समदूरस्थ

From Vigyanwiki
Revision as of 14:13, 10 March 2023 by alpha>Abhishek (Abhishek moved page समान दूरी to समदूरस्थ without leaving a redirect)
एक रेखा खंड का लंबवत द्विभाजक। वह बिंदु जहां लाल रेखा काली रेखा खंड को पार करती है, काली रेखा खंड के दो अंतिम बिंदुओं से समान दूरी पर होती है।
Error creating thumbnail:
चक्रीय बहुभुज P, वृत्त C द्वारा परिबद्ध वृत्त है। परिकेन्द्र O वृत्त पर प्रत्येक बिंदु के समान दूरी पर है, और बहुभुज के प्रत्येक शीर्ष के लिए एक किला है।

एक बिंदु को वस्तुओं के एक सेट से समान दूरी पर कहा जाता है यदि उस बिंदु और सेट में प्रत्येक वस्तु के बीच की दूरी बराबर होती है।[1]

द्वि-आयामी यूक्लिडियन ज्यामिति में, दो दिए गए (विभिन्न) बिंदुओं से समदूरस्थ बिंदुओं का स्थान (गणित) उनका लंबवत द्विभाजक होता है। तीन आयामों में, दो दिए गए बिंदुओं से समदूरस्थ बिंदुओं का स्थान एक समतल है, और आगे सामान्यीकरण करते हुए, n-आयामी स्थान में, n-अंतरिक्ष में दो बिंदुओं से समदूरस्थ बिंदुओं का स्थान एक (n−1)-अंतरिक्ष है।

एक त्रिभुज के लिए परिकेन्द्र तीन शीर्षों (ज्यामिति) में से प्रत्येक से समदूरस्थ एक बिंदु होता है। प्रत्येक गैर-पतित त्रिभुज में ऐसा बिंदु होता है। इस परिणाम को चक्रीय बहुभुजों के लिए सामान्यीकृत किया जा सकता है: परिकेन्द्र प्रत्येक शीर्ष से समान दूरी पर होता है। इसी तरह, एक त्रिभुज या किसी अन्य स्पर्शरेखा बहुभुज का अंतःकेंद्र वृत्त के साथ बहुभुज की भुजाओं के स्पर्शरेखा के बिंदुओं से समान दूरी पर होता है। किसी समद्विभाजन पर प्रत्येक बिंदु # त्रिभुज या अन्य बहुभुज के बहुभुज की भुजाओं का समद्विभाजक उस भुजा के सिरों पर दो शीर्षों से समान दूरी पर होता है। किसी भी बहुभुज के समद्विभाजक #कोण ​​समद्विभाजक पर प्रत्येक बिंदु उस कोण से निकलने वाली दो भुजाओं से समान दूरी पर होता है।

एक आयत का केंद्र सभी चार शीर्षों से समान दूरी पर होता है, और यह दो विपरीत पक्षों से समान दूरी पर होता है और अन्य दो विपरीत पक्षों से भी समान दूरी पर होता है। एक पतंग (ज्यामिति) की सममिति के अक्ष पर एक बिंदु दो पक्षों के बीच समान दूरी पर होता है।

एक वृत्त का केंद्र वृत्त के प्रत्येक बिंदु से समान दूरी पर होता है। इसी तरह एक गोले का केंद्र गोले के प्रत्येक बिंदु से समान दूरी पर होता है।

एक परवलय एक निश्चित बिंदु (फोकस (ज्यामिति)) और एक निश्चित रेखा (डायरेक्ट्रिक्स) से समदूरस्थ समतल में बिंदुओं का समूह है, जहां डायरेक्ट्रिक्स से दूरी को डायरेक्ट्रिक्स के लंबवत रेखा के साथ मापा जाता है।

[[आकार विश्लेषण (डिजिटल ज्यामिति)]] में, सांस्थितिकीय कंकाल या आकृति का औसत दर्जे का अक्ष उस आकार का एक पतला संस्करण है जो इसकी सीमा (टोपोलॉजी) से समान दूरी पर है।

यूक्लिडियन ज्यामिति में, समानांतर रेखाएँ (वे रेखाएँ जो कभी भी एक दूसरे को नहीं काटती हैं) इस अर्थ में समान दूरी पर होती हैं कि एक रेखा पर किसी भी बिंदु की दूरी दूसरी रेखा के निकटतम बिंदु से सभी बिंदुओं के लिए समान होती है।

अतिशयोक्तिपूर्ण ज्यामिति में बिंदुओं का सेट जो एक दी गई रेखा के एक ओर से समान दूरी पर होता है, एक हाइपरसाइकल (हाइपरबोलिक ज्यामिति) (जो एक रेखा नहीं वक्र है) बनाता है।[2]


यह भी देखें

  • समतुल्य सेट

संदर्भ

  1. Clapham, Christopher; Nicholson, James (2009). The concise Oxford dictionary of mathematics. Oxford University Press. pp. 164–165. ISBN 978-0-19-923594-0.
  2. Smart, James R. (1997), Modern Geometries (5th ed.), Brooks/Cole, p. 392, ISBN 0-534-35188-3