सोडालाइट

From Vigyanwiki
Revision as of 08:57, 28 July 2023 by alpha>Ajays
सोडालाइट
File:सोडालिथ - रोहस्टीन.jpg
सामान्य
श्रेणीTectosilicates without zeolitic H2O
Formula
(repeating unit)
Na
8
(Al
6
Si
6
O
24
)Cl
2
आईएमए प्रतीकSdl[1]
स्ट्रुन्ज़ वर्गीकरण9.FB.10
क्रिस्टल सिस्टमघन
क्रिस्टल क्लासHextetrahedral (43m)
H-M symbol: (4 3m)
अंतरिक्ष समूहP43n
यूनिट सेलa = 8.876(6) Å; Z = 1
Identification
Colorगहरा शाही नीला, हरा, पीला, बैंगनी, सफेद शिराएं आम हैं
क्रिस्टल की आदतबड़ा; शायद ही कभी डोडेकेहेड्रा के रूप में
ट्विनिंगस्यूडोहेक्सागोनल प्रिज्म बनाने वाले {111} पर सामान्य
क्लीवेजPoor on {110}
फ्रैक्चरशंखाकार से असमान
दृढ़तानाज़ुक
Mohs scale hardness5.5-6
Lusterनीरस कांचयुक्त से चिकना
स्ट्रीकसफ़ेद
डायफेनिटीपारदर्शी से पारभासी
विशिष्ट गुरुत्व2.27-2.33
ऑप्टिकल गुणसमदैशिक
अपवर्तक सूचकांकn = 1.483 - 1.487
पराबैंगनी प्रतिदीप्तिचमकीला लाल-नारंगी कैथोडोलुमिनसेंस और एलडब्ल्यू और एसडब्ल्यू यूवी के तहत प्रतिदीप्ति, पीले रंग के साथ फॉस्फोरेसेंस; मैजेंटा में फोटोक्रोमिक हो सकता है
भव्यताआसानी से एक रंगहीन कांच के लिए; सोडियम पीली लौ
घुलनशीलताहाइड्रोक्लोरिक एसिड और नाइट्रिक एसिड में घुलनशील
संदर्भ[2][3][4][5]
Major varieties
हैकमैनाइटटेनेब्रेसेंट; बैंगनी-लाल या हरा रंग लुप्त होकर सफेद हो जाना

सोडालाइट (/ˈs.dəˌlt/ SOH-də-lyte) एक टेक्टोसिलिकेट खनिज है जिसका सूत्र Na
8
(Al
6
Si
6
O
24
)Cl
2
है‚ रॉयल ब्लू प्रकारों का व्यापक रूप से सजावटी रत्न के रूप में उपयोग किया जाता है। चूँकि बड़े पैमाने पर सोडालाइट के नमूने अपारदर्शी होते हैं, क्रिस्टल सामान्यतः पारदर्शी से पारभासी होते हैं। इस प्रकार सोडालाइट हाउयने, नोसेन, लाजुराइट और टगटुपाइट के साथ सोडालाइट समूह का सदस्य है।

कैरल संस्कृति के लोग कोलाओ अल्टिप्लानो से सोडालाइट का व्यापार करते थे।[6]

यूरोपीय लोगों द्वारा पहली बार सत्र 1811 में ग्रीनलैंड के इलीमौसाक परिसर में खोजा गया, इस प्रकार सोडालाइट सत्र 1891 तक सजावटी पत्थर के रूप में व्यापक रूप से महत्वपूर्ण नहीं हुआ, जब कनाडा के ओंटारियो में महीन सामग्री के विशाल भंडार की खोज की गई।

संरचना

सोडालाइट की संरचना का अध्ययन सबसे पहले 1930 में लिनस पॉलिंग द्वारा किया गया था।[7] यह अंतरिक्ष समूह P43n (अंतरिक्ष समूह 218) का एक घन खनिज है जिसमें इंटरफ्रेमवर्क में Na+ धनायनों और क्लोराइड आयनों के साथ एक एल्युमिनोसिलिकेट पिंजरे का नेटवर्क होता है। (इसके स्थान पर थोड़ी मात्रा में अन्य धनायन और ऋणायन हो सकते हैं।) यह ढांचा एक जिओलाइट पिंजरे की संरचना बनाता है। प्रत्येक इकाई कोशिका में दो गुहाएँ होती हैं, जिनकी संरचना लगभग बोरेट पिंजरे (B
24
O
48
)24−
के समान होती है जिंक बोरेट में Zn
4
O(BO
2
)
6
पाया जाता है,[8] बेरिलोसिलिकेट पिंजरा (Be
12
Si
12
O
48
)24−
,[7]और एलुमिनेट पिंजरा (Al
24
O
48
)24−
में Ca
8
(Al
12
O
24
)(WO
4
)
2
,[9] और जैसा कि समान खनिज टगटुपाइट में होता है (Na
4
AlBeSi
4
O
12
Cl
) (हौयने सोडालाइट समूह देखें)।

प्रत्येक क्लोराइड आयन के चारों ओर गुहा होती है। क्लोराइड यूनिट सेल के कोनों पर और दूसरा केंद्र में स्थित होता है। प्रत्येक गुहा में तीन आयामों में बिंदु समूह होते हैं, और इन दो क्लोराइड स्थानों के चारों ओर की गुहाएं एक-दूसरे की दर्पण छवियां होती हैं (एक ग्लाइड विमान या चार गुना अनुचित घुमाव को दूसरे में ले जाता है)। प्रत्येक क्लोराइड आयन के चारों ओर चार सोडियम आयन होते हैं (एक दूरी पर, और अधिक दूरी पर चार और), बारह SiO
4
से घिरे होते हैं टेट्राहेड्रा और बारह AlO
4
टेट्राहेड्रा. सिलिकॉन और एल्यूमीनियम परमाणु कटे हुए ऑक्टाहेड्रोन के कोनों पर स्थित होते हैं, जिसके अंदर क्लोराइड और चार सोडियम परमाणु होते हैं।[8]("कार्बन सोडालाइट" नामक समान संरचना कार्बन के बहुत उच्च दबाव वाले रूप में हो सकती है - संदर्भ में चित्रण देखें।[10]) प्रत्येक ऑक्सीजन परमाणु SiO
4
सिलिकॉन-ऑक्सीजन टेट्राहेड्रोन के मध्य लिंक करता है। चतुष्फलक और AlO
4
चतुष्फलक. सभी ऑक्सीजन परमाणु समतुल्य हैं, किन्तु आधा ऐसे वातावरण में है जो दूसरे आधे के वातावरण के लिए एनैन्टीओमोर्फिक है। सिलिकॉन परमाणु स्थान पर हैं और समरूपता-समतुल्य स्थिति, और स्थान पर एल्यूमीनियम आयन और समरूपता-समतुल्य स्थिति। ऊपर सूचीबद्ध तीन सिलिकॉन परमाणु और यूनिट सेल के दिए गए कोने के निकटतम तीन एल्यूमीनियम परमाणु टेट्राहेड्रा की छह-सदस्यीय रिंग बनाते हैं, और यूनिट सेल के किसी भी चेहरे में उपस्तिथ चार टेट्राहेड्रा की चार-सदस्यीय रिंग बनाते हैं। छह-सदस्यीय वलय चैनल के रूप में काम कर सकते हैं जिसमें आयन क्रिस्टल के माध्यम से फैल सकते हैं।[11]

संरचना एक संरचना का टूटा हुआ रूप है जिसमें प्रत्येक टेट्राहेड्रोन की तीन गुना अक्ष इकाई कोशिका के चेहरों के समानांतर विमानों में स्थित होती है, इस प्रकार आधे ऑक्सीजन परमाणु चेहरों में रखे जाते हैं। जैसे-जैसे तापमान बढ़ता है, सोडालाइट संरचना फैलती है और उखड़ जाती है, और इस संरचना की तरह बन जाती है। इस संरचना में दो गुहाएं अभी भी चिरल हैं, क्योंकि गुहा पर केंद्रित कोई भी अप्रत्यक्ष आइसोमेट्री (अर्थात परावर्तन, उलटा, या अनुचित रोटेशन) सिलिकॉन परमाणुओं को सिलिकॉन परमाणुओं पर और एल्यूमीनियम परमाणुओं को एल्यूमीनियम परमाणुओं पर सुपरइम्पोज़ नहीं कर सकती है, जबकि सोडियम परमाणुओं को अन्य सोडियम परमाणुओं पर भी सुपरइम्पोज़ कर सकती है। थर्मल विस्तार गुणांक का असंतोष निश्चित तापमान पर होता है जब क्लोराइड को सल्फेट या आयोडाइड द्वारा प्रतिस्थापित किया जाता है, और ऐसा तब होता है जब ढांचा पूरी तरह से विस्तारित हो जाता है या जब धनायन (प्राकृतिक सोडालाइट में सोडियम) निर्देशांक तक पहुंच जाता है (वगैरह)।[11]यह समरूपता जोड़ता है (जैसे कि यूनिट सेल के चेहरों में दर्पण तल) जिससे कि अंतरिक्ष समूह Pm बन जाए3n (:श्रेणी:अंतरिक्ष समूह 223 में खनिज), और गुहाएं चिरल होना बंद कर देती हैं और पाइरिटोहेड्रल समरूपता प्राप्त कर लेती हैं।

प्राकृतिक सोडालाइट मुख्य रूप से क्लोराइड आयनों को पिंजरों में रखता है, किन्तु उन्हें अंतिम सदस्य रचनाओं का प्रतिनिधित्व करने वाले सोडालाइट समूह में अन्य खनिजों के साथ सल्फेट, सल्फाइड, हीड्राकसीड , ट्राइसल्फर जैसे अन्य आयनों द्वारा प्रतिस्थापित किया जा सकता है। सोडियम को अन्य क्षार समूह तत्वों द्वारा और क्लोराइड को अन्य halide ों द्वारा प्रतिस्थापित किया जा सकता है। इनमें से अनेक को संश्लेषित किया गया है।[11]

विशिष्ट नीला रंग मुख्यतः पिंजरे से उत्पन्न होता है S3 और S4 क्लस्टर.[12]

गुण

बोलीविया से पॉलिश की गई चट्टान की सतह के साथ सोडालाइट-कार्बोनेट पेगमाटाइट का नमूना।

एक हल्का, अपेक्षाकृत कठोर किन्तु नाजुक खनिज, सोडालाइट का नाम इसकी सोडियम सामग्री के आधार पर रखा गया है; खनिज विज्ञान में इसे feldspathoid के रूप में वर्गीकृत किया जा सकता है। अपने नीले रंग के लिए प्रसिद्ध, सोडालाइट ग्रे, पीला, हरा या गुलाबी भी हो सकता है और अधिकांशतः सफेद नसों या पैच के साथ धब्बेदार होता है। अधिक समान रूप से नीली सामग्री का उपयोग आभूषणों में किया जाता है, जहां इसे cabochon के और मोतियों में ढाला जाता है। विभिन्न अनुप्रयोगों में कम सामग्री को अधिकांशतः फेसिंग या इनले के रूप में देखा जाता है।

चूंकि कुछ सीमा तक लैजुराइट और लापीस लाजुली के समान, सोडालाइट में संभवतः ही कभी पाइराइट (लैपिस में सामान्य समावेश) होता है और इसका नीला रंग नीला सा के अतिरिक्त पारंपरिक शाही नीले रंग की तरह होता है। यह अपनी सफेद (नीली के अतिरिक्त ) धारियाँ द्वारा समान खनिजों से भिन्न है। सोडालाइट की खराब दरार की छह दिशाओं को पत्थर के माध्यम से चलने वाली प्रारंभिक दरारों के रूप में देखा जा सकता है।

अधिकांश सोडालाइट पराबैंगनी प्रकाश के अनुसार नारंगी रंग को प्रतिदीप्त करेगा, और हैकमैनाइट टेनब्रेसेंस को प्रदर्शित करता है।[13]

Stereo image
Left frame 
Sodalitest.jpg
Right frame 
Sodalitest.jpg
Parallel view (File:Stereogram guide parallel.png)
Sodalitest.jpg
Cross-eye view (File:Stereogram guide cross-eyed.png)
Sodalitest.jpg
Sodalitest.jpg
Small specimen of sodalite from Brazil.

हैकमैनाइट

File:Sodalite-lth04b.jpg
हकमानिते डोडहेड्रॉन फ्रॉम थे कोकशा वैली, अफ़ग़ानिस्तान

हैकमैनाइट टेनेब्रेसेंस प्रदर्शित करने वाली सोडालाइट की प्रकार है।[14] जब मॉन्ट सेंट-हिलैरे (क्यूबेक) या इलीमौसाक (ग्रीनलैंड) से हैकमैनाइट को ताजा खनन किया जाता है, तब यह सामान्यतः हल्के से गहरे बैंगनी रंग का होता है, किन्तु रंग जल्दी ही भूरा या हरा सफेद हो जाता है। इसके विपरीत, अफगानिस्तान और म्यांमार गणराज्य (बर्मा) का हैकमैनाइट मलाईदार सफेद रंग से प्रारंभ होता है किन्तु सूरज की रोशनी में बैंगनी से गुलाबी-लाल रंग विकसित करता है। यदि कुछ समय के लिए अंधेरे वातावरण में छोड़ दिया जाए तब बैंगनी रंग फिर से फीका पड़ जाएगा। टेनेब्रेसेंस को लॉन्गवेव या, विशेष रूप से, शॉर्टवेव पराबैंगनी प्रकाश के उपयोग से त्वरित किया जाता है। बहुत सारा सोडालाइट यूवी प्रकाश के अनुसार धब्बेदार नारंगी रंग का प्रतिदीप्ति भी देगा।

घटना

सोडालाइट का वर्णन पहली बार 1811 में इलिमौसाक कॉम्प्लेक्स, नरसाक, वेस्ट ग्रीनलैंड में इसके प्रकार के इलाके (भूविज्ञान) में होने के लिए किया गया था।[2]

सामान्यतः बड़े पैमाने पर होने वाला, सोडालाइट नेफलाइन सिएनाइट्स जैसे प्लूटोनिक आग्नेय चट्टानों में शिरा भरने के रूप में पाया जाता है। यह सिलिका-अंडरसैचुरेटेड वातावरण के विशिष्ट अन्य खनिजों, अर्थात् ल्यूसाइट, cancrinite और नैट्रोलाइट से जुड़ा हुआ है। अन्य संबंधित खनिजों में नेफलाइन, टाइटेनियन andradite , एगिरिन, माइक्रोकलाइन , sanidine, ऐल्बाइट, केल्साइट , फ्लोराइट, एंकर और बैराइट सम्मिलित हैं।[4]

File:Hippo in sodalite Length 9 cm arp.jpg
सोडालाइट में हिप्पो, लंबाई 9 सेमी (3.5 इंच)

महीन सामग्री के महत्वपूर्ण भंडार केवल कुछ स्थानों तक ही सीमित हैं: बैनक्रॉफ्ट, ओंटारियो (राजकुमारी सोडालाइट खदान ), और कनाडा में मॉन्ट-सेंट-हिलैरे, क्यूबेक; और अमेरिका में लीचफील्ड, मेन, और मैग्नेट कोव, अर्कांसस। गोल्डन, ब्रिटिश कोलंबिया के पास आइस रिवर कॉम्प्लेक्स में सोडालाइट होता है।[15] छोटे भंडार दक्षिण अमेरिका (ब्राजील और बोलीविया), पुर्तगाल, रोमानिया, बर्मा और रूस में पाए जाते हैं। हैकमैनाइट मुख्य रूप से मॉन्ट-सेंट-हिलैरे और ग्रीनलैंड में पाया जाता है।

यूहेड्रल, पारदर्शी क्रिस्टल उत्तरी नामिबिया और इटली के विसुवियस के पर्याप्त में पाए जाते हैं।

सोडालाइट प्रकार की बहिर्वेधी आग्नेय चट्टान है जो सोडालाइट से भरपूर होती है।[16] इसका अंतर्वेधी चट्टान समतुल्य सोडालिटोलाइट है।[16]

इतिहास

कैरल संस्कृति के लोग कोलाओ अल्टिप्लानो से सोडालाइट का व्यापार करते थे।[17]

संश्लेषण

सोडालाइट की मेसोपोरस पिंजरे की संरचना इसे अनेक आयनों के लिए कंटेनर सामग्री के रूप में उपयोगी बनाती है। सोडालाइट-संरचना सामग्रियों में सम्मिलित किए गए कुछ ज्ञात आयनों में नाइट्रेट सम्मिलित हैं,[18] योडिद ,[19] आयोडेट,[20] परमैंगनेट,[21] perchlorate ,[22] और perrhenate.

यह भी देखें

संदर्भ

  1. Warr, Laurence N. (June 2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi:10.1180/mgm.2021.43. S2CID 235729616.
  2. 2.0 2.1 Mindat with locations
  3. Webmineral data
  4. 4.0 4.1 Handbook of Mineralogy
  5. Hurlbut, Cornelius S.; Klein, Cornelis, 1985, Manual of Mineralogy, 20th ed., ISBN 0-471-80580-7
  6. Sanz, Nuria; Arriaza, Bernardo T.; Standen, Vivien G., eds. (2015). The Chinchorro culture: a comparative perspective, the archaeology of the earliest human mummification. UNESCO Publishing. p. 162. ISBN 978-92-3-100020-1.
  7. 7.0 7.1 Linus Pauling (1930). "सोडालाइट और हेल्वाइट की संरचना". Zeitschrift für Kristallographie. 74 (1–6): 213–225. doi:10.1524/zkri.1930.74.1.213. S2CID 102105382.
  8. 8.0 8.1 P. Smith; S. Garcia-Blanco; L. Rivoir (1961). "मेटाबोरेट आयन का एक नया संरचनात्मक प्रकार". Zeitschrift für Kristallographie. 115 (1–6): 460–463. doi:10.1524/zkri.1961.115.16.460. S2CID 93970848.
  9. W. Depmeier (1979). "Revised crystal data for the aluminate sodalite Ca
    8
    [Al
    12
    O
    24
    [[Category: Templates Vigyan Ready]]](WO
    4
    )
    2
    [[Category: Templates Vigyan Ready]]"
    . Journal of Applied Crystallography. doi:10.1107/S0021889879013492.
    {{cite journal}}: URL–wikilink conflict (help)
  10. Pokropivny, Alex; Volz, Sebastian (September 2012). "'C 8 phase': Supercubane, tetrahedral, BC-8 or carbon sodalite?". Physica Status Solidi B. 249 (9): 1704–1708. Bibcode:2012PSSBR.249.1704P. doi:10.1002/pssb.201248185. S2CID 96089478.
  11. 11.0 11.1 11.2 Hassan, I.; Grundy, H. D. (1984). "सोडालाइट-समूह खनिजों की क्रिस्टल संरचनाएँ". Acta Crystallographica Section B. 40: 6–13. doi:10.1107/S0108768184001683.
  12. Chukanov, Nikita V.; Sapozhnikov, Anatoly N.; Shendrik, Roman Yu.; Vigasina, Marina F.; Steudel, Ralf (23 November 2020). "जेम लाजुराइट निक्षेपों से सोडालाइट-समूह खनिजों की स्पेक्ट्रोस्कोपिक और क्रिस्टल-रासायनिक विशेषताएं". Minerals. 10 (11): 1042. Bibcode:2020Mine...10.1042C. doi:10.3390/min10111042.
  13. Bettonville, Suzanne (25 March 2011). Rock Roles: Facts, Properties, and Lore of Gemstones. p. 98. ISBN 978-1-257-03762-9.[self-published source?]
  14. Kondo, D.; Beaton, D. (2009). "Hackmanite/Sodalite from Myanmar and Afghanistan" (PDF). Gems and Gemology. 45 (1): 38–43. doi:10.5741/GEMS.45.1.38.
  15. Ice River deposit on Mindat
  16. 16.0 16.1 Le Maitre, R.W., ed. (2002). Igneous Rocks — A Classification and Glossary of Terms (2nd ed.). Cambridge: Cambridge University Press. p. 143. ISBN 0-521-66215-X.
  17. Sanz, Nuria; Arriaza, Bernardo T.; Standen, Vivien G., eds. (2015). The Chinchorro culture: a comparative perspective, the archaeology of the earliest human mummification. UNESCO Publishing. p. 162. ISBN 978-92-3-100020-1.
  18. Buhl, Josef-Christian; Löns, Jürgen (1996). "Synthesis and crystal structure of nitrate enclathrated sodalite Na8[AlSiO4]6(NO3)2". Journal of Alloys and Compounds. 235: 41–47. doi:10.1016/0925-8388(95)02148-5.
  19. Nakazawa, T.; Kato, H.; Okada, K.; Ueta, S.; Mihara, M. (2000). "सोडालाइट अपशिष्ट फॉर्म द्वारा आयोडीन स्थिरीकरण". MRS Proceedings. 663. doi:10.1557/PROC-663-51.
  20. Buhl, Josef-Christian (1996). "The properties of salt-filled sodalites. Part 4. Synthesis and heterogeneous reactions of iodate-enclathrated sodalite Na8[AlSiO4]6(IO3)2−x(OH·H2O)x; 0.7 < x < 1.3". Thermochimica Acta. 286 (2): 251–262. doi:10.1016/0040-6031(96)02971-1.
  21. Brenchley, Matthew E.; Weller, Mark T. (1994). "Synthesis and structures of M8[ALSiO4]6·(XO4)2, M = Na, Li, K; X = Cl, Mn Sodalites". Zeolites. 14 (8): 682–686. doi:10.1016/0144-2449(94)90125-2.
  22. Veit, Th.; Buhl, J.-Ch.; Hoffmann, W. (1991). "हाइड्रोथर्मल संश्लेषण, क्लोरेट- और परक्लोरेट-सोडालाइट का लक्षण वर्णन और संरचना शोधन". Catalysis Today. 8 (4): 405–413. doi:10.1016/0920-5861(91)87019-J.

बाहरी संबंध

Media related to सोडालाइट at Wikimedia Commons