डिजर्मेन
| File:Digermane molecule.png | |
| File:Digermane-3D-vdW.png | |
| Names | |
|---|---|
| IUPAC name
Digermane
| |
| Identifiers | |
3D model (JSmol)
|
|
| ChemSpider | |
PubChem CID
|
|
| |
| |
| Properties | |
| Molar mass | 151.328 g/mol |
| Appearance | Colorless gas |
| Density | 1.98 kg/m3[1] |
| Melting point | −109 °C (−164 °F; 164 K) |
| Boiling point | 29 °C (84 °F; 302 K) |
| Insoluble | |
| Hazards | |
| GHS labelling: | |
| Danger | |
| H220, H302, H312, H315, H319, H330, H335 | |
| P210, P260, P261, P264, P270, P271, P280, P284, P301+P312, P302+P352, P304+P340, P305+P351+P338, P310, P312, P320, P321, P322, P330, P332+P313, P337+P313, P362, P363, P377, P381, P403, P403+P233, P405, P501 | |
| Related compounds | |
Related compounds
|
|
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
| |
डिगर्मन एक अकार्बनिक यौगिक है जिसका रासायनिक सूत्र Ge 2H6 है। जर्मेनियम के कुछ हाइड्राइड्स में से एक, यह एक रंगहीन तरल है। इसकी आणविक ज्यामिति एथेन के समान है।[2]
संश्लेषण
1924 में डेनिस, कोरी और मूर द्वारा डिगर्मेन को पहली बार संश्लेषित और जांचा गया था। उनकी विधि में हाइड्रोक्लोरिक अम्ल का उपयोग करके मैग्नीशियम जर्मेनाइड का जल अपघटन सम्मिलित है।[3] अगले दशक में इलेक्ट्रॉन विवर्तन अध्ययनों का उपयोग करते हुए डिगरमैन और ट्राइजर्मेन के कई गुण निर्धारित किए गए थे।[4] यौगिक के आगे के विचारों में पायरोलिसिस और ऑक्सीकरण जैसी विभिन्न अभिक्रियाओं की परीक्षा सम्मिलित है।
सोडियम बोरोहाइड्राइड के साथ [[जर्मेनियम डाइऑक्साइड] के अपचयन से जर्मेन के साथ डिगर्मेन का उत्पादन होता है। यद्यपि प्रमुख उत्पाद जर्मेन है, ट्राइगर्मन के निशान के अतिरिक्त डिगर्मन की एक मात्रात्मक मात्रा का उत्पादन किया जाता है।[5] यह मैग्नीशियम-जर्मेनियम मिश्र धातुओं के जल अपघटन से भी उत्पन्न होता है।[6]
अभिक्रियाएं
डिगर्मन की अभिक्रियाएं समूह 14 तत्वों कार्बन और सिलिकॉन के समान यौगिकों के बीच कुछ अंतर दर्शाती हैं। यद्यपि, अभी भी , विशेष रूप से पायरोलिसिस अभिक्रियाओं के संबंध में कुछ समानताएँ देखी जा सकती हैं।
डिगरमेन का ऑक्सीकरण मोनोगेरमेन की तुलना में कम तापमान पर होता है। अभिक्रिया का उत्पाद, जर्मेनियम ऑक्साइड, बदले में अभिक्रिया के उत्प्रेरक के रूप में कार्य करने के लिए दिखाया गया है। यह जर्मेनियम और अन्य समूह 14 तत्वों कार्बन और सिलिकॉन (कार्बन डाइऑक्साइड और सिलिकॉन डाइऑक्साइड समान उत्प्रेरक गुणों का प्रदर्शन नहीं करते) के बीच मूलभूत अंतर का उदाहरण देता है।[7]
2 Ge2H6 + 7O2 → 4 GeO2 + 6H2O
तरल अमोनिया में, डिगर्मेन अनुपातहीनता से गुजरता है। अमोनिया एक कमजोर क्षारीय उत्प्रेरक के रूप में कार्य करता है। अभिक्रिया के उत्पाद हाइड्रोजन, जर्मेन और एक ठोस बहुलक जर्मेनियम हाइड्राइड हैं।[8]
डिगर्मन के पायरोलिसिस के लिए कई चरणों को पालन करने का प्रस्ताव है:
- Ge2H6 → 2 GeH3
- GeH3 + Ge2H6 → GeH4 + Ge2H5
- Ge2H5 → GeH2 + GeH3
- GeH2 →Ge+ H2
- 2GeH2 → GeH4 + Ge
- nGeH2 → (GeH2)n
यह पाइरोलिसिस डिसिलेन के पायरोलिसिस की तुलना में अधिक ऊष्माशोषी पाया गया है। इस अंतर को Ge-H बंध विरुद्ध Si-H बंध की अधिक ताकत के लिए उत्तरदायी ठहराया गया है। जैसा कि ऊपर तंत्र की अंतिम अभिक्रिया में देखा गया है, डिगर्मन की पायरोलिसिस GeH2 समूह के बहुलकीकरण को प्रेरित कर सकती है, जहां GeH3 एक श्रृंखला प्रसारक के रूप में कार्य करता है और आणविक हाइड्रोजन गैस निकलती है।[9] सोने पर डिगरमैन के डीहाइड्रोजनीकरण से जर्मेनियम नैनोवायर का निर्माण होता है।[10]
डिगर्मन GeH3−GH2−E−CF3 का अग्रदूत है, जहाँ E या तो सल्फर या सेलेनियम है। इन ट्राइफ्लोरोमेथिलथियो (−S−CF3)और ट्राइफ्लोरोमेथिलसेलेनो (−Se−CF3) व्युत्पन्न में डिगर्मेन की तुलना में एक उल्लेखनीय उच्च तापीय स्थिरता है।[11]
अनुप्रयोग
डिगर्मन के पास सीमित संख्या में अनुप्रयोग हैं; जर्मेन ही पसंदीदा वाष्पशील जर्मेनियम हाइड्राइड है। सामान्यतः, विभिन्न अनुप्रयोगों में उपयोग के लिए मुख्य रूप से जर्मेनियम के अग्रदूत का उपयोग किया जाता है। डिगर्मन रासायनिक वाष्प जमाव के माध्यम से Ge-युक्त अर्धचालकों को जमा करने के लिए इस्तेमाल किया जा सकता है।[12]
संदर्भ
- ↑ Haynes, William M., ed. (2016). CRC Handbook of Chemistry and Physics (97th ed.). Boca Raton, FL: CRC Press. pp. 4–61. ISBN 9781498754293.
- ↑ Pauling, Linus; Laubengayer, A. W.; Hoard, J. L. (1938). "डिगरमैन और ट्राइगरमैन का इलेक्ट्रॉन विवर्तन अध्ययन". Journal of the American Chemical Society. 60 (7): 1605–1607. doi:10.1021/ja01274a024.
- ↑ Dennis, L.M.; Corey, R. B.; Moore, R.W. (1924). "जर्मेनियम। सातवीं। जर्मेनियम के हाइड्राइड्स". J. Am. Chem. Soc. 46 (3): 657–674. doi:10.1021/ja01668a015.
- ↑ Pauling, L.; Laubengayer, A.W.; Hoard, J.L. (1938). "डिगरमैन और ट्राइगरमैन का इलेक्ट्रॉन विवर्तन अध्ययन". J. Am. Chem. Soc. 60 (7): 1605–1607. doi:10.1021/ja01274a024.
- ↑ Jolly, William L.; Drake, John E. (1963). जर्मेनियम, टिन, आर्सेनिक और एंटीमनी के हाइड्राइड्स. Inorganic Syntheses. Vol. 7. pp. 34–44. doi:10.1002/9780470132388.ch10. ISBN 9780470132388.
- ↑ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
- ↑ Emeleus, H.J.; Gardner, E.R. "मोनोगर्मेन और डिगरमैन का ऑक्सीकरण". J. Chem. Soc. 1938: 1900–1909. doi:10.1039/jr9380001900.
- ↑ Dreyfuss, R.M.; Jolly, W.L. (1968). "तरल अमोनिया में डिगरमेन का अनुपातहीनता". Inorganic Chemistry. 7 (12): 2645–2646. doi:10.1021/ic50070a037.
- ↑ Johnson, O.H. (1951). "जर्मन और उनके ऑर्गनो डेरिवेटिव". Chem. Rev. 48 (2): 259–297. doi:10.1021/cr60150a003. PMID 24540662.
- ↑ Gamalski, A.D.; Tersoff, J.; Sharma, R.; Ducati, C.; Hofmann, S. (2010). "जर्मेनियम नैनोवायरों के सब्यूटेक्टिक विकास के दौरान मेटास्टेबल तरल उत्प्रेरक का गठन". Nano Lett. 10 (8): 2972–2976. Bibcode:2010NanoL..10.2972G. doi:10.1021/nl101349e. PMID 20608714.
- ↑ Holmes-Smith, R.D.; Stobart, S.R. (1979). "जर्मेन और डिगरमैन के ट्राइफ्लोरोमेथिलथियो और ट्राइफ्लोरोमेथिलसेलेनो डेरिवेटिव". Inorg. Chem. 18 (3): 538–543. doi:10.1021/ic50193a002.
- ↑ Xie, J.; Chizmeshya, A.V.G.; Tolle, J.; D'Costa, V.R.; Menendez, J.; Kouventakis, J. (2010). "Si-Ge-Sn सेमीकंडक्टर का संश्लेषण, स्थिरता रेंज और मौलिक गुण सीधे Si (100) और Ge (100) प्लेटफॉर्म पर विकसित होते हैं". Chemistry of Materials. 22 (12): 3779–3789. doi:10.1021/cm100915q.