ऐल्काइन

From Vigyanwiki

कार्बनिक रसायन विज्ञान में, एक एल्काइन एक असंतृप्तहाइड्रोकार्बन है जिसमें कम से कम एक कार्बन-कार्बन (C≡C) तृतीयक बंध होता है।[1] सबसे सरल अचक्रीय एल्काइन जिसमें केवल एक तृतीयक बंध होता है और कोई अन्य कार्यात्मक समूह सामान्य रासायनिक सूत्र के साथ एक समरूप श्रृंखला नहीं बनाता है जिसका सामान्य रासायनिक सूत्र CnH2n-2है एल्काइन को पारंपरिक रूप से एसिटिलीन के रूप में जाना जाता है, हालांकि एसिटिलीन का समान्य रासायनिक सूत्र C2H2 विशेष रूप से संदर्भित करता है C2H2कार्बनिक रसायन के IUPAC नामकरण का उपयोग करके औपचारिक रूप से एथीन के रूप में जाना जाता है। अन्य हाइड्रोकार्बन की तरह, एल्काइन आमतौर पर जल विरोधी(हाइड्रोफोबिक) होते हैं।[2]


संरचना और संबंध

एसिटिलीन में, H-C≡C आबंध कोण 180° होते हैं। इस आबंध कोण के कारण एल्काइन रेखीय होते हैं। तदनुसार, चक्रीय एल्काइन दुर्लभ हैं। बेंजीन को अलग नहीं किया जा सकता है।C≡C की बंध दूरी 121 पिकोमीटर होती है, जोकि C=C की बंध दूरी (134 pm) से कम होती है या एल्केन में C-C बंध दूरी (153 pm) से बहुत कम है।

उदाहरणात्मक एल्काइन: ए, एसिटिलीन, बी, प्रोपाइन के दो चित्रण, सी, 1-ब्यूटाइन, डी, 2-ब्यूटाइन, ई, प्राकृतिक रूप से पाए जाने वाले 1-फेनिलहेप्टा-1,3,5-ट्रायने, और एफ, तनावपूर्ण साइक्लोहेप्टाइन . तृतीयक बंध हाइलाइट किए जाते हैं नीला.
तृतीयक बंध जोकि एक बहुत ही प्रबल बंध है बंधन शक्ति बंधन शक्ति 839 kJ/mol की के साथ बहुत मजबूत है। सिग्मा बंध 369 kJ/mol का योगदान देता है, पहला pi बंध 268 kJ/mol और दूसरा pi-बंध 202 kJ/mol बंध स्ट्रेंथ का योगदान देता है। बंध िंग की चर्चा आमतौर पर आणविक कक्षीय सिद्धांत के संदर्भ में की जाती है, जो तृतीयक बंध को s और p ऑर्बिटल्स के ओवरलैप से उत्पन्न होने के रूप में पहचानता है। संयोजकता बंध सिद्धांत की भाषा में, एक एल्काइन आबंध में कार्बन परमाणु sp संकरित होते हैं: उनमें से प्रत्येक में दो असंकरित p कक्षक और दो कक्षीय संकरण होते हैं। प्रत्येक परमाणु से एक sp कक्षक का ओवरलैप एक sp-sp सिग्मा बंधन बनाता है। एक परमाणु पर प्रत्येक पी ऑर्बिटल एक दूसरे परमाणु पर ओवरलैप करता है, दो पीआई बंध बनाता है, जिससे कुल तीन बंध मिलते हैं। प्रत्येक परमाणु पर शेष एस पी कक्षीय दूसरे परमाणु के लिए एक सिग्मा बंधन बना सकता है, उदाहरण के लिए मूल एसिटिलीन में हाइड्रोजन परमाणुओं के लिए। दो sp कक्षक कार्बन परमाणु के विपरीत दिशा में प्रक्षेपित होते हैं। The triple bond is very strong with a bond strength of 839 kJ/mol. The sigma bond contributes 369 kJ/mol, the first pi bond contributes 268 kJ/mol and the second pi-bond of 202 kJ/mol bond strength. Bonding usually discussed in the context of molecular orbital theory, which recognizes the triple bond as arising from overlap of s and p orbitals. In the language of valence bond theory, the carbon atoms in an alkyne bond are sp hybridized: they each have two unhybridized p orbitals and two sp hybrid orbitals. Overlap of an sp orbital from each atom forms one sp–sp sigma bond. Each p orbital on one atom overlaps one on the other atom, forming two pi bonds, giving a total of three bonds. The remaining sp orbital on each atom can form a sigma bond to another atom, for example to hydrogen atoms in the parent acetylene. The two sp orbitals project on opposite sides of the carbon atom.

टर्मिनल और आंतरिक एल्काइन

आंतरिक एल्काइन में प्रत्येक एसिटिलेनिक कार्बन पर कार्बन पदार्थ होते हैं। सममित उदाहरणों में डिपेनिलएसिटिलीन और 3-हेक्सिन शामिल हैं।

टर्मिनल एल्काइन का सूत्र होता है RC2H. एक उदाहरण मिथाइलएसिटिलीन (आईयूपीएसी नामकरण का उपयोग करते हुए प्रोपेन) है। एसिटिलीन की तरह ही टर्मिनल एल्काइन, हल्के अम्लीय होते हैं, जिनमें pK . होता हैa लगभग 25 के मान। वे एल्केन्स और अल्केन्स की तुलना में कहीं अधिक अम्लीय होते हैं, जिनमें pK . होता हैa लगभग 40 और 50 के मान, क्रमशः। टर्मिनल एल्केनेस पर अम्लीय हाइड्रोजन को विभिन्न समूहों द्वारा प्रतिस्थापित किया जा सकता है जिसके परिणामस्वरूप हेलो-, सिलील- और अल्कोक्सोएल्काइन होते हैं। टर्मिनल एल्काइन के अवक्षेपण द्वारा उत्पन्न कार्बनियन ों को एसिटाइलाइड ्स कहा जाता है।[3]


नामकरण एल्काइन

रासायनिक नामकरण में, बिना किसी अतिरिक्त अक्षर के ग्रीक उपसर्ग प्रणाली के साथ एल्काइन का नाम दिया गया है। उदाहरणों में एथीन या ऑक्टीन शामिल हैं। चार या अधिक कार्बन वाली मूल श्रृंखलाओं में, यह कहना आवश्यक है कि तृतीयक बंध कहाँ स्थित है। ऑक्टीन के लिए, जब बंधन तीसरे कार्बन से शुरू होता है, तो कोई या तो 3-ऑक्टीन या ऑक्टा-3-यन लिख सकता है। तृतीयक बंध को सबसे कम संभव संख्या दी जाती है। जब कोई बेहतर कार्यात्मक समूह मौजूद नहीं होता है, तो मूल श्रृंखला में तृतीयक बंध शामिल होना चाहिए, भले ही वह अणु में सबसे लंबी कार्बन श्रृंखला न हो। एथाइन को आमतौर पर इसके तुच्छ नाम एसिटिलीन से पुकारा जाता है।

रसायन विज्ञान में, प्रत्यय -इन का उपयोग तृतीयक बंध की उपस्थिति को दर्शाने के लिए किया जाता है। कार्बनिक रसायन विज्ञान में, प्रत्यय अक्सर रासायनिक नामकरण का अनुसरण करता है। हालांकि, तृतीयक बंध के रूप में संतृप्त और असंतृप्त यौगिकों की विशेषता वाले अकार्बनिक यौगिक ों को वैकल्पिक नामकरण द्वारा एल्काइन के साथ उपयोग की जाने वाली समान विधियों के साथ निरूपित किया जा सकता है (अर्थात संबंधित संतृप्त यौगिक का नाम -एन के साथ समाप्त होने वाले -yne को बदलकर संशोधित किया जाता है)। पोलीने| -डायने का उपयोग तब किया जाता है जब दो तृतीयक बंध होते हैं, और इसी तरह। असंतृप्ति की स्थिति एक संख्यात्मक स्थान द्वारा इंगित की जाती है, जो -येन प्रत्यय से ठीक पहले होती है, या कई तृतीयक बंध के मामले में 'स्थानीय'। स्थानीय लोगों को चुना जाता है ताकि संख्या यथासंभव कम हो। -yne का उपयोग उन प्रतिस्थापन समूहों के नाम के लिए एक इन्फ़िक्स के रूप में भी किया जाता है जो मूल यौगिक से तीन गुना बंधे होते हैं।

कभी-कभी हैफ़ेन के बीच एक संख्या को यह बताने के लिए डाला जाता है कि तृतीयक बंध किस परमाणु के बीच है। यह प्रत्यय एसिटिलीन शब्द के अंत के संक्षिप्त रूप के रूप में उभरा। अंतिम -ई गायब हो जाता है यदि इसके बाद एक और प्रत्यय होता है जो एक स्वर से शुरू होता है।[4]


संरचनात्मक समरूपता

चार या अधिक कार्बन परमाणुओं वाले एल्काइन अलग-अलग स्थितियों में तृतीयक बंध होने या मूल श्रृंखला के हिस्से के बजाय कुछ कार्बन परमाणुओं के स्थानापन्न होने से विभिन्न संरचनात्मक आइसोमर्स बना सकते हैं। अन्य गैर-एल्काइन संरचनात्मक आइसोमर भी संभव हैं।

संश्लेषण

क्रैकिंग

व्यावसायिक रूप से, प्रमुख एल्काइन एसिटिलीन ही है, जिसका उपयोग ईंधन और अन्य यौगिकों के अग्रदूत के रूप में किया जाता है, जैसे, एक्रिलेट्स। प्राकृतिक गैस के आंशिक ऑक्सीकरण से प्रतिवर्ष करोड़ों किलोग्राम का उत्पादन होता है:[5]: <केम>2 CH4 + 3/2 O2 -> HC#CH + 3 H2O</केम> औद्योगिक रूप से उपयोगी प्रोपीन भी हाइड्रोकार्बन के थर्मल क्रैकिंग द्वारा तैयार किया जाता है।

डीहाइड्रोहैलोजनेशन और संबंधित प्रतिक्रियाएं

डबल डिहाइड्रोहैलोजनेशन द्वारा 1,2- और 1,1-एल्काइल डाइहैलाइड से एल्काइन तैयार किए जाते हैं। प्रतिक्रिया अल्केन्स से एल्केनेस उत्पन्न करने का एक साधन प्रदान करती है, जो पहले हैलोजेनेटेड और फिर डीहाइड्रोहैलोजेनेटेड होते हैं। उदाहरण के लिए, अमोनिया में सोडियम एमाइड के साथ स्टायरिन डाइब्रोमाइड के परिणाम के उपचार के बाद ब्रोमिनेशन द्वारा स्टायरिन से फेनिलासेटिलीन उत्पन्न किया जा सकता है:[6][7]

File:Phenylacetylene prepn.pngफ्रिट्च-बटनबर्ग-विशेल पुनर्व्यवस्था के माध्यम से, विनाइल ब्रोमाइड्स से एल्काइन तैयार किए जाते हैं। कोरी-फुच प्रतिक्रिया का उपयोग करके एल्डिहाइड से और सेफर्थ-गिल्बर्ट होमोलोगेशन द्वारा एल्डिहाइड या कीटोन ्स से एल्केनेस तैयार किया जा सकता है।

विनाइल क्लोराइड डिहाइड्रोक्लोरिनेशन के लिए अतिसंवेदनशील होते हैं। विनाइल क्लोराइड अभिकर्मक (क्लोरोमेथिलीन) ट्राइफेनिलफॉस्फोरन | (क्लोरोमेथिलीन) ट्राइफेनिलफॉस्फोरन का उपयोग करके एल्डिहाइड से उपलब्ध होते हैं।

आवेदन सहित प्रतिक्रियाएं

एक प्रतिक्रियाशील कार्यात्मक समूह की विशेषता, अल्काइन कई कार्बनिक प्रतिक्रिया ओं में भाग लेते हैं। इस तरह के उपयोग का नेतृत्व राल्फ राफेल ने किया था, जिन्होंने 1955 में कार्बनिक संश्लेषण में मध्यवर्ती के रूप में उनकी बहुमुखी प्रतिभा का वर्णन करते हुए पहली पुस्तक लिखी थी।[8]


हाइड्रोजनीकरण

ऐल्कीनों की तुलना में अधिक संतृप्त और असंतृप्त यौगिक होने के कारण, एल्काइनों की अभिलक्षणिक अभिक्रियाएँ होती हैं जो दर्शाती हैं कि वे दुगुनी असंतृप्त हैं। एल्काइन दो समकक्षों को जोड़ने में सक्षम हैं H2, जबकि एक एल्कीन केवल एक समतुल्य जोड़ता है।[9] उत्प्रेरक और स्थितियों के आधार पर, एल्काइन हाइड्रोजन के एक या दो समकक्ष जोड़ते हैं। आंशिक हाइड्रोजनीकरण , एल्केन देने के लिए केवल एक समकक्ष के योग के बाद रोकना, आमतौर पर अधिक वांछनीय है क्योंकि अल्केन कम उपयोगी होते हैं: केंद्रइस तकनीक का सबसे बड़े पैमाने पर उपयोग रिफाइनरियों में एसिटिलीन का एथिलीन में रूपांतरण है (अल्केन्स की स्टीम क्रैकिंग से कुछ प्रतिशत एसिटिलीन उत्पन्न होता है, जो दुर्ग /सिल्वर उत्प्रेरक की उपस्थिति में चुनिंदा रूप से हाइड्रोजनीकृत होता है)। अधिक जटिल एल्काइन के लिए, लिंडलर उत्प्रेरक को एल्केन के गठन से बचने के लिए व्यापक रूप से अनुशंसित किया जाता है, उदाहरण के लिए फेनिलसेटिलीन को स्टाइरीन में बदलने के लिए।[10] इसी प्रकार, एल्काइनों के हैलोजनीकरण से ऐल्कीन डाइहैलाइड या ऐल्किल टेट्राहैलाइड प्राप्त होते हैं:

<केम>RCH=CR'H + H2 -> RCH2CR'H2</chem>

के एक समकक्ष का जोड़ H2 आन्तरिक एल्काइनों को सिस-ऐल्कीन देता है।

हलोजन और संबंधित अभिकर्मकों का जोड़

एल्काइन चारित्रिक रूप से हैलोजन और हाइड्रोजन हैलाइड के दो समकक्षों को जोड़ने में सक्षम हैं।

नॉनपोलर का जोड़ E−H बांड भर C≡C सिलेन, बोरेन और संबंधित हाइड्राइड के लिए सामान्य है। एल्काइन की हाइड्रोबोरेशन-ऑक्सीकरण प्रतिक्रिया विनाइलिक बोरेन देती है जो संबंधित एल्डिहाइड या कीटोन को ऑक्सीकरण करती है। थियोल-येन प्रतिक्रिया में सब्सट्रेट एक थियोल है।

हाइड्रोजन हैलाइडों का योग लंबे समय से रुचिकर रहा है। उत्प्रेरक के रूप में मर्क्यूरिक क्लोराइड की उपस्थिति में, एसिटिलीन और हाईड्रोजन क्लोराईड विनील क्लोराइड देने के लिए प्रतिक्रिया करते हैं। जबकि इस पद्धति को पश्चिम में छोड़ दिया गया है, यह चीन में मुख्य उत्पादन विधि बनी हुई है।[11]


जलयोजन

एसिटिलीन की जलयोजन प्रतिक्रिया एसीटैल्डिहाइड देता है। प्रतिक्रिया विनाइल अल्कोहल के गठन से होती है, जो एल्डिहाइड बनाने के लिए केटो-एनोल टॉटोमेरिज्म से गुजरती है। यह प्रतिक्रिया कभी एक प्रमुख औद्योगिक प्रक्रिया थी लेकिन इसे वेकर प्रक्रिया द्वारा विस्थापित कर दिया गया है। यह प्रतिक्रिया प्रकृति में होती है, उत्प्रेरक एसिटिलीन हाइड्रेटस होता है।

फेनिलएसिटिलीन का जलयोजन acetophenone देता है,[12] और यह (Ph3P)AuCH3- 1,8-nonadiyne से 2,8-nonanedione के उत्प्रेरित जलयोजन:[13]

<केम>PhC#CH + H2O -> PhCOCH3</केम>
<केम>HC#C(CH2)5C#CH + 2H2O -> CH3CO(CH2)5COCH3</केम>

तात्विकवाद

टर्मिनल एल्काइल एल्काइन टॉटोमेरिज़्म प्रदर्शित करते हैं। प्रोपीन अकेला के साथ संतुलन में मौजूद है:

<केम>एचसी#सी-सीएच3 <=> सीएच2=सी=सीएच2</केम>

चक्रवृद्धि और ऑक्सीकरण

एल्काइन विविध साइक्लोडडिशन प्रतिक्रियाओं से गुजरते हैं। डायल्स-एल्डर प्रतिक्रिया 1,3-डायन के साथ 1,4-साइक्लोहेक्साडीन देती है। यह सामान्य प्रतिक्रिया व्यापक रूप से विकसित की गई है। इलेक्ट्रोफिलिक एल्काइन विशेष रूप से प्रभावी डायनोफाइल हैं। 2-पाइरोन में एल्काइन के योग से प्राप्त साइक्लोडडक्ट सुगंधित यौगिक देने के लिए कार्बन डाइआक्साइड को समाप्त करता है। अन्य विशिष्ट साइक्लोडडिशन में बहुघटक प्रतिक्रियाएं शामिल हैं जैसे कि सुगंधित यौगिकों को देने के लिए एल्काइन ट्रिमराइजेशन और पॉसन-खंड प्रतिक्रिया में [2 + 2 + 1] - एक अल्कीन, एल्केन और कार्बन मोनोआक्साइड का साइक्लोडिशन। गैर-कार्बन अभिकर्मक भी चक्रण से गुजरते हैं, उदा। ट्रायज़ोल देने के लिए [[ Azide alkyne Huisgen cycloaddition ]] एल्काइन को शामिल करने वाली साइक्लोडडिशन प्रक्रियाएं अक्सर धातुओं द्वारा उत्प्रेरित होती हैं, उदा। एनाइन मेटाथिसिस और एल्काइन मेटाथिसिस , जो कार्बाइन (आरसी) केंद्रों को पांव मारने की अनुमति देता है:

<केम>आरसी#सीआर + आर'सी#सीआर' <=> 2आरसी#सीआर'</केम>

एल्काइन का ऑक्सीडेटिव क्लेवाज साइक्लोडडिशन के माध्यम से धातु आक्साइड तक पहुंचता है। सबसे प्रसिद्ध रूप से, पोटेशियम परमैंगनेट एल्काइन को कार्बोज़ाइलिक तेजाब की एक जोड़ी में परिवर्तित करता है।

टर्मिनल एल्काइन के लिए विशिष्ट अभिक्रियाएँ

टर्मिनल एल्काइन आसानी से कई डेरिवेटिव में परिवर्तित हो जाते हैं, उदा। अभिक्रियाओं और संघनन के युग्मन द्वारा। फॉर्मलाडेहाइड और एसिटिलीन के साथ संघनन के माध्यम से 1,4-ब्यूटिनेडियोल का उत्पादन होता है:[5][14] :<केम>2CH2O + HC#CH -> HOCH2CCCH2OH</केम>

सोनोगाशिरा प्रतिक्रिया में, टर्मिनल एल्काइन को एरिल या विनाइल हैलाइड्स के साथ जोड़ा जाता है:

सोनोगाशिरा प्रतिक्रियायह प्रतिक्रियाशीलता इस तथ्य का फायदा उठाती है कि टर्मिनल एल्काइन कमजोर एसिड होते हैं, जिनकी विशिष्ट एसिड पृथक्करण स्थिरांक | पीकेa25 के आसपास मान उन्हें अमोनिया (35) और इथेनॉल (16) के बीच रखते हैं:
<केम>आरसी#सीएच + एमएक्स -> आरसी#सीएम + एचएक्स</केम>

जहाँ MX = सोडियम एमाइड|NaNH2, एन-ब्यूटिलिथियम , या ग्रिग्नार्ड अभिकर्मक

कतिपय धातु धनायनों के साथ एल्काइनों की अभिक्रियाएँ, उदा. Ag+ तथा Cu+ एसिटाइलाइड भी देता है। इस प्रकार, टॉलेंस अभिकर्मक की कुछ बूँदें | डायमाइनसिल्वर (I) हाइड्रॉक्साइड (Ag(NH3)2OH) सिल्वर एसिटाइलाइड के एक सफेद अवक्षेप के निर्माण द्वारा संकेतित टर्मिनल एल्काइन के साथ प्रतिक्रिया करता है। यह प्रतिक्रियाशीलता कैडियट-चोडकिविज़ युग्मन, ग्लेसर युग्मन , और एग्लिन्टन युग्मन सहित एल्काइन युग्मन प्रतिक्रिया ओं का आधार है:[15] :<केम>2R-\!{\equiv}\!-H ->[\ce{Cu(OAc)2}][\ce{pyridine}] R-\!{\equiv}\!-\!{ \equiv}\!-R</chem>

Favorskii प्रतिक्रिया में और सामान्य रूप से alkynylation s में, hydroxyalkyne देने के लिए टर्मिनल एल्काइन कार्बोनिल यौगिकों में जोड़ते हैं।

धातु परिसर

एल्काइन संक्रमण धातुओं के साथ संकुल बनाते हैं। इस तरह के परिसरों अल्काइनों की धातु उत्प्रेरित प्रतिक्रियाओं जैसे कि एल्काइन ट्रिमराइजेशन में भी होते हैं। एसिटिलीन सहित टर्मिनल एल्काइन, एल्डिहाइड देने के लिए पानी के साथ प्रतिक्रिया करते हैं। इस परिवर्तन को आम तौर पर मार्कोवनिकोव विरोधी परिणाम देने के लिए धातु उत्प्रेरक की आवश्यकता होती है।[16]


प्रकृति और चिकित्सा में एल्काइन

फर्डिनेंड बोहलमान के अनुसार, पहला प्राकृतिक रूप से पाया जाने वाला एसिटिलेनिक यौगिक, डिहाइड्रोमैट्रिकिया एस्टर, 1826 में एक आर्टेमिसिया प्रजाति से अलग किया गया था। इसके बाद की लगभग दो शताब्दियों में, एक हजार से अधिक प्राकृतिक रूप से पाए जाने वाले एसिटिलीन की खोज और रिपोर्ट की गई है। प्राकृतिक उत्पादों के इस वर्ग का एक सबसेट, पोलीने , पौधों की प्रजातियों की एक विस्तृत विविधता, उच्च कवक की संस्कृतियों, बैक्टीरिया, समुद्री स्पंज और कोरल से अलग किया गया है।[17] कुछ अम्ल जैसे टैरिक अम्ल में एक ऐल्कीन समूह होता है। डायनेस और ट्राइनेस, क्रमशः RC≡C-C≡CR′ और RC≡C-C≡C-C≡CR′ के साथ प्रजातियां, कुछ पौधों (इचथ्योथेरे , गुलदाउदी , हेमलोक , ओएनंथे (पौधे) और अन्य सदस्यों में होती हैं। Asteraceae और Apiaceae परिवार)। कुछ उदाहरण सिकुटॉक्सिन , ओएन्थोटॉक्सिन और फाल्कारिनोल हैं। ये यौगिक अत्यधिक जैव सक्रिय हैं, उदा। सूत्रकृमि के रूप में।[18] 1-फेनिलहेप्टा-1,3,5-ट्राईन प्राकृतिक रूप से पाए जाने वाले ट्राइने का उदाहरण है।

कुछ फार्मास्यूटिकल्स में एल्काइन होते हैं, जिनमें गर्भनिरोधक नोरेटिनोड्रेल भी शामिल है। एक कार्बन-कार्बन तृतीयक बंध भी एंटीरेट्रोवाइरल इफावरेन्ज और एंटीफंगल टेरबिनाफाइन जैसी विपणन दवाओं में मौजूद है। एनी-डायनेस नामक अणु में दो एल्काइन समूहों (डायने) के बीच एक एल्कीन (एनई) युक्त एक वलय होता है। ये यौगिक, उदा। कैलिकेमिसिन , ज्ञात सबसे आक्रामक एंटीट्यूमर दवाओं में से कुछ हैं, इतना अधिक है कि एनी-डायने सबयूनिट को कभी-कभी वारहेड के रूप में जाना जाता है। Ene-diynes बर्गमैन चक्रीकरण के माध्यम से पुनर्व्यवस्था से गुजरता है, अत्यधिक प्रतिक्रियाशील कट्टरपंथी मध्यवर्ती उत्पन्न करता है जो ट्यूमर के भीतर डीएनए पर हमला करता है।[19]


यह भी देखें


संदर्भ

  1. Alkyne. Encyclopædia Britannica
  2. Saul Patai, ed. (1978). कार्बन-कार्बन ट्रिपल बॉन्ड. Vol. 1. John Wiley & Sons. ISBN 9780470771563.
  3. Bloch, Daniel R. (2012). कार्बनिक रसायन का रहस्योद्घाटन (2nd ed.). McGraw-Hill. p. 57. ISBN 978-0-07-176797-2.
  4. The Commission on the कार्बनिक रसायन विज्ञान का नामकरण (1971) [1958 (A: Hydrocarbons, and B: Fundamental Heterocyclic Systems), 1965 (C: Characteristic Groups)]. कार्बनिक रसायन विज्ञान का नामकरण (3rd ed.). London: Butterworths. ISBN 0-408-70144-7.
  5. 5.0 5.1 Gräfje, Heinz; Körnig, Wolfgang; Weitz, Hans-Martin; Reiß, Wolfgang; Steffan, Guido; Diehl, Herbert; Bosche, Horst; Schneider, Kurt; Kieczka (2000). "Butanediols, Butenediol, and Butynediol". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a04_455.
  6. Kenneth N. Campbell, Barbara K. Campbell (1950). "Phenylacetylene". Organic Syntheses. 30: 72. doi:10.15227/orgsyn.030.0072.
  7. A. Le Coq and A. Gorgues (1979). "फेज ट्रांसफर-उत्प्रेरित डिहाइड्रोहैलोजनेशन के माध्यम से क्षारीयता: प्रोपियोलाल्डिहाइड डायथाइल एसिटल". Organic Syntheses. 59: 10. doi:10.15227/orgsyn.059.0010.
  8. Raphael, Ralph Alexander (1955). कार्बनिक संश्लेषण में एसिटिलेनिक यौगिक. London: Butterworths Scientific Publications. OCLC 3134811.
  9. Rosser & Williams (1977). ए-लेवल के लिए आधुनिक ऑर्गेनिक केमिस्ट्री. Great Britain: Collins. p. 82. ISBN 0003277402.
  10. H. Lindlar; R. Dubuis (1973). "Palladium catalyst for partial reduction of acetylenes". Organic Syntheses.; Collective Volume, vol. 5, p. 880.
  11. Dreher, Eberhard-Ludwig; Torkelson, Theodore R.; Beutel, Klaus K. (2011). "Chlorethanes and Chloroethylenes". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.o06_o01.
  12. Fukuda, Y.; Utimoto, K. (1991). "सोने (III) उत्प्रेरक के साथ निष्क्रिय एल्काइन का कीटोन या एसिटल में प्रभावी परिवर्तन". J. Org. Chem. 56 (11): 3729. doi:10.1021/jo00011a058..
  13. Mizushima, E.; Cui, D.-M.; Nath, D. C. D.; Hayashi, T.; Tanaka, M. (2005). "Au(I)-Catalyzed hydratation of alkynes: 2,8-nonanedione". Organic Syntheses. 83: 55.
  14. Peter Pässler; Werner Hefner; Klaus Buckl; Helmut Meinass; Andreas Meiswinkel; Hans-Jürgen Wernicke; Günter Ebersberg; Richard Müller; Jürgen Bässler (2008). "Acetylene". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a01_097.pub3.
  15. K. Stöckel and F. Sondheimer (1974). "[18]Annulene". Organic Syntheses. 54: 1. doi:10.15227/orgsyn.054.0001.
  16. Hintermann, Lukas; Labonne, Aurélie (2007). "अल्काइन्स का उत्प्रेरक जलयोजन और संश्लेषण में इसका अनुप्रयोग". Synthesis. 2007 (8): 1121–1150. doi:10.1055/s-2007-966002. S2CID 95666091.
  17. Annabelle L. K. Shi Shun; Rik R. Tykwinski (2006). "प्राकृतिक रूप से पाए जाने वाले पॉलीयन्स का संश्लेषण". Angew. Chem. Int. Ed. 45 (7): 1034–1057. doi:10.1002/anie.200502071. PMID 16447152.
  18. Lam, Jørgen (1988). प्राकृतिक रूप से पाए जाने वाले एसिटिलीन और संबंधित यौगिकों का रसायन विज्ञान और जीव विज्ञान (NOARC): प्राकृतिक रूप से पाए जाने वाले एसिटिलीन और संबंधित यौगिकों (NOARC) के रसायन विज्ञान और जीव विज्ञान पर एक सम्मेलन की कार्यवाही।. Amsterdam: Elsevier. ISBN 0-444-87115-2.
  19. S. Walker; R. Landovitz; W.D. Ding; G.A. Ellestad; D. Kahne (1992). "कैलिकेमिसिन गामा 1 और कैलिकेमिसिन टी का दरार व्यवहार". Proc Natl Acad Sci USA. 89 (10): 4608–12. Bibcode:1992PNAS...89.4608W. doi:10.1073/pnas.89.10.4608. PMC 49132. PMID 1584797.