स्टार स्कीमा: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Data warehousing schema}}
{{Short description|Data warehousing schema}}
[[File:Star-schema.png|thumb|right|]]
[[File:Star-schema.png|thumb|right|]]
[[File:Star Schema.png|thumb|right|]][[कम्प्यूटिंग]] में, स्टार स्कीमा [[डेटा मार्ट]] [[तार्किक स्कीमा]] की सबसे सरल शैली है और डेटा वेयरहाउस और आयाम डेटा मार्ट विकसित करने के लिए सबसे व्यापक रूप से उपयोग किया जाने वाला दृष्टिकोण है।<ref>Dedić, N. and Stanier C., 2016., "An Evaluation of the Challenges of Multilingualism in Data Warehouse Development" in 18th International Conference on Enterprise Information Systems - ICEIS 2016, p. 196.</ref> स्टार स्कीमा में या से अधिक [[तथ्य तालिका]] होते हैं जो किसी भी संख्या में [[आयाम (डेटा वेयरहाउस)]] को संदर्भित करते हैं। स्टार स्कीमा [[स्नोफ्लेक स्कीमा]] का महत्वपूर्ण विशेष मामला है, और सरल प्रश्नों को संभालने के लिए अधिक प्रभावी है।<ref>{{citation |url=http://www.dwhworld.com/dwh-schemas/ |title=DWH Schemas |year=2009 |archive-date=16 July 2010 |archive-url=https://web.archive.org/web/20100716233800/http://www.dwhworld.com/dwh-schemas/}}</ref>
[[File:Star Schema.png|thumb|right|]][[कम्प्यूटिंग]] में, स्टार स्कीमा [[डेटा मार्ट]] [[तार्किक स्कीमा]] की सबसे सरल शैली है और डेटा वेयरहाउस और आयाम डेटा मार्ट विकसित करने के लिए सबसे व्यापक रूप से उपयोग किया जाने वाला दृष्टिकोण है।<ref>Dedić, N. and Stanier C., 2016., "An Evaluation of the Challenges of Multilingualism in Data Warehouse Development" in 18th International Conference on Enterprise Information Systems - ICEIS 2016, p. 196.</ref> स्टार स्कीमा में या से अधिक [[तथ्य तालिका]] होते हैं जो किसी भी संख्या में [[आयाम (डेटा वेयरहाउस)]] को संदर्भित करते हैं। स्टार स्कीमा [[स्नोफ्लेक स्कीमा]] का महत्वपूर्ण विशेष स्थिति है, और सरल प्रश्नों को संभालने के लिए अधिक प्रभावी है।<ref>{{citation |url=http://www.dwhworld.com/dwh-schemas/ |title=DWH Schemas |year=2009 |archive-date=16 July 2010 |archive-url=https://web.archive.org/web/20100716233800/http://www.dwhworld.com/dwh-schemas/}}</ref>
स्टार स्कीमा को इसका नाम भौतिक डेटा मॉडल के स्टार के आकार से मिलता-जुलता है<ref name = "Date-IntroToDBMS">", p. 708</ref> इसके केंद्र में तथ्य तालिका के साथ स्टार बहुभुज के समानता और इसके आसपास के आयाम तालिकाएं स्टार के बिंदुओं का प्रतिनिधित्व करती हैं।
स्टार स्कीमा को इसका नाम भौतिक डेटा मॉडल के स्टार के आकार से मिलता-जुलता है<ref name = "Date-IntroToDBMS">", p. 708</ref> इसके केंद्र में तथ्य तालिका के साथ स्टार बहुभुज के समानता और इसके आसपास के आयाम तालिकाएं स्टार के बिंदुओं का प्रतिनिधित्व करती हैं।


== मॉडल ==
== मॉडल ==
स्टार स्कीमा व्यवसाय प्रक्रिया डेटा को तथ्यों में अलग करती है, जिसमें किसी व्यवसाय के बारे में मापने योग्य, मात्रात्मक डेटा और आयाम होते हैं जो तथ्य डेटा से संबंधित वर्णनात्मक गुण होते हैं। तथ्य डेटा के उदाहरणों में बिक्री मूल्य, बिक्री मात्रा और समय, दूरी, गति और वजन माप शामिल हैं। संबंधित आयाम विशेषता उदाहरणों में उत्पाद मॉडल, उत्पाद रंग, उत्पाद आकार, भौगोलिक स्थान और विक्रेता के नाम शामिल हैं।
स्टार स्कीमा व्यवसाय प्रक्रिया डेटा को तथ्यों में अलग करती है, जिसमें किसी व्यवसाय के बारे में मापने योग्य, मात्रात्मक डेटा और आयाम होते हैं जो तथ्य डेटा से संबंधित वर्णनात्मक गुण होते हैं। तथ्य डेटा के उदाहरणों में बिक्री मूल्य, बिक्री मात्रा और समय, दूरी, गति और वजन माप सम्मिलित हैं। संबंधित आयाम विशेषता उदाहरणों में उत्पाद मॉडल, उत्पाद रंग, उत्पाद आकार, भौगोलिक स्थान और विक्रेता के नाम सम्मिलित हैं।


स्टार स्कीमा जिसमें कई आयाम होते हैं, उसे कभी-कभी कनखजूरा स्कीमा कहा जाता है।<ref name="Kimball-DWHToolkit">Ralph Kimball and Margy Ross, ''The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling (Second Edition)'', p. 393</ref> केवल कुछ विशेषताओं के आयाम होने के साथ-साथ कई तालिका में शामिल होने वाले प्रश्नों में परिणामों को बनाए रखना आसान होता है और स्टार स्कीमा का उपयोग करना कम आसान बनाता है।
स्टार स्कीमा जिसमें कई आयाम होते हैं, उसे कभी-कभी कनखजूरा स्कीमा कहा जाता है।<ref name="Kimball-DWHToolkit">Ralph Kimball and Margy Ross, ''The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling (Second Edition)'', p. 393</ref> केवल कुछ विशेषताओं के आयाम होने के साथ-साथ कई तालिका में सम्मिलित होने वाले प्रश्नों में परिणामों को बनाए रखना आसान होता है और स्टार स्कीमा का उपयोग करना कम आसान बनाता है।


=== तथ्य तालिका ===
=== तथ्य तालिका ===
तथ्य तालिका किसी विशिष्ट घटना के लिए माप या मापन लेखाबद्ध करते हैं।
तथ्य तालिका किसी विशिष्ट घटना के लिए माप या मापन लेखाबद्ध करते हैं।


तथ्य तालिका में आम तौर पर संख्यात्मक मान होते हैं, और आयामी डेटा के लिए विदेशी कुंजियाँ होती हैं जहाँ वर्णनात्मक जानकारी रखी जाती है।<ref name="Kimball-DWHToolkit" /> तथ्य तालिका को निम्न स्तर के समान विवरण के लिए डिज़ाइन किया गया है (जिसे कणिकता या ग्रेन कहा जाता है), जिसका अर्थ है कि तथ्य बहुत ही परमाणु स्तर पर घटनाओं को लेखाबद्ध कर सकते हैं। इसके परिणामस्वरूप समय के साथ तथ्य तालिका में बड़ी संख्या में लेखाबद्ध जमा हो सकते हैं। तथ्य तालिका को तीन प्रकारों में से के रूप में परिभाषित किया गया है:
तथ्य तालिका में सामान्यतः संख्यात्मक मान होते हैं, और आयामी डेटा के लिए विदेशी कुंजियाँ होती हैं जहाँ वर्णनात्मक जानकारी रखी जाती है।<ref name="Kimball-DWHToolkit" /> तथ्य तालिका को निम्न स्तर के समान विवरण के लिए डिज़ाइन किया गया है (जिसे कणिकता या ग्रेन कहा जाता है), जिसका अर्थ है कि तथ्य बहुत ही परमाणु स्तर पर घटनाओं को लेखाबद्ध कर सकते हैं। इसके परिणामस्वरूप समय के साथ तथ्य तालिका में बड़ी संख्या में लेखाबद्ध जमा हो सकते हैं। तथ्य तालिका को तीन प्रकारों में से के रूप में परिभाषित किया गया है:


* लेन-देन तथ्य तालिकाएँ विशिष्ट घटना (जैसे, बिक्री घटनाएँ) के बारे में तथ्य लेखाबद्ध करती हैं।
* लेन-देन तथ्य तालिकाएँ विशिष्ट घटना (जैसे, बिक्री घटनाएँ) के बारे में तथ्य लेखाबद्ध करती हैं।
Line 18: Line 18:
* संकलित स्नैपशॉट तालिकाएँ निश्चित समय (उदाहरण के लिए, किसी उत्पाद के लिए कुल माह-दर-तारीख बिक्री) पर कुल तथ्यों को लेखाबद्ध करती हैं।
* संकलित स्नैपशॉट तालिकाएँ निश्चित समय (उदाहरण के लिए, किसी उत्पाद के लिए कुल माह-दर-तारीख बिक्री) पर कुल तथ्यों को लेखाबद्ध करती हैं।


प्रत्येक पंक्ति को विशिष्ट रूप से पहचाना जा सकता है यह सुनिश्चित करने के लिए तथ्य तालिकाओं को आम तौर पर [[सरोगेट कुंजी|प्रतिनिधि कुंजी]] सौंपी जाती है।
प्रत्येक पंक्ति को विशिष्ट रूप से पहचाना जा सकता है यह सुनिश्चित करने के लिए तथ्य तालिकाओं को सामान्यतः [[सरोगेट कुंजी|प्रतिनिधि कुंजी]] सौंपी जाती है।


यह कुंजी साधारण प्राथमिक कुंजी है।
यह कुंजी साधारण प्राथमिक कुंजी है।
Line 24: Line 24:
=== आयाम तालिका ===
=== आयाम तालिका ===


तथ्य तालिकाओं की तुलना में आयाम तालिकाओं में आमतौर पर अपेक्षाकृत कम संख्या में लेखाबद्ध होते हैं, लेकिन तथ्य डेटा का वर्णन करने के लिए प्रत्येक लेखाबद्ध में बहुत बड़ी संख्या में विशेषताएँ हो सकती हैं। आयाम कई प्रकार की विशेषताओं को परिभाषित कर सकते हैं, लेकिन आयाम तालिकाओं द्वारा परिभाषित कुछ सबसे सामान्य विशेषताओं में शामिल हैं:
तथ्य तालिकाओं की तुलना में आयाम तालिकाओं में सामान्यतः अपेक्षाकृत कम संख्या में लेखाबद्ध होते हैं, लेकिन तथ्य डेटा का वर्णन करने के लिए प्रत्येक लेखाबद्ध में बहुत बड़ी संख्या में विशेषताएँ हो सकती हैं। आयाम कई प्रकार की विशेषताओं को परिभाषित कर सकते हैं, लेकिन आयाम तालिकाओं द्वारा परिभाषित कुछ सबसे सामान्य विशेषताओं में सम्मिलित हैं:


* समय आयाम तालिका समय कणिकता के निम्नतम स्तर पर समय का वर्णन करते हैं जिसके लिए स्टार स्कीमा में इवेंट लेखाबद्ध किए जाते हैं
* समय आयाम तालिका समय कणिकता के निम्नतम स्तर पर समय का वर्णन करते हैं जिसके लिए स्टार स्कीमा में कार्यक्रम लेखाबद्ध किए जाते हैं
* भूगोल आयाम तालिकाएँ देश, राज्य या शहर जैसे स्थान डेटा का वर्णन करती हैं
* भूगोल आयाम तालिकाएँ देश, राज्य या शहर जैसे स्थान डेटा का वर्णन करती हैं
* उत्पाद आयाम तालिकाएँ उत्पादों का वर्णन करती हैं
* उत्पाद आयाम तालिकाएँ उत्पादों का वर्णन करती हैं
Line 32: Line 32:
* सीमा आयाम तालिका रिपोर्टिंग को आसान बनाने के लिए समय की सीमा, डॉलर मान या अन्य मापने योग्य मात्रा का वर्णन करते हैं
* सीमा आयाम तालिका रिपोर्टिंग को आसान बनाने के लिए समय की सीमा, डॉलर मान या अन्य मापने योग्य मात्रा का वर्णन करते हैं


आयाम तालिकाओं को आम तौर पर प्रतिनिधि कुंजी दी जाती है, आमतौर पर एकल-स्तंभ पूर्णांक डेटा प्रकार, प्राकृतिक कुंजी बनाने वाले आयाम विशेषताओं के संयोजन के लिए मैप किया जाता है।
आयाम तालिकाओं को सामान्यतः प्रतिनिधि कुंजी दी जाती है, सामान्यतः एकल-स्तंभ पूर्णांक डेटा प्रकार, प्राकृतिक कुंजी बनाने वाले आयाम विशेषताओं के संयोजन के लिए मैप किया जाता है।


== लाभ ==
== लाभ ==
स्टार स्कीमा [[डेटाबेस सामान्यीकरण]] हैं, जिसका अर्थ है कि लेनदेन संबंधपरक डेटाबेस पर लागू सामान्यीकरण के सामान्य नियम स्टार-स्कीमा डिज़ाइन और कार्यान्वयन के दौरान आराम कर रहे हैं। स्टार-स्कीमा विसामान्यीकरण के लाभ हैं:
स्टार स्कीमा [[डेटाबेस सामान्यीकरण]] हैं, जिसका अर्थ है कि लेनदेन संबंधपरक डेटाबेस पर प्रायुक्त सामान्यीकरण के सामान्य नियम स्टार-स्कीमा डिज़ाइन और कार्यान्वयन के समय आराम कर रहे हैं। स्टार-स्कीमा विसामान्यीकरण के लाभ हैं:


* सरल प्रश्न - स्टार-स्कीमा संयुक्त-तर्क आमतौर पर अत्यधिक सामान्यीकृत लेनदेन स्कीमा से डेटा पुनर्प्राप्त करने के लिए आवश्यक संयुक्त तर्क से सरल होता है।
* सरल प्रश्न - स्टार-स्कीमा संयुक्त-तर्क सामान्यतः अत्यधिक सामान्यीकृत लेनदेन स्कीमा से डेटा पुनर्प्राप्त करने के लिए आवश्यक संयुक्त तर्क से सरल होता है।
* सरलीकृत व्यापार रिपोर्टिंग तर्क - अत्यधिक सामान्यीकृत स्कीमाओं की तुलना में, स्टार स्कीमा सामान्य व्यापार रिपोर्टिंग तर्क को सरल बनाता है, जैसे अवधि-दर-अवधि और रिपोर्टिंग के रूप में।
* सरलीकृत व्यापार रिपोर्टिंग तर्क - अत्यधिक सामान्यीकृत स्कीमाओं की तुलना में, स्टार स्कीमा सामान्य व्यापार रिपोर्टिंग तर्क को सरल बनाता है, जैसे अवधि-दर-अवधि और रिपोर्टिंग के रूप में।
* क्वेरी प्रदर्शन लाभ - अत्यधिक डेटाबेस सामान्यीकरण स्कीमा की तुलना में स्टार स्कीमा रीड-ओनली रिपोर्टिंग अनुप्रयोगों के लिए प्रदर्शन संवर्द्धन प्रदान कर सकते हैं।
* क्वेरी प्रदर्शन लाभ - अत्यधिक डेटाबेस सामान्यीकरण स्कीमा की तुलना में स्टार स्कीमा रीड-ओनली रिपोर्टिंग अनुप्रयोगों के लिए प्रदर्शन संवर्द्धन प्रदान कर सकते हैं।
* तेज़ एकत्रीकरण - स्टार स्कीमा के विरुद्ध सरल प्रश्नों के परिणामस्वरूप एकत्रीकरण संचालन के लिए बेहतर प्रदर्शन हो सकता है।
* तेज़ एकत्रीकरण - स्टार स्कीमा के विरुद्ध सरल प्रश्नों के परिणामस्वरूप एकत्रीकरण संचालन के लिए बेहतर प्रदर्शन हो सकता है।
* फीडिंग क्यूब्स - स्वामित्व ओलाप क्यूब्स को कुशलतापूर्वक बनाने के लिए सभी ऑनलाइन विश्लेषणात्मक प्रसंस्करण प्रणालियों द्वारा स्टार स्कीमा का उपयोग किया जाता है; वास्तव में, अधिकांश प्रमुख ओलाप प्रणालियाँ ऑपरेशन का [[ROLAP|रोलप]] मोड प्रदान करती हैं जो स्वामित्व घन संरचना के निर्माण के बिना स्टार स्कीमा को सीधे स्रोत के रूप में उपयोग कर सकती हैं।
* फीडिंग क्यूब्स - स्वामित्व ओलाप क्यूब्स को कुशलतापूर्वक बनाने के लिए सभी ऑनलाइन विश्लेषणात्मक प्रसंस्करण प्रणालियों द्वारा स्टार स्कीमा का उपयोग किया जाता है; वास्तविक में, अधिकांश प्रमुख ओलाप प्रणालियाँ ऑपरेशन का [[ROLAP|रोलप]] मोड प्रदान करती हैं जो स्वामित्व घन संरचना के निर्माण के बिना स्टार स्कीमा को सीधे स्रोत के रूप में उपयोग कर सकती हैं।


== नुकसान ==
== हानि ==


स्टार स्कीमा का मुख्य नुकसान यह है कि यह विश्लेषणात्मक आवश्यकताओं के मामले में सामान्यीकृत डेटा मॉडल के रूप में लचीला नहीं है।{{citation needed|reason=What is meant by "flexible"?|date=July 2015}} सामान्यीकृत मॉडल किसी भी प्रकार की विश्लेषणात्मक क्वेरी को तब तक निष्पादित करने की अनुमति देते हैं, जब तक यह मॉडल में परिभाषित व्यावसायिक तर्क का पालन करती है। स्टार स्कीमा डेटा के विशेष दृश्य के लिए अधिक उद्देश्य से निर्मित होते हैं, इस प्रकार वास्तव में अधिक जटिल विश्लेषण की अनुमति नहीं देते हैं।{{citation needed|reason=How is a dimensional model "purpose-built"|date=July 2015}} स्टार स्कीमा व्यावसायिक संस्थाओं के बीच अनेक संबंधों का आसानी से समर्थन नहीं करते हैं। आम तौर पर सरल आयामी मॉडल के अनुरूप होने के लिए इन संबंधों को स्टार स्कीमा में सरलीकृत किया जाता है।
स्टार स्कीमा का मुख्य हानि यह है कि यह विश्लेषणात्मक आवश्यकताओं के मामले में सामान्यीकृत डेटा मॉडल के रूप में लचीला नहीं है।{{citation needed|reason=What is meant by "flexible"?|date=July 2015}} सामान्यीकृत मॉडल किसी भी प्रकार की विश्लेषणात्मक क्वेरी को तब तक निष्पादित करने की अनुमति देते हैं, जब तक यह मॉडल में परिभाषित व्यावसायिक तर्क का पालन करती है। स्टार स्कीमा डेटा के विशेष दृश्य के लिए अधिक उद्देश्य से निर्मित होते हैं, इस प्रकार वास्तव में अधिक जटिल विश्लेषण की अनुमति नहीं देते हैं।{{citation needed|reason=How is a dimensional model "purpose-built"|date=July 2015}} स्टार स्कीमा व्यावसायिक संस्थाओं के बीच अनेक संबंधों का आसानी से समर्थन नहीं करते हैं। सामान्यतः सरल आयामी मॉडल के अनुरूप होने के लिए इन संबंधों को स्टार स्कीमा में सरलीकृत किया जाता है।


और नुकसान यह है कि इसकी असामान्य स्थिति के कारण डेटा अखंडता अच्छी तरह से लागू नहीं होती है।{{citation needed|reason=Relational datamodels usually are normalized (though bad examples will exist in practise) and foreign key constraints enforce the data integrity|date=June 2020}} एक-बार आवेषण और अद्यतन के परिणामस्वरूप डेटा विसंगतियाँ हो सकती हैं, जिनसे बचने के लिए डेटाबेस सामान्यीकरण स्कीमा डिज़ाइन किए गए हैं। सामान्यतया, डेटाबेस सामान्यीकरण द्वारा वहन की जाने वाली सुरक्षा की कमी की भरपाई करने के लिए, स्टार स्कीमा को बैच प्रोसेसिंग के माध्यम से या रीयल-समय ट्रिकल फीड के पास अत्यधिक नियंत्रित तरीके से लोड किया जाता है।
और हानि यह है कि इसकी असामान्य स्थिति के कारण डेटा अखंडता अच्छी तरह से प्रायुक्त नहीं होती है।{{citation needed|reason=Relational datamodels usually are normalized (though bad examples will exist in practise) and foreign key constraints enforce the data integrity|date=June 2020}} एक-बार आवेषण और अद्यतन के परिणामस्वरूप डेटा विसंगतियाँ हो सकती हैं, जिनसे बचने के लिए डेटाबेस सामान्यीकरण स्कीमा डिज़ाइन किए गए हैं। सामान्यतया, डेटाबेस सामान्यीकरण द्वारा वहन की जाने वाली सुरक्षा की कमी की भरपाई करने के लिए, स्टार स्कीमा को बैच प्रोसेसिंग के माध्यम से या रीयल-समय ट्रिकल फीड के पास अत्यधिक नियंत्रित तरीके से लोड किया जाता है।


== उदाहरण ==
== उदाहरण ==
[[File:Приклад схеми зірки.png|300px|thumb|right|उदाहरण क्वेरी द्वारा प्रयुक्त स्टार स्कीमा।]]बिक्री के डेटाबेस पर विचार करें, शायद स्टोर श्रृंखला से, जिसे दिनांक, स्टोर और उत्पाद द्वारा वर्गीकृत किया गया है। दाईं ओर स्कीमा की छवि स्नोफ्लेक स्कीमा लेख में प्रदान किए गए नमूना स्कीमा का स्टार स्कीमा संस्करण है।
[[File:Приклад схеми зірки.png|300px|thumb|right|उदाहरण क्वेरी द्वारा प्रयुक्त स्टार स्कीमा।]]बिक्री के डेटाबेस पर विचार करें, शायद स्टोर श्रृंखला से, जिसे दिनांक, स्टोर और उत्पाद द्वारा वर्गीकृत किया गया है। दाईं ओर स्कीमा की छवि स्नोफ्लेक स्कीमा लेख में प्रदान किए गए मानक स्कीमा का स्टार स्कीमा संस्करण है।


<code>Fact_Sales</code> तथ्य तालिका है और <code>Dim_Date</code>, <code>Dim_Store</code> और <code>Dim_Product</code> तीन आयाम तालिका हैं।
<code>Fact_Sales</code> तथ्य तालिका है और <code>Dim_Date</code>, <code>Dim_Store</code> और <code>Dim_Product</code> तीन आयाम तालिका हैं।

Revision as of 19:35, 21 February 2023

Star-schema.png
Star Schema.png

कम्प्यूटिंग में, स्टार स्कीमा डेटा मार्ट तार्किक स्कीमा की सबसे सरल शैली है और डेटा वेयरहाउस और आयाम डेटा मार्ट विकसित करने के लिए सबसे व्यापक रूप से उपयोग किया जाने वाला दृष्टिकोण है।[1] स्टार स्कीमा में या से अधिक तथ्य तालिका होते हैं जो किसी भी संख्या में आयाम (डेटा वेयरहाउस) को संदर्भित करते हैं। स्टार स्कीमा स्नोफ्लेक स्कीमा का महत्वपूर्ण विशेष स्थिति है, और सरल प्रश्नों को संभालने के लिए अधिक प्रभावी है।[2]

स्टार स्कीमा को इसका नाम भौतिक डेटा मॉडल के स्टार के आकार से मिलता-जुलता है[3] इसके केंद्र में तथ्य तालिका के साथ स्टार बहुभुज के समानता और इसके आसपास के आयाम तालिकाएं स्टार के बिंदुओं का प्रतिनिधित्व करती हैं।

मॉडल

स्टार स्कीमा व्यवसाय प्रक्रिया डेटा को तथ्यों में अलग करती है, जिसमें किसी व्यवसाय के बारे में मापने योग्य, मात्रात्मक डेटा और आयाम होते हैं जो तथ्य डेटा से संबंधित वर्णनात्मक गुण होते हैं। तथ्य डेटा के उदाहरणों में बिक्री मूल्य, बिक्री मात्रा और समय, दूरी, गति और वजन माप सम्मिलित हैं। संबंधित आयाम विशेषता उदाहरणों में उत्पाद मॉडल, उत्पाद रंग, उत्पाद आकार, भौगोलिक स्थान और विक्रेता के नाम सम्मिलित हैं।

स्टार स्कीमा जिसमें कई आयाम होते हैं, उसे कभी-कभी कनखजूरा स्कीमा कहा जाता है।[4] केवल कुछ विशेषताओं के आयाम होने के साथ-साथ कई तालिका में सम्मिलित होने वाले प्रश्नों में परिणामों को बनाए रखना आसान होता है और स्टार स्कीमा का उपयोग करना कम आसान बनाता है।

तथ्य तालिका

तथ्य तालिका किसी विशिष्ट घटना के लिए माप या मापन लेखाबद्ध करते हैं।

तथ्य तालिका में सामान्यतः संख्यात्मक मान होते हैं, और आयामी डेटा के लिए विदेशी कुंजियाँ होती हैं जहाँ वर्णनात्मक जानकारी रखी जाती है।[4] तथ्य तालिका को निम्न स्तर के समान विवरण के लिए डिज़ाइन किया गया है (जिसे कणिकता या ग्रेन कहा जाता है), जिसका अर्थ है कि तथ्य बहुत ही परमाणु स्तर पर घटनाओं को लेखाबद्ध कर सकते हैं। इसके परिणामस्वरूप समय के साथ तथ्य तालिका में बड़ी संख्या में लेखाबद्ध जमा हो सकते हैं। तथ्य तालिका को तीन प्रकारों में से के रूप में परिभाषित किया गया है:

  • लेन-देन तथ्य तालिकाएँ विशिष्ट घटना (जैसे, बिक्री घटनाएँ) के बारे में तथ्य लेखाबद्ध करती हैं।
  • स्नैपशॉट तथ्य तालिकाएँ निश्चित समय (उदाहरण के लिए, महीने के अंत में खाता विवरण) पर तथ्यों को लेखाबद्ध करती हैं।
  • संकलित स्नैपशॉट तालिकाएँ निश्चित समय (उदाहरण के लिए, किसी उत्पाद के लिए कुल माह-दर-तारीख बिक्री) पर कुल तथ्यों को लेखाबद्ध करती हैं।

प्रत्येक पंक्ति को विशिष्ट रूप से पहचाना जा सकता है यह सुनिश्चित करने के लिए तथ्य तालिकाओं को सामान्यतः प्रतिनिधि कुंजी सौंपी जाती है।

यह कुंजी साधारण प्राथमिक कुंजी है।

आयाम तालिका

तथ्य तालिकाओं की तुलना में आयाम तालिकाओं में सामान्यतः अपेक्षाकृत कम संख्या में लेखाबद्ध होते हैं, लेकिन तथ्य डेटा का वर्णन करने के लिए प्रत्येक लेखाबद्ध में बहुत बड़ी संख्या में विशेषताएँ हो सकती हैं। आयाम कई प्रकार की विशेषताओं को परिभाषित कर सकते हैं, लेकिन आयाम तालिकाओं द्वारा परिभाषित कुछ सबसे सामान्य विशेषताओं में सम्मिलित हैं:

  • समय आयाम तालिका समय कणिकता के निम्नतम स्तर पर समय का वर्णन करते हैं जिसके लिए स्टार स्कीमा में कार्यक्रम लेखाबद्ध किए जाते हैं
  • भूगोल आयाम तालिकाएँ देश, राज्य या शहर जैसे स्थान डेटा का वर्णन करती हैं
  • उत्पाद आयाम तालिकाएँ उत्पादों का वर्णन करती हैं
  • कर्मचारी आयाम तालिकाएँ कर्मचारियों का वर्णन करती हैं, जैसे बिक्री करने वाले लोग
  • सीमा आयाम तालिका रिपोर्टिंग को आसान बनाने के लिए समय की सीमा, डॉलर मान या अन्य मापने योग्य मात्रा का वर्णन करते हैं

आयाम तालिकाओं को सामान्यतः प्रतिनिधि कुंजी दी जाती है, सामान्यतः एकल-स्तंभ पूर्णांक डेटा प्रकार, प्राकृतिक कुंजी बनाने वाले आयाम विशेषताओं के संयोजन के लिए मैप किया जाता है।

लाभ

स्टार स्कीमा डेटाबेस सामान्यीकरण हैं, जिसका अर्थ है कि लेनदेन संबंधपरक डेटाबेस पर प्रायुक्त सामान्यीकरण के सामान्य नियम स्टार-स्कीमा डिज़ाइन और कार्यान्वयन के समय आराम कर रहे हैं। स्टार-स्कीमा विसामान्यीकरण के लाभ हैं:

  • सरल प्रश्न - स्टार-स्कीमा संयुक्त-तर्क सामान्यतः अत्यधिक सामान्यीकृत लेनदेन स्कीमा से डेटा पुनर्प्राप्त करने के लिए आवश्यक संयुक्त तर्क से सरल होता है।
  • सरलीकृत व्यापार रिपोर्टिंग तर्क - अत्यधिक सामान्यीकृत स्कीमाओं की तुलना में, स्टार स्कीमा सामान्य व्यापार रिपोर्टिंग तर्क को सरल बनाता है, जैसे अवधि-दर-अवधि और रिपोर्टिंग के रूप में।
  • क्वेरी प्रदर्शन लाभ - अत्यधिक डेटाबेस सामान्यीकरण स्कीमा की तुलना में स्टार स्कीमा रीड-ओनली रिपोर्टिंग अनुप्रयोगों के लिए प्रदर्शन संवर्द्धन प्रदान कर सकते हैं।
  • तेज़ एकत्रीकरण - स्टार स्कीमा के विरुद्ध सरल प्रश्नों के परिणामस्वरूप एकत्रीकरण संचालन के लिए बेहतर प्रदर्शन हो सकता है।
  • फीडिंग क्यूब्स - स्वामित्व ओलाप क्यूब्स को कुशलतापूर्वक बनाने के लिए सभी ऑनलाइन विश्लेषणात्मक प्रसंस्करण प्रणालियों द्वारा स्टार स्कीमा का उपयोग किया जाता है; वास्तविक में, अधिकांश प्रमुख ओलाप प्रणालियाँ ऑपरेशन का रोलप मोड प्रदान करती हैं जो स्वामित्व घन संरचना के निर्माण के बिना स्टार स्कीमा को सीधे स्रोत के रूप में उपयोग कर सकती हैं।

हानि

स्टार स्कीमा का मुख्य हानि यह है कि यह विश्लेषणात्मक आवश्यकताओं के मामले में सामान्यीकृत डेटा मॉडल के रूप में लचीला नहीं है।[citation needed] सामान्यीकृत मॉडल किसी भी प्रकार की विश्लेषणात्मक क्वेरी को तब तक निष्पादित करने की अनुमति देते हैं, जब तक यह मॉडल में परिभाषित व्यावसायिक तर्क का पालन करती है। स्टार स्कीमा डेटा के विशेष दृश्य के लिए अधिक उद्देश्य से निर्मित होते हैं, इस प्रकार वास्तव में अधिक जटिल विश्लेषण की अनुमति नहीं देते हैं।[citation needed] स्टार स्कीमा व्यावसायिक संस्थाओं के बीच अनेक संबंधों का आसानी से समर्थन नहीं करते हैं। सामान्यतः सरल आयामी मॉडल के अनुरूप होने के लिए इन संबंधों को स्टार स्कीमा में सरलीकृत किया जाता है।

और हानि यह है कि इसकी असामान्य स्थिति के कारण डेटा अखंडता अच्छी तरह से प्रायुक्त नहीं होती है।[citation needed] एक-बार आवेषण और अद्यतन के परिणामस्वरूप डेटा विसंगतियाँ हो सकती हैं, जिनसे बचने के लिए डेटाबेस सामान्यीकरण स्कीमा डिज़ाइन किए गए हैं। सामान्यतया, डेटाबेस सामान्यीकरण द्वारा वहन की जाने वाली सुरक्षा की कमी की भरपाई करने के लिए, स्टार स्कीमा को बैच प्रोसेसिंग के माध्यम से या रीयल-समय ट्रिकल फीड के पास अत्यधिक नियंत्रित तरीके से लोड किया जाता है।

उदाहरण

उदाहरण क्वेरी द्वारा प्रयुक्त स्टार स्कीमा।

बिक्री के डेटाबेस पर विचार करें, शायद स्टोर श्रृंखला से, जिसे दिनांक, स्टोर और उत्पाद द्वारा वर्गीकृत किया गया है। दाईं ओर स्कीमा की छवि स्नोफ्लेक स्कीमा लेख में प्रदान किए गए मानक स्कीमा का स्टार स्कीमा संस्करण है।

Fact_Sales तथ्य तालिका है और Dim_Date, Dim_Store और Dim_Product तीन आयाम तालिका हैं।

Fact_Sales तालिका की तीन-स्तंभ (यौगिक) प्राथमिक कुंजी (Date_Id, Store_Id, Product_Id) के स्तंभों में से एक (उदाहरण स्कीमा में पंक्तियों के रूप में देखा गया) से संबंधित प्रत्येक आयाम तालिका में उसके Id स्तंभ पर एक प्राथमिक कुंजी होती है। इस उदाहरण में तथ्य तालिका का गैर-प्राथमिक कुंजी Units_Sold स्तंभ एक माप या मीट्रिक का प्रतिनिधित्व करता है जिसका उपयोग गणना और विश्लेषण में किया जा सकता है। आयाम तालिका के गैर-प्राथमिक कुंजी स्तंभ आयामों की अतिरिक्त विशेषताओं का प्रतिनिधित्व करते हैं (जैसे कि Year की Dim_Date आयाम)।

उदाहरण के लिए, निम्न क्वेरी उत्तर देती है कि 1997 में प्रत्येक ब्रांड और देश के लिए कितने टीवी सेट बेचे गए:

SELECT
	P.Brand,
	S.Country AS Countries,
	SUM(F.Units_Sold)

FROM Fact_Sales F
INNER JOIN Dim_Date D    ON (F.Date_Id = D.Id)
INNER JOIN Dim_Store S   ON (F.Store_Id = S.Id)
INNER JOIN Dim_Product P ON (F.Product_Id = P.Id)

WHERE D.Year = 1997 AND  P.Product_Category = 'tv'

GROUP BY
	P.Brand,
	S.Country

यह भी देखें

संदर्भ

  1. Dedić, N. and Stanier C., 2016., "An Evaluation of the Challenges of Multilingualism in Data Warehouse Development" in 18th International Conference on Enterprise Information Systems - ICEIS 2016, p. 196.
  2. DWH Schemas, 2009, archived from the original on 16 July 2010
  3. ", p. 708
  4. 4.0 4.1 Ralph Kimball and Margy Ross, The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling (Second Edition), p. 393


बाहरी संबंध