। किस प्रकार की धातु (s) का उपयोग करने के लिए गैल्वेनिक श्रृंखला का पालन करके आसानी से निर्धारित किया जाता है। उदाहरण के लिए, जिंक को अक्सर स्टील संरचनाओं के लिए एक बलिदान के रूप में उपयोग किया जाता है। गैल्वेनिक जंग समुद्री उद्योग के लिए और कहीं भी पानी (लवण युक्त) संपर्क पाइप या धातु संरचनाओं के लिए प्रमुख रुचि है।

एनोड के सापेक्ष आकार, धातु के प्रकार और परिचालन की स्थिति (तापमान, आर्द्रता, लवणता, आदि) जैसे कारक गैल्वेनिक जंग को प्रभावित करते हैं।[1] एनोड और कैथोड का सतह क्षेत्र अनुपात सीधे सामग्री की जंग दरों को प्रभावित करता है। गैल्वेनिक जंग को अक्सर बलिदान एनोड के उपयोग से रोका जाता है।

गैल्वेनिक श्रृंखला

किसी भी वातावरण में (एक मानक माध्यम वातित, कमरे का तापमान समुद्री जल है), एक धातु या तो दूसरों की तुलना में अधिक महान या अधिक सक्रिय होगी, इस पर आधारित है कि इसके आयनों को सतह पर कितनी दृढ़ता से बाध्य किया जाता है। विद्युत संपर्क में दो धातुएं समान इलेक्ट्रॉनों को साझा करती हैं, ताकि प्रत्येक सतह पर "टग-ऑफ-वॉर" दो सामग्रियों के बीच मुक्त इलेक्ट्रॉनों के लिए प्रतिस्पर्धा के समान हो। समान दिशा, में आयनों के प्रवाह के लिए मेजबान के रूप में इलेक्ट्रोलाइट का उपयोग करते हुए, महान धातु सक्रिय से इलेक्ट्रॉनों को ले जाएगा। परिणामस्वरूप द्रव्यमान प्रवाह या विद्युत प्रवाह को ब्याज के माध्यम में सामग्रियों की एक पदानुक्रम स्थापित करने के लिए मापा जा सकता है। इस पदानुक्रम को गैल्वेनिक श्रृंखला कहा जाता है और यह जंग की भविष्यवाणी और समझने में उपयोगी है।

संक्षारण निष्कासन

अक्सर जंग के उत्पादों को रासायनिक रूप से निकालना संभव होता है। उदाहरण के लिए, नेवल जेली के रूप में फॉस्फोरिक एसिड जंग को हटाने के लिए लौह उपकरणों या सतहों पर लगाया जाता है। जंग हटाने को इलेक्ट्रोपॉलिशिंग के साथ भ्रमित नहीं होना चाहिए, जो एक चिकनी सतह बनाने के लिए अंतर्निहित धातु की कुछ परतों को हटा देता है। उदाहरण के लिए, फॉस्फोरिक एसिड का उपयोग तांबे को इलेक्ट्रोपॉलिश करने के लिए भी किया जा सकता है, लेकिन यह तांबे को हटाकर करता है, न कि तांबे के जंग के उत्पादों को।

संक्षारण का प्रतिरोध

कुछ धातुएं दूसरों की तुलना में अधिक आंतरिक रूप से जंग के लिए प्रतिरोधी हैं (कुछ उदाहरणों के लिए, गैल्वेनिक श्रृंखला देखें)। धातुओं को जंग (ऑक्सीकरण) से बचाने के विभिन्न तरीके हैं। पेंटिंग, हॉट-डिप गैल्वनीकरण, कैथोडिक प्रोटेक्शन, और इन के संयोजन शामिल हैं।[2]


आंतरिक रसायन

गोल्ड नगेट्स स्वाभाविक रूप से एक भूवैज्ञानिक समय के पैमाने पर भी गलती नहीं करते हैं।

जंग के लिए सबसे अधिक प्रतिरोधी सामग्री वे हैं जिनके लिए जंग थर्मोडायनामिक रूप से प्रतिकूल है। सोने या प्लेटिनम का कोई भी जंग उत्पाद अनायास शुद्ध धातु में विघटित किया जाता है, यही वजह है कि ये तत्व पृथ्वी पर धातु के रूप में पाए जा सकते हैं और लंबे समय से मूल्यवान हैं। अधिक सामान्य "आधार" धातुओं को केवल अधिक अस्थायी साधनों द्वारा संरक्षित किया जा सकता है।

कुछ धातुओं में स्वाभाविक रूप से धीमी प्रतिक्रिया कैनेटीक्स होती है, भले ही उनका जंग थर्मोडायनामिक रूप से अनुकूल हो। इनमें जिंक, मैग्नीशियम और कैडमियम जैसी धातुएं शामिल हैं। जबकि इन धातुओं का जंग निरंतर और जारी है, यह एक धीमी गति से दर पर होता है। एक चरम उदाहरण ग्रेफाइट है, जो ऑक्सीकरण पर बड़ी मात्रा में ऊर्जा जारी करता है, लेकिन इस तरह के धीमे गतिज हैं कि यह सामान्य परिस्थितियों में विद्युत रासायनिक जंग के लिए प्रभावी रूप से प्रतिरक्षा है।

निष्क्रियता

निष्क्रियता धातु की सतह पर जंग उत्पादों की एक बेहद पतली फिल्म के सहज गठन को संदर्भित करती है, जिसे धातु की सतह पर एक निष्क्रिय फिल्म के रूप में जाना जाता है, जो आगे ऑक्सीकरण के लिए बाधा के रूप में कार्य करता है। निष्क्रिय फिल्म की रासायनिक संरचना और सूक्ष्म संरचना अंतर्निहित धातु से अलग हैं। एल्यूमीनियम, स्टेनलेस स्टील्स और मिश्र धातुओं पर विशिष्ट निष्क्रिय फिल्म की मोटाई 10 नैनोमीटर के भीतर है। निष्क्रिय फिल्म ऑक्साइड परतों से अलग होती है जो गर्म करने पर बनती हैं और माइक्रोमीटर मोटाई सीमा में होती हैं - निष्क्रिय फिल्म हटाए जाने या क्षतिग्रस्त होने पर ठीक हो जाती है जबकि ऑक्साइड परत नहीं होती है। pH मध्यम में हवा, पानी और मिट्टी जैसे प्राकृतिक वातावरण में निष्क्रियता होने को एल्यूमीनियम, स्टेनलेस स्टील, टाइटेनियम और सिलिकॉन जैसी सामग्रियों में देखा जाता है।

निष्क्रियता मुख्य रूप से धातुकर्म और पर्यावरणीय कारकों द्वारा निर्धारित किया जाता है। pH के प्रभाव को पौरबैक्स आरेखों का उपयोग करके संक्षेप में प्रस्तुत किया गया है, लेकिन कई अन्य कारक प्रभावशाली हैं। निष्क्रियता को रोकने वाली कुछ स्थितियों में एल्यूमीनियम और जस्ता के लिए उच्च pH, कम pH या स्टेनलेस स्टील के लिए क्लोराइड आयनों की उपस्थिति, टाइटेनियम के लिए उच्च तापमान (जिस स्थिति में ऑक्साइड धातु में घुल जाता है, इलेक्ट्रोलाइट के बजाय) और सिलिकॉन के लिए और फ्लोराइड आयन शामिल हैं। दूसरी ओर, असामान्य परिस्थितियों में उन सामग्रियों को पारित करने के परिणामस्वरूप सामान्य रूप से असुरक्षित होते हैं, क्योंकि कंक्रीट का क्षारीय वातावरण स्टील रिबार के लिए करता है। तरल धातु जैसे पारा या गर्म मिलाप के संपर्क में अक्सर निष्क्रियता तंत्र को बाधित कर सकते हैं।

गुजरती सामग्री में जंग

जंग की क्षति को कम करने में निष्क्रिय बेहद उपयोगी है, हालांकि एक उच्च-गुणवत्ता वाले मिश्र धातु भी खराब हो जाएगा यदि एक निष्क्रिय फिल्म बनाने की क्षमता में बाधा उत्पन्न होती है। विशिष्ट वातावरण के लिए सामग्री के सही ग्रेड का उचित चयन सामग्री के इस समूह के लंबे समय तक चलने वाले प्रदर्शन के लिए महत्वपूर्ण है। यदि रासायनिक या यांत्रिक कारकों के कारण निष्क्रिय फिल्म में ब्रेकडाउन होता है, तो परिणामस्वरूप जंग के प्रमुख तरीकों में खड़ा जंग, दरार जंग, और तनाव जंग दरार शामिल हो सकते हैं।

पिटिंग संक्षारण (खड़ा जंग)

आरेख जो जंग का क्रॉस-सेक्शन दिखा रहा है

कुछ स्थितियां, जैसे ऑक्सीजन की कम सांद्रता या प्रजातियों की उच्च सांद्रता जैसे क्लोराइड जो आयनों के रूप में प्रतिस्पर्धा करते हैं, मिश्र धातु की निष्क्रिय फिल्म को फिर से तैयार करने की क्षमता के साथ हस्तक्षेप कर सकते हैं। सबसे खराब स्थिति में, लगभग पूरी सतह सुरक्षित रहेंगे, लेकिन छोटे स्थानीय उतार -चढ़ाव कुछ महत्वपूर्ण बिंदुओं में ऑक्साइड फिल्म को नीचा करेंगे। इन बिंदुओं पर जंग बहुत बढ़ जाएगा, और स्थितियों के आधार पर, कई प्रकारों के जंग गड्ढों का कारण बन सकता है। जबकि जंग काफी चरम परिस्थितियों में केवल न्यूक्लियेट पिट्स करता है, वे सामान्य रूप से स्थितियां होने पर भी बढ़ते रह सकते हैं, क्योंकि गड्ढे का आंतरिक भाग स्वाभाविक रूप से ऑक्सीजन से वंचित होता है और स्थानीय रूप से pH बहुत कम मूल्यों तक कम हो जाता है और इसके कारण जंग की दर बढ़ जाती है ऑटोकैटलिटिक प्रक्रिया। चरम मामलों में, बेहद लंबे और संकीर्ण जंग गड्ढों की तेज युक्तियाँ इस बिंदु पर तनाव एकाग्रता का कारण बन सकती हैं कि अन्यथा कठिन मिश्र धातुएं टूट सकते हैं, अदृश्य रूप से छोटे छेद द्वारा छेद की गई एक पतली फिल्म अंगूठे के आकार के गड्ढे को देखने से छिपा सकती है। ये समस्याएं विशेष रूप से खतरनाक हैं क्योंकि उन्हें किसी भाग या संरचना के विफल होने से पहले पता लगाना मुश्किल है। निष्क्रिय मिश्र धातुओं में, जंग के सबसे सामान्य और हानिकारक रूपों में से एक है,[citation needed] लेकिन मिश्र धातु के पर्यावरण के नियंत्रण से इसे रोका जा सकता है।

जब धातु में एक छोटा छेद, या गुहा, धातु में बनता है, तो प्रायः एक छोटे से क्षेत्र में निष्क्रियता के परिणामस्वरूप बनता है। यह क्षेत्र एनोडिक हो जाता है, जबकि शेष धातु का हिस्सा कैथोडिक हो जाता है, जो स्थानीयकृत गैल्वेनिक प्रतिक्रिया का उत्पादन करता है। इस छोटे से क्षेत्र की गिरावट धातु में प्रवेश करती है और असफलता का कारण बन सकती है। जंग के इस तथ्य का पता लगाना प्रायः मुश्किल होता है कि यह प्रायः अपेक्षाकृत छोटा होता है और इसे जंग-निर्मित यौगिकों द्वारा कवर और छिपाया जा सकता है।

वेल्ड क्षय और नाइफलाइन अटैक

टाइप 304 स्टेनलेस स्टील की सतह का सामान्य माइक्रोस्ट्रक्चर
सेंसिटाइज़्ड मेटैलिक माइक्रोस्ट्रक्चर, व्यापक इंटरग्रेनुलर सीमाओं को दर्शाता है

स्टेनलेस स्टील विशेष जंग चुनौतियों का सामना कर सकता है, क्योंकि इसका निष्क्रिय व्यवहार एक प्रमुख मिश्र धातु घटक (क्रोमियम, कम से कम 11.5%) की उपस्थिति पर निर्भर करता है। वेल्डिंग और गर्मी उपचार के ऊंचे तापमान के कारण, क्रोमियम कार्बाइड स्टेनलेस मिश्र धातुओं की अनाज की सीमाओं में बन सकते हैं। यह रासायनिक प्रतिक्रिया अनाज की सीमा के पास क्षेत्र में क्रोमियम की सामग्री को लूटती है, जिससे उन क्षेत्रों को संक्षारण के लिए बहुत कम प्रतिरोधी होता है। यह पास में अच्छी तरह से संरक्षित मिश्र धातु के साथ एक गैल्वेनिक युगल(जोड़ी) बनाता है, जो अत्यधिक संक्षारक वातावरण में "वेल्ड क्षय" (गर्मी से प्रभावित क्षेत्रों में अनाज की सीमाओं का जंग) की ओर जाता है। यह प्रक्रिया समय के साथ वेल्डेड जोड़ों की यांत्रिक शक्ति को गंभीरता से कम कर सकती है।

एक स्टेनलेस स्टील को "संवेदनशील" कहा जाता है यदि क्रोमियम कार्बाइड को माइक्रोस्ट्रक्चर में बनाया जाता है। एक सामान्यीकृत प्रकार 304 स्टेनलेस स्टील का एक विशिष्ट माइक्रोस्ट्रक्चर संवेदीकरण के कोई संकेत नहीं दिखाता है, जबकि एक भारी संवेदनशील स्टील अनाज सीमा अवक्षेप की उपस्थिति को दर्शाता है। संवेदनशील माइक्रोस्ट्रक्चर में डार्क लाइन्स अनाज की सीमाओं के साथ गठित क्रोमियम कार्बाइड के नेटवर्क हैं।

विशेष मिश्र, या तो कम कार्बन सामग्री के साथ या टाइटेनियम और नाइओबियम जैसे अतिरिक्त कार्बन "गेटर्स" के साथ (क्रमशः 321 और 347 प्रकारों में), इस प्रभाव को रोक सकते हैं, लेकिन बाद में समान घटना को रोकने के लिए वेल्डिंग के बाद विशेष गर्मी उपचार की आवश्यकता होती है। "चाकू का हमला" जैसा कि इसके नाम का अर्थ है, जंग वेल्ड से सटे एक बहुत ही संकीर्ण क्षेत्र तक सीमित है, अक्सर केवल कुछ माइक्रोमीटर के पार होता है, जिससे यह भी कम ध्यान देने योग्य हो जाता है।

क्रेविस संक्षारण

एक समुद्री जल अलवणीकरण संयंत्र में एक हीट एक्सचेंजर के ट्यूब और ट्यूब शीट (दोनों टाइप 316 स्टेनलेस स्टील से बना) के बीच दरार में जंग में जंग

क्रेविस जंग सीमित स्थानों (दरारें) में होने वाले जंग का एक स्थानीय रूप है, जिससे पर्यावरण से काम करने वाले तरल पदार्थ की पहुंच सीमित है। विभेदक वातन कोशिका के निर्माण से दरारों के अंदर जंग की ओर जाता है। दरारें के उदाहरण अंतराल और भागों के बीच, गास्केट या सील के नीचे, दरारें और सीम के अंदर, जमा स्थान और कीचड़ के ढेर के बीच से भरे संपर्क क्षेत्र हैं।

जंग युक्त दरार के प्रकार (धातु-धातु, धातु-गैर-धातु), दरार ज्यामिति (आकार, सतह खत्म), और धातुकर्म और पर्यावरणीय कारकों से प्रभावित होता है। दरार जंग की संवेदनशीलता का मूल्यांकन ASTM मानक प्रक्रियाओं के साथ किया जा सकता है। महत्वपूर्ण दरार जंग तापमान प्रायः दरार जंग के लिए सामग्री के प्रतिरोध को रैंक करने के लिए उपयोग किया जाता है।

हाइड्रोजन ग्रूविंग

रासायनिक उद्योग में, हाइड्रोजन ग्रूविंग एक संक्षारक एजेंट, गढ़े हुए पाइप घटकों और हाइड्रोजन गैस बुलबुले की बातचीत द्वारा बनाए गए खांचे द्वारा पाइपिंग का जंग है।[3] उदाहरण के लिए, जब सल्फ्यूरिक एसिड (H2SO4) स्टील के पाइपों के माध्यम से बहता है, तो स्टील में आयरन एसिड के साथ प्रतिक्रिया करके आयरन सल्फेट(FeSO4) और हाइड्रोजन गैस (H2) का पैशन कोटिंग बनाता है। लौह सल्फेट कोटिंग स्टील को आगे की प्रतिक्रिया से बचाएगा, हालांकि, यदि हाइड्रोजन बुलबुले इस कोटिंग से संपर्क करते हैं, तो इसे हटा दिया जाएगा। इस प्रकार, एक नाली का गठन एक यात्रा बुलबुले द्वारा किया जाएगा, एसिड के लिए अधिक स्टील को उजागर करना एक दुष्चक्र। उसी रास्ते का पालन करने के लिए बाद के बुलबुले की प्रवृत्ति से ग्रूविंग को बढ़ा दिया जाता है।

उच्च तापमान संक्षारण

उच्च तापमान जंग हीटिंग के परिणामस्वरूप सामग्री (प्रायः धातु) का रासायनिक गिरावट है। जंग का यह गैर-गाल्वेनिक रूप तब हो सकता है जब किसी धातु को ऑक्सीजन, सल्फर, या अन्य यौगिकों से युक्त गर्म वातावरण के अधीन किया जाता है जो संबंधित सामग्री को ऑक्सीकरण (या ऑक्सीकरण की सहायता) करने में सक्षम है। उदाहरण के लिए, एयरोस्पेस, बिजली उत्पादन और यहां तक ​​कि कार इंजनों में उपयोग की जाने वाली सामग्रियों को उच्च तापमान पर निरंतर अवधियों का विरोध करना पड़ता है जिसमें वे दहन के संभावित अत्यधिक जंग उत्पादों वाले वातावरण के लिए उजागर हो सकते हैं।

उच्च तापमान जंग के उत्पादों को संभावित रूप से इंजीनियर के लाभ के लिए बदल दिया जा सकता है। उदाहरण के लिए, स्टेनलेस स्टील्स पर ऑक्साइड का निर्माण, आगे वायुमंडलीय हमले को रोकने के लिए एक सुरक्षात्मक परत प्रदान कर सकता है, जिससे सामग्री का उपयोग कमरे में निरंतर अवधि के लिए और प्रतिकूल परिस्थितियों में उच्च तापमान दोनों के लिए किया जा सकता है। इस तरह के उच्च तापमान जंग उत्पाद, कॉम्पैक्ट ऑक्साइड परत ग्लेज़ के रूप में, धातु (या धातु और सिरेमिक) सतहों के उच्च तापमान फिसलने वाले संपर्क के दौरान पहनने को रोकते हैं या कम करते हैं। थर्मल ऑक्सीकरण का उपयोग प्रायः नियंत्रित ऑक्साइड नैनोस्ट्रक्चर की प्राप्ति की दिशा में एक मार्ग के रूप में किया जाता है, जिसमें नैनोवायर और पतली फिल्में शामिल हैं।

माइक्रोबियल संक्षारण

माइक्रोबियल जंग, या आमतौर पर माइक्रोबायोलॉजिकल रूप से प्रभावित जंग (MIC) के रूप में जाना जाता है, जो सूक्ष्मजीवों द्वारा होता है या बढ़ावा दिया जाता है, आमतौर पर कीमोओटोट्रॉफ़्स। यह ऑक्सीजन की उपस्थिति या अनुपस्थिति में, धातु और गैर-धातु दोनों सामग्री पर लागू हो सकता है। सल्फेट-कम करने वाले बैक्टीरिया ऑक्सीजन (एनारोबिक) की अनुपस्थिति में सक्रिय हैं, वे हाइड्रोजन सल्फाइड का उत्पादन करते हैं, जिससे सल्फाइड तनाव टूट जाता है। ऑक्सीजन (एरोबिक) की उपस्थिति में, कुछ बैक्टीरिया सीधे लोहे के ऑक्साइड और हाइड्रॉक्साइड के लिए लोहे को ऑक्सीकरण कर सकते हैं, अन्य बैक्टीरिया सल्फर को ऑक्सीकरण करते हैं और सल्फ्यूरिक एसिड का उत्पादन करते हैं जिससे बायोजेनिक सल्फाइड जंग होता है। संकेंद्रण कोशिकाएं जंग उत्पादों के जमा में बन सकती हैं, जिससे स्थानीयकृत जंग हो सकते हैं।

त्वरित कम पानी का जंग (ALWC) MIC का विशेष रूप से आक्रामक रूप है जो कम पानी के ज्वार के निशान के पास समुद्री जल में स्टील के ढेर को प्रभावित करता है। यह एक नारंगी कीचड़ की विशेषता है, जो एसिड के साथ इलाज किए जाने पर हाइड्रोजन सल्फाइड की बदबू आती है। जंग की दर बहुत अधिक हो सकती है और डिजाइन जंग भत्ते को जल्द ही स्टील के ढेर की समय से पहले विफलता के लिए पार किया जा सकता है।[4] ऐसे पाइलें जिन्हें लेपित किया गया है और निर्माण के समय कैथोडिक सुरक्षा स्थापित की गई है, वे ALWC के लिए अतिसंवेदनशील नहीं हैं। असुरक्षित ढेर के लिए, जंग को रोकने के लिए प्रभावित क्षेत्रों में स्थानीय रूप से बलिदान एनोड स्थापित किए जा सकते हैं या पूर्ण रेट्रोफिटेड बलिदान एनोड सिस्टम स्थापित किया जा सकता है। प्रभावित क्षेत्रों को कैथोडिक सुरक्षा का उपयोग करके भी इलाज किया जा सकता है, या तो बलिदान एनोड्स का उपयोग करके या कैल्सियस जमा का उत्पादन करने के लिए अक्रिय एनोड पर करंट को लागू किया जा सकता है, जो धातु को आगे के हमले से बचाने में मदद करेगा।

धातु डस्टिंग

धातु की धूल जंग का एक भयावह रूप है जो तब होता है जब अतिसंवेदनशील सामग्री उच्च कार्बन गतिविधियों, के साथ वातावरण के संपर्क में होती है, जैसे कि संश्लेषण गैस और अन्य उच्च-CO वातावरण। जंग खुद को धातु पाउडर के लिए थोक धातु के टूटने के रूप में प्रकट करता है। संदिग्ध तंत्र सबसे पहले धातु की सतह पर एक ग्रेफाइट परत का जमाव है, प्रायः वाष्प चरण में कार्बन मोनोऑक्साइड (CO) से होता है। इस ग्रेफाइट परत को तब मेटास्टेबल M3C प्रजाति (जहां M धातु है) बनाने के लिए माना जाता है, जो धातु की सतह से दूर चले जाते हैं। हालांकि, कुछ व्यवस्थाओं में कोई M3C प्रजाति नहीं देखी जाती है जो ग्रेफाइट परत में धातु परमाणुओं के प्रत्यक्ष हस्तांतरण का संकेत दिया जाता है।

जंग से सुरक्षा

अमेरिकी सैन्य सिकुड़ता उपकरण जैसे कि हेलीकॉप्टर को जंग से बचाने के लिए लपेटता है और इस तरह लाखों डॉलर बचाता है

विभिन्न उपचारों का उपयोग धातु की वस्तुओं को जंग नुकसान को धीमा करने के लिए किया जाता है जो मौसम, खारे पानी, एसिड, या अन्य प्रतिकूल वातावरणों के संपर्क में होते हैं। कुछ असुरक्षित धातु मिश्र धातु जंग के लिए बेहद कमजोर होते हैं, जैसे कि नियोडिमियम मैग्नेट में उपयोग किए जाते हैं, जो शुष्क, तापमान-स्थिर इनडोर वातावरण में भी पाउडर में उछल सकते हैं या उखड़ सकते हैं जब तक कि जंग को हतोत्साहित करने के लिए ठीक से इलाज नहीं किया जाता है।

भूतल उपचार

जब सतह के उपचार का उपयोग जंग को रोकने के लिए किया जाता है, तो अंतराल, दरारें या पिनहोल दोषों के बिना, पूर्ण कवरेज सुनिश्चित करने के लिए बहुत सावधानी बरतनी चाहिए। छोटे दोष "अकिलीज़ एड़ी" के रूप में कार्य कर सकते हैं, जिससे जंग को आंतरिक रूप से घुसने की अनुमति मिलती है और व्यापक क्षति हो सकती है, जबकि बाहरी सुरक्षात्मक परत स्पष्ट रूप से समय की अवधि के लिए बरकरार रहती है।

एप्लाइड कोटिंग्स

जस्ती सतह

चढ़ाना, पेंटिंग, और तामचीनी का अनुप्रयोग सबसे आम एंटी-कोरियन ट्रीटमेंट हैं। वे हानिकारक वातावरण और संरचनात्मक सामग्री के बीच जंग प्रतिरोधी सामग्री का एक बाधा प्रदान करके काम करते हैं। कॉस्मेटिक और विनिर्माण मुद्दों के अलावा, यांत्रिक लचीलेपन बनाम घर्षण और उच्च तापमान के प्रतिरोध में ट्रेडऑफ हो सकते हैं। पठार प्रायः केवल छोटे वर्गों में विफल हो जाते हैं, लेकिन यदि चढ़ाना सब्सट्रेट (उदाहरण के लिए, स्टील पर क्रोमियम) की तुलना में अधिक महान है, तो एक गैल्वेनिक युगल (जोड़े) किसी भी उजागर क्षेत्र को एक अनप्लेटेड सतह की तुलना में अधिक तेजी से खराब करने का कारण होगा। इस कारण से, यह अक्सर जस्ता या कैडमियम जैसे सक्रिय धातु के साथ प्लेट करना बुद्धिमान होता है। यदि जिंक कोटिंग पर्याप्त नहीं है, तो सतह जल्द ही स्पष्ट रूप से जंग के साथ भद्दा हो जाती है। डिजाइन जीवन सीधे धातु कोटिंग मोटाई से संबंधित है।

एक विद्युतीकृत रेलवे लाइन पर स्टील गैन्ट्री कोरोडिंग

रोलर या ब्रश द्वारा या तो पेंटिंग तंग स्थानों के लिए अधिक वांछनीय है, स्प्रे बड़े कोटिंग क्षेत्रों जैसे स्टील डेक और वाटरफ्रंट अनुप्रयोगों के लिए बेहतर होगा। उदाहरण के लिए Durabak-M26 जैसे लचीले पॉलीयुरेथेन कोटिंग्स, अत्यधिक टिकाऊ पर्ची प्रतिरोधी झिल्ली के साथ एक विरोधी संक्षारक सील प्रदान कर सकते हैं। पेंट किए गए कोटिंग्स को लागू करने में अपेक्षाकृत आसान होता है और तेजी से सुखाने का समय होता है, हालांकि तापमान और आर्द्रता के कारण शुष्क समय भिन्न हो सकते हैं।आजकल, पेट्रोलियम आधारित बहुलक का उपयोग करके बनाए गए कार्बनिक कोटिंग्स को कई नवीकरणीय आधारित कार्बनिक कोटिंग्स के साथ प्रतिस्थापित किया जा रहा है। विभिन्न वाहनों या बाइंडरों में, पॉलीयूरेथेन इस तरह के प्रयासों में सबसे अधिक खोजे गए बहुलक हैं।[5]

प्रतिक्रियाशील कोटिंग्स

यदि पर्यावरण को नियंत्रित किया जाता है (विशेष रूप से पुन: व्यवस्थित प्रणालियों में), तो जंग अवरोधकों को अक्सर इसमें जोड़ा जा सकता है। ये रसायन विद्युत रासायनिक प्रतिक्रियाओं को दबाने के लिए, उजागर धातु सतहों पर एक विद्युत रूप से इन्सुलेट या रासायनिक रूप से अभेद्य कोटिंग बनाते हैं। इस तरह के तरीके सिस्टम को कोटिंग में खरोंच या दोषों के प्रति कम संवेदनशील बनाते हैं, क्योंकि अतिरिक्त अवरोधकों को उपलब्ध कराया जा सकता है जहां भी धातु उजागर होती है। जंग को रोकने वाले रसायनों में कठोर पानी में कुछ लवण शामिल हैं (रोमन जल प्रणालियां उनके खनिज जमा के लिए प्रसिद्ध हैं), क्रोमेट्स, फॉस्फेट, पॉलीएनिलिन, अन्य संचालन पॉलिमर और विशेष रूप से डिज़ाइन किए गए रसायनों की एक विस्तृत श्रृंखला जो सर्फेक्टेंट से मिलती हैं (यानी लंबी-चेन कार्बनिकआयनिक अंत समूहों के साथ अणु)।

एनोडाइजेशन

इस चढ़ाई वाले डिसेंडर को पीले रंग के फिनिश के साथ एनोडाइज़ किया जाता है।

एल्यूमीनियम मिश्र धातु अक्सर एक सतह के उपचार से गुजरते हैं। स्नान में विद्युत रासायनिक स्थितियों को सावधानीपूर्वक समायोजित किया जाता है ताकि एक समान छिद्र, कई नैनोमीटर चौड़े, धातु के ऑक्साइड फिल्म में दिखाई दें। ये छिद्र ऑक्साइड को बहुत अधिक मोटा करने की अनुमति देते हैं, जो कि स्थिति की अनुमति देता है। उपचार के अंत में, छिद्रों को सील करने की अनुमति दी जाती है, जिससे एक कठिन-से-सामान्य सतह परत बनती है। यदि इस परत को खरोंच दिया जाता है, तो क्षतिग्रस्त क्षेत्र की रक्षा के लिए सामान्य निष्क्रियता प्रक्रियाएं अपनाई जाती हैं।

एनोडाइजिंग अपक्षय और जंग के लिए बहुत लचीला है, इसलिए इसका उपयोग प्रायः अग्रभाग और अन्य क्षेत्रों के निर्माण के लिए किया जाता है जहां सतह तत्वों के साथ नियमित संपर्क में आएगी। लचीला होने के साथ-साथ, इसे बार-बार साफ किया जाना चाहिए। यदि सफाई के बिना छोड़ दिया जाता है, तो पैनल किनारे पर धुंधला स्वाभाविक रूप से होगा। एनोडाइजेशन एक एनोड को कैथोड में परिवर्तित करने की प्रक्रिया है, जो इसके संपर्क में अधिक सक्रिय एनोड लाकर है।

बायोफिल्म कोटिंग्स

अत्यधिक जंग वातावरण में धातुओं की सतह पर जीवाणु फिल्मों की कुछ प्रजातियों को लागू करके सुरक्षा का एक नया रूप विकसित किया गया है। यह प्रक्रिया जंग प्रतिरोध को काफी हद तक बढ़ाती है। वैकल्पिक रूप से, रोगाणुरोधी-उत्पादक बायोफिल्म का उपयोग सल्फेट को कम करने वाले बैक्टीरिया से हल्के स्टील के जंग को रोकने के लिए किया जा सकता है।[6]


नियंत्रित पारगम्यता फॉर्मवर्क

नियंत्रित पारगम्यता फॉर्मवर्क (CPF) कंक्रीट प्लेसमेंट के दौरान स्वाभाविक रूप से कवर के स्थायित्व को बढ़ाने से सुदृढीकरण के क्षरण को रोकने की एक विधि है। कार्बोनेशन, क्लोराइड्स, ठंढ और घर्षण के प्रभावों का मुकाबला करने के लिए वातावरण में CPF का उपयोग किया गया है।

कैथोडिक संरक्षण

कैथोडिक प्रतिरक्षण (CP) एक धातु की सतह के जंग को नियंत्रित करने के लिए एक तकनीक है जो इसे विद्युत रासायनिक सेल का कैथोड बनाकर बनाती है। कैथोडिक सुरक्षा प्रणालियों का उपयोग प्रायः स्टील पाइपलाइनों और टैंकों की सुरक्षा के लिए किया जाता है, स्टील पियर पाइल्स, जहाज और अपतटीय तेल प्लेटफार्म।

बलिदान एनोड संरक्षण

एक जहाज के पतवार से जुड़ा बलिदान एनोड

प्रभावी CP के लिए, स्टील की सतह की क्षमता को ध्रुवीकृत (धक्का) अधिक नकारात्मक किया जाता है जब तक कि धातु की सतह में एक समान क्षमता न हो। एक समान क्षमता के साथ, जंग प्रतिक्रिया के लिए ड्राइविंग बल रोक दिया जाता है। गैल्वेनिक CP सिस्टम के लिए, एनोड सामग्री स्टील के प्रभाव में खराब हो जाती है, और अंततः इसे बदल दिया जाना चाहिए। ध्रुवीकरण एनोड से कैथोड तक वर्तमान प्रवाह के कारण होता है, जो एनोड और कैथोड के बीच इलेक्ट्रोड क्षमता में अंतर से संचालित होता है। सबसे आम बलिदान एनोड सामग्री एल्यूमीनियम, जस्ता, मैग्नीशियम और संबंधित मिश्र धातु हैं। एल्यूमीनियम में उच्चतम क्षमता होती है, और मैग्नीशियम में उच्चतम ड्राइविंग वोल्टेज होता है और इस प्रकार इसका उपयोग किया जाता है जहां प्रतिरोध अधिक होता है। जस्ता सामान्य उद्देश्य है और गैल्वनाइजिंग का आधार है।

कई समस्याएं बलिदान के साथ जुड़ी हुई हैं। इनमें से, एक पर्यावरणीय दृष्टिकोण से, जस्ता, मैग्नीशियम, एल्यूमीनियम और भारी धातुओं जैसे कि कैडमियम जैसे कि समुद्री जल सहित पर्यावरण में रिहाई है। एक कामकाजी दृष्टिकोण से, बलिदान एनोड्स सिस्टम को आधुनिक कैथोडिक प्रोटेक्शन सिस्टम जैसे कि प्रभावित करंट कैथोडिक प्रोटेक्शन (ICCP) सिस्टम की तुलना में कम सटीक माना जाता है। आवश्यक सुरक्षा प्रदान करने की उनकी क्षमता को गोताखोरों द्वारा पानी के नीचे निरीक्षण के माध्यम से नियमित रूप से जांचना होगा। इसके अलावा, जैसा कि उनके पास एक परिमित जीवनकाल है, बलिदान एनोड को समय के साथ नियमित रूप से बदलने की आवश्यकता होती है।[7]


प्रभावित वर्तमान कैथोडिक संरक्षण

बड़ी संरचनाओं के लिए, गैल्वेनिक एनोड आर्थिक रूप से पूर्ण सुरक्षा प्रदान करने के लिए पर्याप्त वर्तमान प्रदान नहीं कर सकते हैं। प्रभावित करंट कैथोडिक संरक्षण (ICCP) सिस्टम एक DC पावर सोर्स (जैसे कैथोडिक प्रोटेक्शन रेक्टिफायर) से जुड़े एनोड का उपयोग करते हैं। (ICCP) सिस्टम के लिए एनोड विभिन्न विशेष सामग्रियों के ट्यूबलर और ठोस रॉड आकार हैं। इनमें उच्च सिलिकॉन कच्चा लोहा, ग्रेफाइट, मिश्रित धातु ऑक्साइड या प्लैटिनम लेपित टाइटेनियम या नाइओबियम लेपित रॉड और तारों में शामिल हैं।

एनोडिक सुरक्षा

एनोडिक जंग संरक्षण संरचना पर एनोडिक करंट को प्रभावित करने के लिए (कैथोडिक सुरक्षा के विपरीत) को प्रभावित करता है। यह उन धातुओं के लिए उपयुक्त है जो निष्क्रियता (जैसे स्टेनलेस स्टील) का प्रदर्शन करते हैं और क्षमता की एक विस्तृत श्रृंखला पर उपयुक्त रूप से छोटे निष्क्रिय धारा हैं। इसका उपयोग आक्रामक वातावरण में किया जाता है, जैसे कि सल्फ्यूरिक एसिड का समाधान। एनोडिक संरक्षण निष्क्रिय अवस्था में धातु को रखकर जंग संरक्षण का एक विद्युत रासायनिक विधि है

संक्षारण की दर

ये नियोडिमियम मैग्नेट केवल 5 महीने के बाहर के एक्सपोज़र के बाद बहुत तेजी से बढ़ गए

ऑक्साइड परत के गठन को डील -ग्रोव मॉडल द्वारा वर्णित किया गया है, जिसका उपयोग विभिन्न स्थितियों में ऑक्साइड परत के गठन की भविष्यवाणी और नियंत्रित करने के लिए किया जाता है। जंग को मापने के लिए एक सरल परीक्षण वजन घटाने की विधि है।[8] इस विधि में निर्दिष्ट समय के लिए धातु या मिश्र धातु के संक्षारक वातावरण में एक साफ तौले हुए टुकड़े को उजागर करना शामिल है, जिसके बाद जंग उत्पादों को हटाने के लिए सफाई और वजन के नुकसान को निर्धारित करने के लिए टुकड़े को तौलना शामिल है। जंग की दर (R) की गणना की जाती है

जहां k एक स्थिरांक है, समय t में W धातु का वजन घटाने है, A धातु का सतह क्षेत्र है, और ρ धातु का घनत्व (g/cm3 में) है।

संक्षारण दर के लिए अन्य सामान्य अभिव्यक्तियाँ प्रवेश की गहराई और यांत्रिक गुणों का परिवर्तन है।

आर्थिक प्रभाव

ओहियो की ओर से देखा गया चांदी का पुल ढह गया

2002 में, US फेडरल हाईवे एडमिनिस्ट्रेशन ने अमेरिकी उद्योग में धातु के जंग से जुड़ी प्रत्यक्ष लागतों पर "संयुक्त राज्य अमेरिका में जंग लागत और निवारक रणनीतियों" का एक अध्ययन जारी किया। 1998 में, U.S में जंग की कुल वार्षिक प्रत्यक्ष लागत ca. $276 बिलियन थी। (US सकल घरेलू उत्पाद का ca. 3.2%)।[9] पांच विशिष्ट उद्योगों में टूट गया, आर्थिक नुकसान बुनियादी ढांचे में $ 22.6 अरब डॉलर है, उत्पादन और विनिर्माण में $ 17.6 बिलियन, परिवहन में $ 29.7 बिलियन, सरकार में $ 20.1 बिलियन, और उपयोगिताओं में $ 47.9 बिलियन।[10] जंग पुल दुर्घटनाओं के सबसे आम कारणों में से एक है। चूंकि जंग में लोहे के मूल द्रव्यमान की तुलना में बहुत अधिक मात्रा होती है, इसलिए इसका निर्माण भी आसन्न भागों को अलग करने के लिए विफलता का कारण बन सकता है। यह 1983 में मियानस रिवर ब्रिज के पतन का कारण था, जब बेयरिंग में आंतरिक रूप से जंग लग गया और सड़क के कोने को अपने समर्थन से धकेल दिया। उस समय सड़क पर तीन चालकों की मृत्यु हो गई क्योंकि स्लैब नीचे नदी में गिर गया। निम्नलिखित NTSB जांच से पता चला कि सड़क में एक नाली को सड़क पर फिर से सतह के लिए अवरुद्ध कर दिया गया था, और इसे अनब्लॉक नहीं किया गया था, नतीजतन, अपवाह का पानी ने समर्थन हैंगर में प्रवेश किया। वेस्ट वर्जीनिया में 1967 के सिल्वर ब्रिज आपदा में जंग भी एक महत्वपूर्ण कारक था, जब एक मिनट के भीतर एक स्टील सस्पेंशन ब्रिज ढह गया, उस समय पुल पर 46 चालकों और यात्रियों की मौत हो गई।

इसी तरह, कंक्रीट से ढके स्टील और लोहे का क्षरण कंक्रीट से टुटने का कारण बन सकता है, जिससे गंभीर संरचनात्मक समस्याएं पैदा हो सकती हैं। यह प्रबलित कंक्रीट पुलों के सबसे आम विफलता मोड में से एक है। आधी सेल क्षमता पर आधारित उपकरणों को मापने से कंक्रीट संरचना की कुल विफलता तक पहुंचने से पहले संभावित जंग स्थानों का पता लगाया जा सकता है।

20-30 साल पहले तक, एकल और बहु-परिवार के निवासियों के साथ-साथ वाणिज्यिक और सार्वजनिक निर्माण के लिए पीने योग्य जल प्रणालियों में जस्ती स्टील पाइप का बड़े पैमाने पर उपयोग किया गया था। आज, इन प्रणालियों ने बहुत पहले ही सुरक्षात्मक जस्ता का सेवन किया है और आंतरिक रूप से पानी की गुणवत्ता और पाइप विफलताओं के परिणामस्वरूप आंतरिक रूप से संचालित कर रहे हैं।[11] घर के मालिकों, कोंडो निवासियों और सार्वजनिक बुनियादी ढांचे पर आर्थिक प्रभाव 22 बिलियन डॉलर में अनुमानित है क्योंकि बीमा उद्योग पाइप विफलताओं के कारण दावों की लहर के लिए तैयार है।

अधातुओं में संक्षारण

अधिकांश सिरेमिक सामग्री लगभग पूरी तरह से जंग के लिए प्रतिरक्षित हैं। मजबूत रासायनिक बंधन जो उन्हें एक साथ पकड़ते हैं, संरचना में बहुत कम मुक्त रासायनिक ऊर्जा छोड़ते हैं, उन्हें पहले से ही खराब माना जा सकता है। जब क्षरण होता है, तो यह लगभग हमेशा सामग्री या रासायनिक प्रतिक्रिया का सरल विघटन होता है, बजाय एक विद्युत रासायनिक प्रक्रिया के।सिरेमिक में जंग सुरक्षा का एक सामान्य उदाहरण पानी में इसकी घुलनशीलता को कम करने के लिए सोडा-लाइम ग्लास में जोड़ा गया चूना है, हालांकि यह शुद्ध सोडियम सिलिकेट के रूप में घुलनशील नहीं है, सामान्य ग्लास नमी के संपर्क में आने पर उप-सूक्ष्म दोष खामियों का निर्माण करता है। इसकी भंगुरता के कारण, इस तरह की खामियां कमरे के तापमान पर पहले कुछ घंटों के दौरान एक कांच की वस्तु की ताकत में नाटकीय कमी का कारण बनती हैं।

पॉलिमर का संक्षारण

प्राकृतिक रबर टयूबिंग में ओजोन क्रैकिंग

पॉलिमर क्षरण में कई जटिल और अक्सर खराब समझी जाने वाली शारीरिक प्रक्रियाएं शामिल होती हैं। ये यहां चर्चा की गई अन्य प्रक्रियाओं से अलग हैं, और इसलिए "जंग" शब्द केवल उनके लिए शब्द के ढीले अर्थ में लागू होता है। उनके बड़े आणविक भार के कारण, बहुत कम एन्ट्रापी प्राप्त की जा सकती है, किसी अन्य पदार्थ के साथ बहुलक के दिए गए द्रव्यमान को मिलाकर प्राप्त किया जा सकता है, जिससे उन्हें आमतौर पर भंग करना काफी मुश्किल हो जाता है। जबकि विघटन कुछ बहुलक अनुप्रयोगों में एक समस्या है, इसके खिलाफ डिजाइन करना अपेक्षाकृत सरल है।

एक अधिक सामान्य और संबंधित समस्या "सूजन" है, जहां छोटे अणु संरचना में घुसपैठ करते हैं, ताकत और कठोरता को कम करते हैं और मात्रा में परिवर्तन होता है। इसके विपरीत, कई पॉलिमर (विशेष रूप से लचीले विनाइल) को जानबूझकर प्लास्टिसाइज़र के साथ फुलाया जाता है, जिसे संरचना से बाहर निकाल दिया जा सकता है, जिससे भंगुरता या अन्य अवांछनीय परिवर्तन हो सकते हैं।

गिरावट का सबसे सामान्य रूप, हालांकि, बहुलक श्रृंखला की लंबाई में कमी है। बहुलक श्रृंखलाओं को तोड़ने वाले तंत्र DNA पर उनके प्रभाव के कारण जीवविज्ञानी से परिचित होते हैं, आयनकारी विकिरण (सबसे अधिक पराबैंगनी प्रकाश), मुक्त कण और ऑक्सीडाइज़र जैसे ऑक्सीजन, ओजोन और क्लोरीन। ओजोन क्रैकिंग उदाहरण के लिए प्राकृतिक रबर को प्रभावित करने वाली एक प्रसिद्ध समस्या है। प्लास्टिक इन योगात्मक प्रक्रिया को बहुत प्रभावी ढंग से धीमा कर सकते हैं, और UV-अवशोषित पिगमेंट (जैसे टाइटेनियम डाइऑक्साइड या कार्बन ब्लैक) के रूप में सरल हो सकते हैं। प्लास्टिक शॉपिंग बैग में अक्सर इन एडिटिव्स को शामिल नहीं किया जाता है ताकि वे कूड़े के अल्ट्राफाइन कणों के रूप में अधिक आसानी से टूट सकें।

ग्लास का जंग

कांच का क्षरण

ग्लास को उच्च स्तर के जंग-प्रतिरोध की विशेषता है। इसके उच्च जल-प्रतिरोध के कारण इसका उपयोग अक्सर फार्मा उद्योग में प्राथमिक पैकेजिंग सामग्री के रूप में किया जाता है क्योंकि अधिकांश दवाओं को पानी के घोल में संरक्षित किया जाता है।[12] इसके जल-प्रतिरोध के अलावा, कुछ रासायनिक रूप से आक्रामक तरल पदार्थ या गैसों के संपर्क में आने पर कांच भी मजबूत होता है।

कांच की बीमारी जलीय घोल में सिलिकेट ग्लास का जंग है। यह दो तंत्रों द्वारा नियंत्रित होता है, डिफ्यूजन-नियंत्रित (आयन एक्सचेंज) और ग्लास नेटवर्क के हाइड्रोलाइटिक विघटन।[13] दोनों तंत्र दृढ़ता से संपर्क घोल के pH पर निर्भर करते हैं, आयन विनिमय की दर 100.5ph के रूप में pH के साथ घट जाती है जबकि pH के साथ 10−0.5pH हाइड्रोलाइटिक विघटन की दर बढ़ जाती है।[14] गणितीय रूप से, चश्मे के जंग दर को तत्वों NRi (g/cm2·d) के सामान्यीकृत जंग दरों की विशेषता है, जो पानी में छोड़ी गई प्रजातियों की कुल मात्रा के अनुपात के रूप में निर्धारित किए जाते हैं Mi (g) पानी से संपर्क करने वाले सतह क्षेत्र S (cm2), संपर्क t (दिन) का समय और कांच fi में तत्व का वजन अंश सामग्री

समग्र संक्षारण दर दोनों तंत्रों (लीचिंग + विघटन) NRi=NRxi+NRh से योगदान का एक योग है डिफ्यूजन-नियंत्रित लीचिंग (आयन एक्सचेंज) जंग के प्रारंभिक चरण की विशेषता है और इसमें हाइड्रोनियम (H3O+) आयन द्वारा कांच में क्षार आयनों का प्रतिस्थापन शामिल है। यह चश्मे की सतह परतों के पास आयन-चयनात्मक कमी का कारण बनता है और एक्सपोज़र समय के साथ जंग दर की व्युत्क्रम (उलटा) वर्गमूल निर्भरता देता है। प्रसार-नियंत्रित सामान्यीकृत लीचिंग दर चश्मे से धनायनों (g/cm2·d) द्वारा दिया गया है,

,

जहां t समय है, Di i-th धनायन प्रभावी प्रसार गुणांक (cm2/d), जो Di = Di0·10–pH के रूप में पानी से संपर्क करने के pH पर निर्भर करता है और ρ कांच का घनत्व (g/cm)3 ) है।

ग्लास नेटवर्क विघटन जंग के बाद के चरणों की विशेषता है और तनु विलयनों (g/cm2·d) में समय-स्वतंत्र दर पर पानी के घोल में आयनों की सर्वांगसम रिहाई का कारण बनता है।

,

जहां rh कांच की स्थिर हाइड्रोलिसिस (विघटन) दर (cm/d) है। बंद प्रणालियों में जलीय चरण से प्रोटॉन की खपत pH को बढ़ाती है और हाइड्रोलिसिस के लिए तेजी से संक्रमण का कारण बनती है।[15] हालांकि, सिलिका के साथ समाधान की और संतृप्ति हाइड्रोलिसिस में बाधा डालती है और कांच को आयन-विनिमय में लौटने का कारण बनता है, उदा- जंग का प्रसार-नियंत्रित शासन।

सामान्य प्राकृतिक परिस्थितियों में, सिलिकेट ग्लास की सामान्यीकृत जंग दर बहुत कम होती है और 10−7–10−5 g/(cm2·d) के क्रम की होती है। पानी में सिलिकेट ग्लास का बहुत उच्च स्थायित्व उन्हें खतरनाक और परमाणु अपशिष्ट स्थिरता के लिए उपयुक्त बनाता है।

ग्लास संक्षारण परीक्षण

File:Spidergraph ChemDurab.png
एक विशिष्ट बेस ग्लास (संक्षारण परीक्षण आईएसओ 719) के जल संक्षारण के खिलाफ रासायनिक स्थायित्व पर एक निश्चित ग्लास घटक के अलावा का प्रभाव।[16]

तटस्थ, बुनियादी, और अम्लीय वातावरण में चश्मा के जंग (जिसे रासायनिक स्थायित्व भी कहा जाता है) को मापने के लिए कई मानकीकृत प्रक्रियाएं मौजूद हैं, नकली पर्यावरणीय परिस्थितियों में, उच्च तापमान और दबाव में, नकली शरीर के तरल पदार्थ में, उच्च तापमान और दबाव में,[17] और अन्य शर्तों के तहत।

मानक प्रक्रिया ISO 719[18] तटस्थ परिस्थितियों में पानी में घुलनशील बुनियादी यौगिकों के निष्कर्षण के परीक्षण का वर्णन करता है, 2(g) ग्राम कांच, का कण आकार 300-500 μm, ग्रेड के 50 ml डी-आयनीकृत पानी में 60 मिनट के लिए रखा जाता है, ग्रेड 298 °C 50 ml पानी में 60 मिनट के लिए रखा जाता है, प्राप्त समाधान के 25 ml को 0.01 mol/l HCl समाधान के खिलाफ शीर्षक दिया गया है। तटस्थता के लिए आवश्यक HCl की मात्रा को नीचे दी गई तालिका के अनुसार वर्गीकृत किया गया है।

निकाले गए मूल आक्साइड को बेअसर करने के लिए आवश्यक 0.01M HCl की मात्रा, ml Na2O

के समकक्ष निकाला

गया, μg

हाइड्रोलाइटिक

वर्ग

< 0.1 < 31 1
0.1-0.2 31-62 2
0.2-0.85 62-264 3
0.85-2.0 264-620 4
2.0-3.5 620-1085 5
> 3.5 > 1085 > 5

मानकीकृत परीक्षण ISO 719 खराब या निकालने योग्य क्षारीय घटकों के साथ चश्मे के लिए उपयुक्त नहीं है, लेकिन जो अभी भी पानी द्वारा हमला किया जाता है,जैसे क्वार्ट्ज ग्लास, B2O3 ग्लास या P2O5 कांच।

सामान्य चश्मे को निम्नलिखित वर्गों में विभेदित किया जाता है,

हाइड्रोलाइटिक वर्ग 1 (टाइप I):

इस वर्ग को, जिसे न्यूट्रल ग्लास भी कहा जाता है, में बोरोसिलिकेट ग्लास (जैसे डुरान, पाइरेक्स, फियोलाक्स) शामिल हैं।

इस वर्ग के कांच में बोरॉन ऑक्साइड, एल्यूमीनियम ऑक्साइड और क्षारीय पृथ्वी ऑक्साइड की आवश्यक मात्रा में होता है। इसकी संरचना के माध्यम से तटस्थ ग्लास में तापमान के झटके और उच्चतम हाइड्रोलाइटिक प्रतिरोध के खिलाफ उच्च प्रतिरोध होता है। एसिड और न्यूट्रल सॉल्यूशन के खिलाफ यह उच्च रासायनिक प्रतिरोध को दर्शाता है, क्योंकि क्षारीय समाधानों के खिलाफ इसकी खराब क्षार सामग्री है।

हाइड्रोलाइटिक वर्ग 2 (टाइप II):

इस वर्ग में सामान्यतः सतह परिष्करण के माध्यम से एक उच्च हाइड्रोलाइटिक प्रतिरोध के साथ सोडियम सिलिकेट ग्लास होते हैं। सोडियम सिलिकेट ग्लास एक सिलिकेट ग्लास है, जिसमें क्षार और क्षारीय पृथ्वी ऑक्साइड और मुख्य रूप से सोडियम ऑक्साइड और कैल्शियम ऑक्साइड होता है।

हाइड्रोलाइटिक वर्ग 3 (टाइप III):

तीसरे हाइड्रोलाइटिक वर्ग के ग्लास में सामान्यतः सोडियम सिलिकेट ग्लास होते हैं और इसमें हाइड्रोलाइटिक प्रतिरोध होता है, जो टाइप 1 ग्लास की तुलना में दो गुना खराब होता है।

एसिड वर्ग DIN 12116 और क्षार वर्ग DIN 52322 (ISO 695) को हाइड्रोलाइटिक वर्ग 12111 (ISO 719) से अलग किया जाना है।

यह भी देखें

  • [[अवायवीय जंग

|अवायवीय जंग ]]

  • [[बैक्टीरियल अवायवीय जंग

|बैक्टीरियल अवायवीय जंग ]]

  • [[रासायनिक खतरा लेबल

|रासायनिक खतरा लेबल ]]

  • [[बाहरी स्थान में जंग

|बाहरी स्थान में जंग ]]- बाहरी स्थान में होने वाले पदार्थों का क्षरण

  • [[जंग पदार्थ

|जंग पदार्थ ]]- पदार्थ जो रासायनिक प्रतिक्रिया के माध्यम से अन्य पदार्थों को नुकसान पहुंचाएगा या नष्ट कर देगा

  • [[चक्रीय जंग परीक्षण

|चक्रीय जंग परीक्षण ]]

  • डिमेटकोटे -स्टील जंग प्रतिरोध के लिए प्रयुक्त
  • [[कंक्रीट की विद्युत प्रतिरोधकता माप

|कंक्रीट की विद्युत प्रतिरोधकता माप ]]

  • वैद्युतीयऋणात्मकता- इलेक्ट्रॉनों की साझा जोड़ी को आकर्षित करने के लिए परमाणु की प्रवृत्ति
  • पर्यावरण तनाव फ्रैक्चर- तन्यता तनाव और हानिकारक वातावरण के प्रभाव में समय से पहले विफलता के लिए सामान्य नाम
  • [[फैराडे विरोधाभास (इलेक्ट्रोकैमिस्ट्री)

|फैराडे विरोधाभास (इलेक्ट्रोकैमिस्ट्री) ]]

  • [[फाइबर-प्रबलित प्लास्टिक टैंक और बर्तन

|फाइबर-प्रबलित प्लास्टिक टैंक और बर्तन ]]

  • [[फोरेंसिक इंजीनियरिंग

|फोरेंसिक इंजीनियरिंग ]] – Investigation of failures associated with legal intervention- कानूनी हस्तक्षेप से जुड़ी विफलताओं की जांच

|हाइड्रोजन उत्सर्जन ]]- हाइड्रोजन के संपर्क में आने वाली धातु की लचीलापन में कमी

|आवर्त सारणी ]]- परमाणु क्रमांक द्वारा क्रमित रासायनिक तत्वों की सारणीबद्ध व्यवस्था

  • [[खड़ा प्रतिरोध समकक्ष संख्या

|खड़ा प्रतिरोध समकक्ष संख्या ]]- स्थानीयकृत खड़ा जंग के लिए स्टेनलेस स्टील प्रतिरोध की भविष्यवाणी माप

  • रेडॉक्स- रासायनिक प्रतिक्रिया जिसमें परमाणुओं की ऑक्सीकरण अवस्थाएँ बदल जाती हैं
  • अपचयन विभवकिसी पदार्थ की इलेक्ट्रॉन ग्रहण करने या खोने की प्रवृत्ति का मापन

|स्कैनिंग कंपन इलेक्ट्रोड तकनीक ]]


संदर्भ

  1. Nwagha, Nzube. "Statistical study on the corrosion of mild steel in saline mediums". {{cite journal}}: Cite journal requires |journal= (help)
  2. Methods of Protecting Against Corrosion Piping Technology & Products, (retrieved January 2012)
  3. "The effect of sulphuric acid on storage tanks". Retrieved 2019-10-27.
  4. JE Breakell, M Siegwart, K Foster, D Marshall, M Hodgson, R Cottis, S Lyon (2005). Management of Accelerated Low Water Corrosion in Steel Maritime Structures, Volume 634 of CIRIA Series, ISBN 0-86017-634-7
  5. Khanderay, Jitendra C., and Vikas V. Gite. "Vegetable oil-based polyurethane coatings: recent developments in India." Green Materials 5.3 (2017): 109-122.
  6. R. Zuo; D. Örnek; B.C. Syrett; R.M. Green; C.-H. Hsu; F.B. Mansfeld; T.K. Wood (2004). "Inhibiting mild steel corrosion from sulfate-reducing bacteria using antimicrobial-producing biofilms in Three-Mile-Island process water". Appl. Microbiol. Biotechnol. 64 (2): 275–283. doi:10.1007/s00253-003-1403-7. PMID 12898064. S2CID 20734181.
  7. How does a sacrificial anode work. Corrosion.nl. Retrieved on 2022-06-17.
  8. [Fundamentals of corrosion – Mechanisms, Causes and Preventative Methods]. Philip A. Schweitzer, Taylor and Francis Group, LLC (2010) ISBN 978-1-4200-6770-5, p. 25.
  9. Gerhardus H. Koch, Michiel P.H.Brongers, Neil G. Thompson, Y. Paul Virmani and Joe H. Payer. CORROSION COSTS AND PREVENTIVE STRATEGIES IN THE UNITED STATES – report by CC Technologies Laboratories, Inc. to Federal Highway Administration (FHWA), September 2001.
  10. "NACE Corrosion Costs Study". Cor-Pro.com. NACE. 2013-11-12. Retrieved 16 June 2014.
  11. Daniel Robles. "Potable Water Pipe Condition Assessment For a High Rise Condominium in The Pacific Northwest". GSG Group, Inc. Dan Robles, PE. Retrieved 10 December 2012.
  12. Bettine Boltres (2015) When Glass Meets Pharma: Insights about Glass as Primary Packaging Material. Editio Cantor. ISBN 978-3-87193-432-2
  13. A.K. Varshneya (1994). Fundamentals of inorganic glasses. Gulf Professional Publishing. ISBN 0127149708.
  14. M.I. Ojovan, W.E. Lee. New Developments in Glassy Nuclear Wasteforms. Nova Science Publishers, New York (2007) ISBN 1600217834 pp. 100 ff.
  15. Corrosion of Glass, Ceramics and Ceramic Superconductors. D.E. Clark, B.K. Zoitos (eds.), William Andrew Publishing/Noyes (1992) ISBN 081551283X.
  16. Calculation of the Chemical Durability (Hydrolytic Class) of Glasses. Glassproperties.com. Retrieved on 2012-07-15.
  17. Vapor Hydration Testing (VHT) Archived December 14, 2007, at the Wayback Machine. Vscht.cz. Retrieved on 2012-07-15.
  18. International Organization for Standardization, Procedure 719 (1985). Iso.org (2011-01-21). Retrieved on 2012-07-15.


अग्रिम पठन