समदैशिक विकिरक
समदैशिक विकिरक विद्युत चुम्बकीय या ध्वनि तरंगों का एक सैद्धांतिक बिंदु स्रोत है जो सभी दिशाओं में विकिरण की समान तीव्रता प्रसारित करता है। इसमें विकिरण की कोई वरीय दिशा नहीं है। यह स्रोत पर केन्द्रित वृत्त पर सभी दिशाओं में समान रूप से विकिरण करता है। समदैशिक विकिरकों का उपयोग संदर्भ विकिरकों के रूप में किया जाता है जिसके साथ अन्य स्रोतों की तुलना की जाती है, उदाहरण के लिए एंटेना के लाभ का निर्धारण करने में। विद्युत चुम्बकीय तरंगों का सुसंगत समदैशिक विकिरक सैद्धांतिक रूप से असंभव है, लेकिन असंगत विकिरकों का निर्माण किया जा सकता है। समदैशिक ध्वनि विकिरक संभव है क्योंकि ध्वनि एक अनुदैर्ध्य तरंग है।
असंबद्ध शब्द समदैशिक विकिरण उस विकिरण को संदर्भित करता है जिसकी सभी दिशाओं में समान तीव्रता होती है, इस प्रकार समदैशिक विकिरक समदैशिक विकिरण का उत्पादन नहीं करता है।
भौतिकी
भौतिकी में, एक आइसोट्रोपिक रेडिएटर एक बिंदु विकिरण या ध्वनि स्रोत है। की दूरी पर, सूर्य विद्युत चुम्बकीय विकिरण का एक आइसोट्रोपिक रेडिएटर है।
एंटीना सिद्धांत
एंटीना (रेडियो) सिद्धांत में, एक आइसोट्रोपिक एंटीना एक काल्पनिक एंटीना है जो सभी दिशाओं में समान तीव्रता की रेडियो तरंगें प्रसारित करता है। इस प्रकार कहा जाता है कि इसमें सभी दिशाओं में डेसीबल#एंटीना माप|0 dBi (आइसोट्रोपिक के सापेक्ष डीबी) की दिशा होती है। चूँकि यह पूरी तरह से गैर-दिशात्मक है, यह एक काल्पनिक सबसे खराब स्थिति के रूप में कार्य करता है जिसके विरुद्ध दिशात्मक एंटेना की तुलना की जा सकती है।
वास्तव में, रैखिक ध्रुवीकरण (तरंगों) के सुसंगतता (भौतिकी) आइसोट्रोपिक रेडिएटर को असंभव दिखाया जा सकता है।[lower-alpha 1] इसका विकिरण क्षेत्र सभी दिशाओं में एक साथ हेल्महोल्ट्ज़ समीकरण (मैक्सवेल के समीकरणों से प्राप्त) के अनुरूप नहीं हो सका। विकिरण पैटर्न के निकट और दूर के क्षेत्र में, काल्पनिक बिंदु स्रोत के चारों ओर एक बड़े क्षेत्र पर विचार करें ताकि उस त्रिज्या पर एक उचित क्षेत्र पर तरंग अनिवार्य रूप से समतल हो। सुदूर क्षेत्र में मुक्त स्थान में समतल तरंग का विद्युत (और चुंबकीय) क्षेत्र हमेशा तरंग के प्रसार की दिशा के लंबवत होता है। इसलिए विद्युत क्षेत्र को हर जगह गोले की सतह पर स्पर्शरेखा और उस सतह के साथ निरंतर होना होगा। हालाँकि हेयरी बॉल प्रमेय से पता चलता है कि एक गोले की सतह पर स्पर्शरेखा वाला एक सतत फ़ंक्शन वेक्टर क्षेत्र गोले पर एक या अधिक बिंदुओं पर शून्य पर गिरना चाहिए, जो रैखिक ध्रुवीकरण के साथ एक आइसोट्रोपिक रेडिएटर की धारणा के साथ असंगत है।
सुसंगति (भौतिकी) आइसोट्रोपिक एंटेना संभव हैं और मैक्सवेल के समीकरणों का उल्लंघन नहीं करते हैं।[citation needed] व्यवहार में, सभी प्रकार के छोटे एंटेना लगभग आइसोट्रोपिक होते हैं जब उनका सबसे लंबा आयाम एक तरंग दैर्ध्य से बहुत कम होता है (मान लीजिए, ~1/ 10 तरंग या उससे कम): एंटीना जितना छोटा होगा, यह उतना ही अधिक आइसोट्रोपिक हो जाएगा।[lower-alpha 2]
भले ही एक बिल्कुल आइसोट्रोपिक ऐन्टेना व्यवहार में मौजूद नहीं हो सकता है, इसका उपयोग वास्तविक एंटेना की प्रत्यक्षता की गणना करने के लिए तुलना के आधार के रूप में किया जाता है। एंटीना लाभ जो कि एंटीना की दक्षता से गुणा की गई एंटीना की दिशा के बराबर है, उसे तीव्रता (भौतिकी) के अनुपात के रूप में परिभाषित किया गया है (शक्ति प्रति इकाई क्षेत्र) ऐन्टेना से दी गई दूरी पर प्राप्त रेडियो शक्ति की (अधिकतम विकिरण की दिशा में) तीव्रता तक समान दूरी पर एक पूर्ण दोषरहित आइसोट्रोपिक एंटीना से प्राप्त किया गया। इसे आइसोट्रोपिक गेन कहा जाता है
आइसोट्रोपिक रिसीवर
ईएमएफ माप अनुप्रयोगों में, एक आइसोट्रोपिक रिसीवर (जिसे आइसोट्रोपिक एंटीना भी कहा जाता है) एक कैलिब्रेटेड रेडियो रिसीवर होता है जिसमें एक एंटीना होता है जो एक आइसोट्रोपिक विकिरण पैटर्न का अनुमान लगाता है; अर्थात्, इसमें किसी भी दिशा से रेडियो तरंगों के प्रति लगभग समान संवेदनशीलता होती है। इसका उपयोग विद्युत चुम्बकीय स्रोतों को मापने और एंटेना को कैलिब्रेट करने के लिए एक क्षेत्र माप उपकरण के रूप में किया जाता है। आइसोट्रोपिक प्राप्त करने वाला एंटीना आमतौर पर तीन ऑर्थोगोनल एंटेना या सर्वदिशात्मक एंटीना प्रकार के विकिरण पैटर्न वाले सेंसिंग उपकरणों द्वारा अनुमानित होता है। जैसे हर्ट्ज़ियन द्विध्रुव या छोटे लूप एंटीना ।
माप में सटीकता को परिभाषित करने के लिए उपयोग किए जाने वाले पैरामीटर को आइसोट्रोपिक विचलन कहा जाता है।
ऑप्टिक्स
प्रकाशिकी में, एक आइसोट्रोपिक रेडिएटर प्रकाश का एक बिंदु स्रोत है। सूर्य प्रकाश के एक (असंगत) आइसोट्रोपिक रेडिएटर का अनुमान लगाता है। कुछ युद्ध सामग्री जैसे फ्लेयर्स और भूसी में आइसोट्रोपिक रेडिएटर गुण होते हैं। कोई रेडिएटर आइसोट्रोपिक है या नहीं, यह इस बात से स्वतंत्र है कि वह लैंबर्ट के नियम का पालन करता है या नहीं। रेडिएटर के रूप में, एक गोलाकार काला शरीर दोनों है, एक सपाट काला शरीर लैम्बर्टियन है, लेकिन आइसोट्रोपिक नहीं है, एक सपाट क्रोम शीट न तो है, और समरूपता से सूर्य आइसोट्रोपिक है, लेकिन अंग काले होने के कारण लैम्बर्टियन नहीं है।
ध्वनि
एक आइसोट्रोपिक ध्वनि रेडिएटर एक सैद्धांतिक ध्वनि-विस्तारक यंत्र है जो सभी दिशाओं में समान ध्वनि मात्रा प्रसारित करता है। चूँकि ध्वनि तरंगें अनुदैर्ध्य तरंगें हैं, एक सुसंगत आइसोट्रोपिक ध्वनि रेडिएटर संभव है; एक उदाहरण एक स्पंदित गोलाकार झिल्ली या डायाफ्राम है, जिसकी सतह समय के साथ हवा पर दबाव डालते हुए रेडियल रूप से फैलती और सिकुड़ती है।[1]
एक आइसोट्रोपिक एंटीना के एपर्चर की व्युत्पत्ति
एक आइसोट्रोपिक एंटीना का एंटीना एपर्चर एक थर्मोडायनामिक तर्क द्वारा प्राप्त किया जा सकता है, जो इस प्रकार है।[2][3][4]
मान लीजिए कि थर्मल गुहा सीए के भीतर स्थित एक आदर्श (दोषरहित) आइसोट्रोपिक एंटीना ए एक बंदपास छननी एफ के माध्यम से दोषरहित संचरण लाइन के माध्यम से जुड़ा हुआ है।ν एक अन्य तापीय गुहा सीआर में एक मिलान अवरोधक आर से (एंटीना, लाइन और फिल्टर की विशेषता प्रतिबाधा सभी मेल खाते हैं)। दोनों गुहाएं समान तापमान पर हैं फिल्टर एफν केवल आवृत्ति के एक संकीर्ण बैंड के माध्यम से अनुमति देता है को दोनों गुहाएं एंटीना और अवरोधक के संतुलन में ब्लैकबॉडी विकिरण से भरी हुई हैं। इस विकिरण का कुछ भाग एंटीना द्वारा प्राप्त होता है।
इस शक्ति की मात्रा आवृत्तियों के बैंड के भीतर ट्रांसमिशन लाइन और फिल्टर एफ से होकर गुजरता हैν और प्रतिरोधक में ऊष्मा के रूप में नष्ट हो जाता है। शेष फ़िल्टर द्वारा वापस एंटीना में परावर्तित होता है और गुहा में पुनः विकिरणित हो जाता है। अवरोधक तापमान पर अपने अणुओं की यादृच्छिक गति के कारण जॉनसन-नाइक्विस्ट शोर धारा भी उत्पन्न करता है इस शक्ति की मात्रा आवृत्ति बैंड के भीतर फिल्टर से होकर गुजरता है और एंटीना द्वारा विकिरणित होता है। चूँकि पूरा सिस्टम एक ही तापमान पर है इसलिए यह थर्मोडायनामिक संतुलन में है; गुहाओं के बीच शक्ति का कोई शुद्ध हस्तांतरण नहीं हो सकता है, अन्यथा थर्मोडायनामिक्स के दूसरे नियम का उल्लंघन करते हुए एक गुहा गर्म हो जाएगी और दूसरी ठंडी हो जाएगी। इसलिए दोनों दिशाओं में बिजली का प्रवाह बराबर होना चाहिए
यह भी देखें
- विकिरण स्वरुप
- ई-प्लेन और एच-प्लेन
फ़ुटनोट
- ↑ Acoustic isotropic radiators, however, are possible because sound waves in a gas or liquid are longitudinal waves and not transverse waves (as electromagnetic waves are).
- ↑ Although all small antennas are very nearly isotropic, there is often a vanishingly narrow "null" direction – a violation of isotropy – which never actually goes away, no matter how small the antenna may be. Usually the null direction(s) either lie along the axis of the antenna wire (for electrical antennas) or is perpendicular to the plane of the loop (for magnetic antennas).
- ↑ The Rayleigh-Jeans formula is a good approximation as long as the energy in a radio photon is small compared with the thermal energy per degree of freedom: This is true throughout the radio spectrum at all ordinary temperatures.
संदर्भ
- ↑ Remsburg, Ralph (2011). Advanced Thermal Design of Electronic Equipment. Springer Science and Business Media. p. 534. ISBN 978-1441985095.
- ↑ Pawsey, J.L.; Bracewell, R.N. (1955). Radio Astronomy. London: Oxford University Press. pp. 23–24.
- ↑ Rohlfs, Kristen; Wilson, T.L. (2013). Tools of Radio Astronomy, 4th Edition. Springer Science and Business Media. pp. 134–135. ISBN 978-3662053942.
- ↑ Condon, J.J.; Ransom, S.M. (2016). "Antenna fundamentals". US National Radio Astronomy Observatory (NRAO). Essential Radio Astronomy course. Archived from the original on 1 September 2018. Retrieved 22 August 2018.
बाहरी संबंध
- Isotropic Radiators, Matzner and McDonald, arXiv Antennas
- Antennas D.Jefferies
- isotropic radiator AMS Glossary
- U.S. Patent 4,130,023 - Method and apparatus for testing and evaluating loudspeaker performance
- Non Lethal Concepts - Implications for Air Force Intelligence Archived 2007-04-30 at the Wayback Machine Published Aerospace Power Journal, Winter 1994
- Glossary
- Cosmic Microwave Background - Introduction
- Isotropic Radiators Archived 2014-08-19 at the Wayback Machine Holon Academic Institute of Technology