C0-सेमीग्रुप: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 23: Line 23:


== '''समान रूप से निरंतर अर्धसमूह''' ==
== '''समान रूप से निरंतर अर्धसमूह''' ==
एक समान रूप से निरंतर अर्धसमूह एक दृढ़ता से निरंतर अर्धसमूह टी है जैसे कि
एक समान रूप से निरंतर अर्धसमूह एक दृढ़ता से निरंतर अर्धसमूह टी है, जैसे कि


:<math> \lim_{t \to 0^+} \| T(t) - I \| = 0 </math>
:<math> \lim_{t \to 0^+} \| T(t) - I \| = 0 </math>
रखती है। इस स्थिति में T का अत्यल्प डायनमो  A परिबद्ध है और हमारे पास है
रखती है। इस स्थिति में T का अति अल्प डायनमो  A परिबद्ध है और हमारे पास


:<math> \mathcal{D}(A)=X </math>
:<math> \mathcal{D}(A)=X </math>
Line 39: Line 39:
:<math> T(t) := e^{At}</math>.
:<math> T(t) := e^{At}</math>.


इस प्रकार एक रैखिक अर्धसमूह संकारक A एक समान रूप से निरंतर अर्धसमूह का अतिसूक्ष्म  है यदि और केवल यदि A एक परिबद्ध रैखिक संचालिका है।<ref>{{citation |last=Pazy |first=A. |title=Semigroups of Linear Operators and Applications to Partial Differential Equations |page=2 |publisher=Springer-Verlag |location=New York |year=1983 |isbn=0-387-90845-5 }}</ref> यदि X एक परिमित-आयामी बैनच स्थान है, तो कोई भी दृढ़ता से निरंतर अर्धसमूह एक समान रूप से निरंतर अर्धसमूह है। एक दृढ़ता से निरंतर अर्धसमूह के लिए जो एक समान रूप से निरंतर अर्धसमूह नहीं है और अत्यल्प A बाध्य नहीं है। इस  में <math>e^{At}</math> जुटने की आवश्यकता नहीं है।
इस प्रकार एक रैखिक अर्धसमूह संकारक A एक समान रूप से निरंतर अर्धसमूह का अतिसूक्ष्म  है। यदि और केवल यदि A एक परिबद्ध रैखिक ऑपरेटर है।<ref>{{citation |last=Pazy |first=A. |title=Semigroups of Linear Operators and Applications to Partial Differential Equations |page=2 |publisher=Springer-Verlag |location=New York |year=1983 |isbn=0-387-90845-5 }}</ref> यदि X एक परिमित-आयामी बनच स्थान है, तो कोई भी दृढ़ता से निरंतर अर्धसमूह एक समान रूप से निरंतर अर्धसमूह है। एक दृढ़ता से निरंतर अर्धसमूह के लिए जो एक समान रूप से निरंतर अर्धसमूह नहीं है, अत्यल्प जनरेटर A बाध्य नहीं है। इस  में <math>e^{At}</math> जुटने की आवश्यकता नहीं है।


== '''उदाहरण''' ==
== '''उदाहरण''' ==
Line 131: Line 131:
# एक p ∈ [1, ∞) स्थित है जैसे कि सभी x∈X के लिए: <math>\int_0^\infty\|T(t)x\|^p\,dt<\infty</math>,
# एक p ∈ [1, ∞) स्थित है जैसे कि सभी x∈X के लिए: <math>\int_0^\infty\|T(t)x\|^p\,dt<\infty</math>,
#सभी p ∈ [1, ∞) और सभी x∈ X के लिए: <math>\int_0^\infty\|T(t)x\|^p\,dt<\infty.</math>
#सभी p ∈ [1, ∞) और सभी x∈ X के लिए: <math>\int_0^\infty\|T(t)x\|^p\,dt<\infty.</math>
एक अर्धसमूह जो इन समतुल्य शर्तों को पूरा करता है, उसे घातीय रूप से स्थिर या समान रूप से स्थिर कहा जाता है (उपरोक्त कथनों में से पहले तीन में से किसी एक को साहित्य के कुछ हिस्सों में परिभाषा के रूप में लिया जाता है)। वह '' एल<sup>p</sup> स्थितियाँ चरघातांकी स्थिरता के समतुल्य होती हैं जिसे 'डाटको-पाज़ी प्रमेय' कहा जाता है।
एक अर्धसमूह जो इन समतुल्य शर्तों को पूरा करता है, उसे घातीय रूप से स्थिर या समान रूप से स्थिर कहा जाता है (उपरोक्त कथनों में से पहले तीन में से किसी एक को साहित्य के कुछ हिस्सों में परिभाषा के रूप में प्रयोग किया जाता है)। वह एल<sup>पी</sup> स्थितियाँ चरघातांकी स्थिरता के समतुल्य होती हैं। जिसे 'डाटको-पाज़ी प्रमेय' कहा जाता है।


यदि X एक [[हिल्बर्ट अंतरिक्ष]] है, तो एक और स्थिति है जो अर्धसमूह के [[विलायक ऑपरेटर|विलायक अर्धचालक]] के संदर्भ में घातीय स्थिरता के बराबर है:<ref>Engel and Nagel Theorem V.1.11</ref> सकारात्मक वास्तविक भाग वाले सभी λ A के रिज़ॉल्वेंट सेट से संबंधित हैं और रिज़ॉल्वेंट संचालक समान रूप से दाहिने आधे विमान पर बंधा हुआ है, यानी (λI − A)<sup>−1</sup> [[हार्डी स्पेस]] से संबंधित है <math>H^\infty(\mathbb{C}_+;L(X))</math>. इसे गियरहार्ट-प्रस प्रमेय कहा जाता है।
यदि X एक [[हिल्बर्ट अंतरिक्ष]] है, तो एक और स्थिति है, जो अर्धसमूह के [[विलायक ऑपरेटर|विलायक अर्धचालक]] के संदर्भ में घातीय स्थिरता के बराबर है:<ref>Engel and Nagel Theorem V.1.11</ref> धनात्मक वास्तविक भाग वाले सभी λ A के रिज़ॉल्वेंट सेट से संबंधित हैं और रिज़ॉल्वेंट(विश्लेषक) संचालक समान रूप से दायीं आधी सतह पर बंधा हुआ है, अर्थात (λI − A)<sup>−1</sup> [[हार्डी स्पेस]] से संबंधित है <math>H^\infty(\mathbb{C}_+;L(X))</math>इसे गियरहार्ट-प्रस प्रमेय कहा जाता है।


एक ऑपरेटर 'ए' की वर्णक्रमीय सीमा स्थिर है
एक ऑपरेटर 'ए' की वर्णक्रम की सीमा स्थिर है
:<math>s(A):=\sup\{{\rm Re}\,\lambda:\lambda\in\sigma(A)\}</math>,
:<math>s(A):=\sup\{{\rm Re}\,\lambda:\lambda\in\sigma(A)\}</math>,
इस परंपरा के साथ कि s(A) = −∞ अगर A का [[स्पेक्ट्रम]] खाली है।
इस स्थिति के साथ कि s(A) = −∞ अगर A का [[स्पेक्ट्रम]] बिल्कुल रिक्त है।


एक अर्धसमूह की वृद्धि और उसके डायनमो की वर्णक्रमीय सीमा से संबंधित हैं:<ref>Engel and Nagel Proposition IV2.2</ref> एस (ए) ≤ω<sub>0</sub>(टी)। उदाहरण हैं<ref>Engel and Nagel Section IV.2.7, Luo et al. Example 3.6</ref> जहां एस(ए) < ω<sub>0</sub>(टी)। यदि s(A) = ω<sub>0</sub>(टी), तो टी को 'वर्णक्रमीय निर्धारित विकास की स्थिति' को संतुष्ट करने के लिए कहा जाता है। अंततः मानक-निरंतर अर्धसमूह वर्णक्रमीय निर्धारित वृद्धि की स्थिति को संतुष्ट करते हैं।<ref>Engel and Nagel Corollary 4.3.11</ref> यह इन सेमीग्रुप्स के लिए घातीय स्थिरता का एक और समकक्ष विशेषता देता है:
एक अर्धसमूह की वृद्धि और उसके डायनमो की वर्णक्रमीय सीमा से संबंधित हैं:<ref>Engel and Nagel Proposition IV2.2</ref> एस (ए) ≤ω<sub>0</sub>(टी)। उदाहरण हैं<ref>Engel and Nagel Section IV.2.7, Luo et al. Example 3.6</ref> जहां एस(ए) < ω<sub>0</sub>(टी)। यदि s(A) = ω<sub>0</sub>(टी), तो टी को 'वर्णक्रमीय निर्धारित विकास की स्थिति' को संतुष्ट करने के लिए कहा जाता है। अंततः मानक-निरंतर अर्धसमूह वर्णक्रमीय निर्धारित वृद्धि की स्थिति को संतुष्ट करते हैं।<ref>Engel and Nagel Corollary 4.3.11</ref> यह इन सेमीग्रुप्स के लिए घातीय स्थिरता का एक और समकक्ष विशेषता देता है:
*अंततः मानक-निरंतर अर्धसमूह चरघातांकी रूप से स्थिर होता है यदि और केवल यदि s(A) < 0।
*अंततः मानक-निरंतर अर्धसमूह चरघातांकी रूप से स्थिर होता है, यदि और केवल यदि s(A) < 0।
ध्यान दें कि अंततः कॉम्पैक्ट, अंततः अलग-अलग, विश्लेषणात्मक और समान रूप से निरंतर सेमिग्रुप अंततः मानक-निरंतर होते हैं ताकि वर्णक्रमीय निर्धारित विकास की स्थिति विशेष रूप से उन सेमीग्रुप के लिए हो।
ध्यान दें कि अंततः कॉम्पैक्ट, अंततः अलग-अलग, विश्लेषणात्मक और समान रूप से निरंतर सेमीग्रुप अंततः मानक-निरंतर होते हैं, क्योंकि वर्णक्रमीय निर्धारित विकास की स्थिति विशेष रूप से उन सेमीग्रुप के लिए हो।


=== मजबूत स्थिरता ===
=== मजबूत स्थिरता ===
यदि सभी x ∈ X के लिए एक अत्यधिक निरंतर अर्धसमूह T को 'दृढ़ता से स्थिर' या 'असामयिक रूप से स्थिर' कहा जाता है: <math>\lim_{t\to\infty}\|T(t)x\|=0</math>.
यदि सभी x ∈ X के लिए एक अत्यधिक निरंतर अर्धसमूह T को 'दृढ़ता से स्थिर' या 'असामयिक रूप से स्थिर' कहा जाता है: <math>\lim_{t\to\infty}\|T(t)x\|=0</math>.


घातीय स्थिरता का तात्पर्य मजबूत स्थिरता से है, लेकिन अगर एक्स अनंत-आयामी है (यह एक्स परिमित-आयामी के लिए सच है) तो इसका विलोम सामान्यतः सच नहीं है।
घातीय स्थिरता का अर्थ मजबूत स्थिरता से है, लेकिन सामान्यतः यदि एक्स अनंत-आयामी है (यह एक्स परिमित-आयामी के लिए सही है) तो इसका उल्टा सामान्यतः सच नहीं है।


मजबूत स्थिरता के लिए निम्नलिखित पर्याप्त स्थिति को 'अरेंड्ट-बैट्टी-ल्यूबिच-फोंग प्रमेय' कहा जाता है:<ref name="Arendt and Batty">{{ citation | last1=Arendt| first1=Wolfgang| last2=Batty| first2=Charles| title=Tauberian theorems and stability of one-parameter semigroups | year=1988| journal=Transactions of the American Mathematical Society |volume=306 |issue= 2|pages=837–852 |doi=10.1090/S0002-9947-1988-0933321-3 | doi-access=free}}</ref><ref name="Lyubich and Phong">{{ citation | last1=Lyubich| first1=Yu| last2=Phong| first2=Vu Quoc| title=Asymptotic stability of linear differential equations in Banach spaces | year=1988| journal=Studia Mathematica |volume=88 |issue=1 |pages=37–42 | doi=10.4064/sm-88-1-37-42| doi-access=free}}</ref> मान लो की
मजबूत स्थिरता के लिए निम्नलिखित पर्याप्त स्थिति को 'अरेंड्ट-बैट्टी-ल्यूबिच-फोंग प्रमेय' कहा जाता है: माना की
# T घिरा हुआ है: एक M ≥ 1 ऐसा मौजूद है <math>\|T(t)\|\leq M</math>,
# T घिरा हुआ है: एक M ≥ 1 ऐसा मौजूद है <math>\|T(t)\|\leq M</math>,
# ए में काल्पनिक अक्ष पर [[अवशिष्ट स्पेक्ट्रम]] नहीं है, और
# ए में काल्पनिक अक्ष पर [[अवशिष्ट स्पेक्ट्रम]] नहीं है, और
Line 154: Line 154:
तब T दृढ़ता से स्थिर है।
तब T दृढ़ता से स्थिर है।


यदि एक्स रिफ्लेक्सिव है तो स्थितियां सरल हो जाती हैं: यदि टी बाध्य है और डायनमो ए में काल्पनिक धुरी पर कोई ईजेनवैल्यू नहीं है और काल्पनिक धुरी पर स्थित ए के स्पेक्ट्रम की गणना की जा सकती है। तो टी दृढ़ता से स्थिर है।
यदि एक्स बाध्य है। तो स्थितियां सरल हो जाती हैं: यदि टी बाध्य है और डायनमो ए में काल्पनिक धुरी पर कोई ईजेनवैल्यू नहीं है और काल्पनिक धुरी पर स्थित ए के स्पेक्ट्रम की गणना की जा सकती है। तो टी दृढ़ता से स्थिर है।


== यह भी देखें ==
{{Div col|colwidth=20em}}
{{Div col|colwidth=20em}}
* हिल-योसिडा प्रमेय
* हिल-योसिडा प्रमेय
Line 164: Line 163:
* [[संकुचन अर्धसमूह]]
* [[संकुचन अर्धसमूह]]
* मैट्रिक्स एक्सपोनेंशियल
* मैट्रिक्स एक्सपोनेंशियल
* [[ऑपरेटरों का मजबूत निरंतर परिवार]]
* [[संचालकों का मजबूत निरंतर परिवार]]
* [[सार अंतर समीकरण]]
* [[सार अंतर समीकरण]]
{{Div col end}}
{{Div col end}}
== यह भी देखें ==





Revision as of 00:19, 25 December 2022


गणित में एक सीओ-अर्थसमूह घातांक प्रकार्य का सामान्यीकरण है, जिसे दृढ़ता से निरंतर एक-परिधि अर्थसमूह के रूप में भी जाना जाता है। जैसे घातांक प्रकार्य रैखिक निरंतर गुणांक सामान्य अंतर समीकरणों के समाधान प्रदान करते हैं और निश्चित रूप से निरंतर सेमीग्रुप बनच रिक्त स्थान में रैखिक निरंतर गुणांक साधारण अंतर समीकरणों के समाधान प्रदान करते हैं। बनच स्थानों में इस तरह के अंतर समीकरण उदाहरण से उत्पन्न होते हैं, जैसे कि विलंब अवकल समीकरण और आंशिक अवकल समीकरण।

औपचारिक रूप से निरंतर अर्धसमूह सेमीग्रुप (आर+,+) कुछ बनच रिक्त स्थान एक्स पर, जो मजबूत संचालक सीन विज्ञान में निरंतर कार्यरत है। इस प्रकार कठोरता से बोलना एक दृढ़ता से निरंतर अर्धसमूह एक अर्धसमूह नहीं है, बल्कि एक विशेष अर्धसमूह का निरंतर प्रतिनिधित्व है।

औपचारिक परिभाषा

बनच स्थान पर एक दृढ़ता से निरंतर अर्धसमूह एक प्रारूप है जो ऐसा है कि

  1. ,   (पहचान संचालक पर)
  2. , जैसा .

पहले दो स्वयंसिद्ध बीजगणितीय हैं और यह बताया गया है कि अर्धसमूह का प्रतिनिधित्व है और अंतिम है और बताता है कि मजबूत संचालक सीन विज्ञान में निरंतरता है।

अनंत डायनमो

सी ओ सेमीग्रुप में एक अनंत डायनमो को निश्चित रूप से निरंतर डायनमो द्वारा परिभाषित किया गया है:

A, D(A) का प्रांत x∈X का समुच्चय है और जिसके लिए यह सीमा स्थित है; डी (ए) एक रैखिक उपसमष्टि है और ए इस पर रैखिक कार्यक्षेत्र है।[1]बंद संचालक है, चूंकि आवश्यक रूप से बाध्य नहीं है और कार्यक्षेत्र एक्स में सघन है।[2] ए के साथ दृढ़ता से निरंतर अर्धसमूह टी को अधिकांशतः प्रतीक द्वारा दर्शाया जाता है (या समकक्ष ). यह संकेतन मैट्रिक्स घातीय के लिए और कार्यात्मक कलन (उदाहरण के लिए वर्णक्रमीय प्रमेय के माध्यम से) के माध्यम से परिभाषित एक के कार्यों के लिए संगत है।

समान रूप से निरंतर अर्धसमूह

एक समान रूप से निरंतर अर्धसमूह एक दृढ़ता से निरंतर अर्धसमूह टी है, जैसे कि

रखती है। इस स्थिति में T का अति अल्प डायनमो A परिबद्ध है और हमारे पास

तथा

इसके विपरीत कोई बाध्य संचालक

द्वारा दिए गए समान रूप से निरंतर अर्धसमूह का अतिसूक्ष्म है

.

इस प्रकार एक रैखिक अर्धसमूह संकारक A एक समान रूप से निरंतर अर्धसमूह का अतिसूक्ष्म है। यदि और केवल यदि A एक परिबद्ध रैखिक ऑपरेटर है।[3] यदि X एक परिमित-आयामी बनच स्थान है, तो कोई भी दृढ़ता से निरंतर अर्धसमूह एक समान रूप से निरंतर अर्धसमूह है। एक दृढ़ता से निरंतर अर्धसमूह के लिए जो एक समान रूप से निरंतर अर्धसमूह नहीं है, अत्यल्प जनरेटर A बाध्य नहीं है। इस में जुटने की आवश्यकता नहीं है।

उदाहरण

गुणन अर्धसमूह

बनच स्थान पर विचार करें अधिमान से संपन्न . होने देना के साथ एक सतत कार्य करें . परिचालक कार्यक्षेत्र के साथ एक बंद सघन रूप से परिभाषित अर्धसमूह है और गुणन कार्यक्षेत्र अर्धसमूह उत्पन्न करता है कहाँ पे गुणन संचालकों को विकर्ण मैट्रिक्स के अनंत आयामी सामान्यीकरण और बहुत सारे गुणों के रूप में देखा जा सकता है, के गुणों से प्राप्त किया जा सकता है . उदाहरण के लिए पर आबद्ध है और केवल घिरा है।[4]


अनुवाद सेमीग्रुप

अधिमान से संपन्न बंधी हुई जगह हो, जो एक समान निरंतरता कार्य करती है । (बाएं) अनुवाद अर्धसमूह द्वारा दिया गया है .

इसका जनक व्युत्पन्न है के साथ .[5]


सार कॉची समस्याएं

सार कॉची समस्या पर विचार करें:

जहां ए बनच रिक्त एक्स कार्यक्षेत्र और x∈X पर एक बंद है। इस समस्या के समाधान की दो अवधारणाएँ हैं:

  • एक सतत अवकलनीय फलन u:[0,∞)→X को कॉची समस्या का 'मौलिक समाधान' कहा जाता है यदि u(t) ∈ D(A) सभी t > 0 के लिए और यह प्रारंभिक मूल्य समस्या को संतुष्ट करता है,
  • एक सतत फलन u:[0,∞) → X को कॉची समस्या का 'हल्का समाधान' कहा जाता है यदि

एक हल्का समाधान एक मौलिक समाधान है और अगर यह लगातार भिन्न होता है।[6] निम्नलिखित प्रमेय सार कॉची समस्याओं और दृढ़ता से निरंतर अर्धसमूहों को जोड़ता है।

प्रमेय[7]बता दें कि 'ए' एक बैनच 'एक्स' पर एक बंद ऑपरेटर है। निम्नलिखित दावे समतुल्य हैं:

  1. सभी xX के लिए सार कॉची समस्या का एक अनूठा हल्का समाधान मौजूद है,
  2. ऑपरेटर 'ए' एक जोरदार निरंतर अर्धसमूह उत्पन्न करता है,
  3. A का विलायक सेट खाली नहीं है और सभी xD(A) के लिए कॉची समस्या का एक अनूठा मौलिक समाधान मौजूद है।

जब ये दावे मान्य होते हैं तो कॉची समस्या का समाधान u(t) = T(t)x के साथ T द्वारा दिया जाता है 'ए' द्वारा उत्पन्न दृढ़ता से निरंतर अर्धसमूह।

पीढ़ी प्रमेय

कॉची समस्याओं के संबंध में सामान्यतः पर एक रैखिक संकारक A दिया जाता है और प्रश्न यह है कि क्या यह एक प्रबल सतत अर्धसमूह का जनक है। प्रमेय जो इस प्रश्न का उत्तर देते हैं उन्हें 'पीढ़ी प्रमेय' कहा जाता है। हिले-योसिडा प्रमेय द्वारा दृढ़ता से निरंतर अर्धसमूह उत्पन्न करने वाले का एक पूर्ण लक्षण वर्णन दिया गया है। चूंकि अधिक व्यावहारिक महत्व लुमर-फिलिप्स प्रमेय द्वारा दी गई शर्तों को सत्यापित करना बहुत आसान है।

सेमीग्रुप्स की विशेष कक्षाएं

समान रूप से निरंतर अर्धसमूह

दृढ़ता से निरंतर अर्धसमूह टी को 'समान रूप से निरंतर' कहा जाता है यदि प्रारूप टी → टी (टी) (0, ∞) से एल (एक्स) तक निरंतर है।

समान रूप से निरंतर अर्धसमूह का डायनमो एक परिबद्ध संचालक है।

विश्लेषणात्मक अर्धसमूह


संकुचन अर्धसमूह


अलग-अलग अर्धसमूह

एक दृढ़ता से निरंतर अर्धसमूह टी को 'अंततः अलग-अलग' कहा जाता है यदि डायनमो उपस्थित है तो t0 > 0, ऐसा है कि T(t0)XD(A) (समतुल्य: T(t)XD(A) सभी के लिए t ≥ t0) और T 'नियमित अवकलनीय' है यदि T(t)X ⊂ D(A) सभी के लिए t > 0.

हर विश्लेषणात्मक अर्धसमूह तुरंत अलग-अलग होता है।

कॉची समस्याओं के संदर्भ में एक समतुल्य विशेषता निम्नलिखित है: ए द्वारा उत्पन्न दृढ़ता से निरंतर अर्धसमूह अंततः भिन्न होता है। यदि केवल तभी उपस्थित होता है t1 ≥ 0 ऐसा कि सभी के लिए x ∈ X अमूर्त कौशी समस्या का समाधान u अवकलनीय है (t1, ∞). यदि टी हो तो तुरंत भिन्न होता है, तो शून्य चुना जा सकता है।

कॉम्पैक्ट सेमीग्रुप्स

एक दृढ़ता से निरंतर सेमीग्रुप टी को 'अंततः कॉम्पैक्ट' कहा जाता है। यदि कोई टी मौजूद है0> 0 ऐसा कि टी(टी0) एक कॉम्पैक्ट संचालक है (समकक्ष[8] अगर टी(टी) सभी टी ≥ टी के लिए एक कॉम्पैक्ट संचालक है0)। यदि T(t) सभी t > 0 के लिए एक कॉम्पैक्ट संचालक है, तो अर्धसमूह को तुरंत कॉम्पैक्ट कहा जाता है।

सामान्य निरंतर अर्धसमूह

यदि एक 'टी' मौजूद है तो एक दृढ़ता से निरंतर अर्धसमूह को अंततः आदर्श निरंतर कहा जाता है0≥ 0 ऐसा कि नक्शा t → T(t) से निरंतर है (टी0, ∞) से एल(एक्स)। अर्धसमूह को 'तत्काल मानक निरंतर' कहा जाता है। यदि टी0 शून्य चुना जा सकता है।

ध्यान दें कि निरन्तर मानक निरंतर अर्धसमूह के लिए मैप t→ T(t) t = 0 में निरंतर नहीं हो सकता है (जो अर्धंसमूह को समान रूप से निरंतर बना देगा)।

विश्लेषणात्मक सेमीग्रुप्स, (अंततः) अवकलनीय अर्धसमूहों और (अंततः) कॉम्पैक्ट अर्धसमूहों सभी अंततः मानक निरंतर हैं।[9]


स्थिरता

घातीय स्थिरता

अर्धसमूह T का विकास स्थिरांक है

इसे इसलिए कहा जाता है क्योंकि यह संख्या सभी वास्तविक संख्याओं ω से भी कम उपस्थित होती हैं। जैसे कि एक स्थिरांक M (≥ 1) होता है

सभी टी ≥ 0 के लिए।

निम्नलिखित समतुल्य हैं:[10]

  1. स्थित M,ω>0 ऐसा है कि सभी t ≥ 0 के लिए:
  2. विकास की सीमा ऋणात्मक है: ω0<0,
  3. सेमीग्रुप वर्दी संचालक घातीय प्रकार्य में शून्य में परिवर्तित हो जाता है: ,
  4. वहाँ एक टी मौजूद है0> 0 ऐसा कि ,
  5. वहाँ एक टी मौजूद है1> 0 ऐसा है कि T(t1) 1 से बिल्कुल छोटा है,
  6. एक p ∈ [1, ∞) स्थित है जैसे कि सभी x∈X के लिए: ,
  7. सभी p ∈ [1, ∞) और सभी x∈ X के लिए:

एक अर्धसमूह जो इन समतुल्य शर्तों को पूरा करता है, उसे घातीय रूप से स्थिर या समान रूप से स्थिर कहा जाता है (उपरोक्त कथनों में से पहले तीन में से किसी एक को साहित्य के कुछ हिस्सों में परिभाषा के रूप में प्रयोग किया जाता है)। वह एलपी स्थितियाँ चरघातांकी स्थिरता के समतुल्य होती हैं। जिसे 'डाटको-पाज़ी प्रमेय' कहा जाता है।

यदि X एक हिल्बर्ट अंतरिक्ष है, तो एक और स्थिति है, जो अर्धसमूह के विलायक अर्धचालक के संदर्भ में घातीय स्थिरता के बराबर है:[11] धनात्मक वास्तविक भाग वाले सभी λ A के रिज़ॉल्वेंट सेट से संबंधित हैं और रिज़ॉल्वेंट(विश्लेषक) संचालक समान रूप से दायीं आधी सतह पर बंधा हुआ है, अर्थात (λI − A)−1 हार्डी स्पेस से संबंधित है । इसे गियरहार्ट-प्रस प्रमेय कहा जाता है।

एक ऑपरेटर 'ए' की वर्णक्रम की सीमा स्थिर है

,

इस स्थिति के साथ कि s(A) = −∞ अगर A का स्पेक्ट्रम बिल्कुल रिक्त है।

एक अर्धसमूह की वृद्धि और उसके डायनमो की वर्णक्रमीय सीमा से संबंधित हैं:[12] एस (ए) ≤ω0(टी)। उदाहरण हैं[13] जहां एस(ए) < ω0(टी)। यदि s(A) = ω0(टी), तो टी को 'वर्णक्रमीय निर्धारित विकास की स्थिति' को संतुष्ट करने के लिए कहा जाता है। अंततः मानक-निरंतर अर्धसमूह वर्णक्रमीय निर्धारित वृद्धि की स्थिति को संतुष्ट करते हैं।[14] यह इन सेमीग्रुप्स के लिए घातीय स्थिरता का एक और समकक्ष विशेषता देता है:

  • अंततः मानक-निरंतर अर्धसमूह चरघातांकी रूप से स्थिर होता है, यदि और केवल यदि s(A) < 0।

ध्यान दें कि अंततः कॉम्पैक्ट, अंततः अलग-अलग, विश्लेषणात्मक और समान रूप से निरंतर सेमीग्रुप अंततः मानक-निरंतर होते हैं, क्योंकि वर्णक्रमीय निर्धारित विकास की स्थिति विशेष रूप से उन सेमीग्रुप के लिए हो।

मजबूत स्थिरता

यदि सभी x ∈ X के लिए एक अत्यधिक निरंतर अर्धसमूह T को 'दृढ़ता से स्थिर' या 'असामयिक रूप से स्थिर' कहा जाता है: .

घातीय स्थिरता का अर्थ मजबूत स्थिरता से है, लेकिन सामान्यतः यदि एक्स अनंत-आयामी है (यह एक्स परिमित-आयामी के लिए सही है) तो इसका उल्टा सामान्यतः सच नहीं है।

मजबूत स्थिरता के लिए निम्नलिखित पर्याप्त स्थिति को 'अरेंड्ट-बैट्टी-ल्यूबिच-फोंग प्रमेय' कहा जाता है: माना की

  1. T घिरा हुआ है: एक M ≥ 1 ऐसा मौजूद है ,
  2. ए में काल्पनिक अक्ष पर अवशिष्ट स्पेक्ट्रम नहीं है, और
  3. काल्पनिक अक्ष पर स्थित A का स्पेक्ट्रम गणनीय है।

तब T दृढ़ता से स्थिर है।

यदि एक्स बाध्य है। तो स्थितियां सरल हो जाती हैं: यदि टी बाध्य है और डायनमो ए में काल्पनिक धुरी पर कोई ईजेनवैल्यू नहीं है और काल्पनिक धुरी पर स्थित ए के स्पेक्ट्रम की गणना की जा सकती है। तो टी दृढ़ता से स्थिर है।

यह भी देखें

टिप्पणियाँ

  1. Partington (2004) page 23
  2. Partington (2004) page 24
  3. Pazy, A. (1983), Semigroups of Linear Operators and Applications to Partial Differential Equations, New York: Springer-Verlag, p. 2, ISBN 0-387-90845-5
  4. Klaus-Jochen Engel (2006), A short course on operator semigroups (in German), New York, N.Y.: Springer, pp. 20ff, ISBN 0-387-36619-9{{citation}}: CS1 maint: unrecognized language (link)
  5. Klaus-Jochen Engel (2006), A short course on operator semigroups (in German), New York, N.Y.: Springer, p. 51, ISBN 0-387-36619-9{{citation}}: CS1 maint: unrecognized language (link)
  6. Arendt et al. Proposition 3.1.2
  7. Arendt et al. Theorem 3.1.12
  8. Engel and Nagel Lemma II.4.22
  9. Engel and Nagel (diagram II.4.26)
  10. Engel and Nagel Section V.1.b
  11. Engel and Nagel Theorem V.1.11
  12. Engel and Nagel Proposition IV2.2
  13. Engel and Nagel Section IV.2.7, Luo et al. Example 3.6
  14. Engel and Nagel Corollary 4.3.11


संदर्भ

  • E Hille, R S Phillips: Functional Analysis and Semi-Groups. American Mathematical Society, 1975.
  • R F Curtain, H J Zwart: An introduction to infinite dimensional linear systems theory. Springer Verlag, 1995.
  • E.B. Davies: One-parameter semigroups (L.M.S. monographs), Academic Press, 1980, ISBN 0-12-206280-9.
  • Engel, Klaus-Jochen; Nagel, Rainer (2000), One-parameter semigroups for linear evolution equations, Springer
  • Arendt, Wolfgang; Batty, Charles; Hieber, Matthias; Neubrander, Frank (2001), Vector-valued Laplace Transforms and Cauchy Problems, Birkhauser
  • Staffans, Olof (2005), Well-posed linear systems, Cambridge University Press
  • Luo, Zheng-Hua; Guo, Bao-Zhu; Morgul, Omer (1999), Stability and Stabilization of Infinite Dimensional Systems with Applications, Springer
  • Partington, Jonathan R. (2004), Linear operators and linear systems, London Mathematical Society Student Texts, Cambridge University Press, ISBN 0-521-54619-2