मानक आधार: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 55: Line 55:
== यह भी देखें ==
== यह भी देखें ==
* [[ विहित इकाइयाँ ]]
* [[ विहित इकाइयाँ ]]
*{{section link|Examples of vector spaces|Generalized coordinate space}}
*{{section link|वेक्टर रिक्त स्थान के उदाहरण|सामान्यीकृत समन्वय स्थान}}
==संदर्भ==
==संदर्भ==
*{{cite book
*{{cite book

Revision as of 16:37, 11 January 2023

तीन आयामों में प्रत्येक वेक्टर मानक आधार वैक्टर i, j और k का एक रैखिक संयोजन है।

गणित में, एक समन्वय सदिश स्थान का मानक आधार (जिसे प्राकृतिक आधार या विहित आधार भी कहा जाता है) (जैसे या ) सदिशों का समुच्चय है जिसके सभी घटक शून्य हैं, सिवाय एक के जो 1 के बराबर है। उदाहरण के लिए,यूक्लिडियन विमान के मामले में जोड़ियों द्वारा गठित (x, y) वास्तविक संख्याओं का, मानक आधार सदिशों द्वारा बनता है

इसी प्रकार,त्रि-आयामी अंतरिक्ष के लिए मानक आधार वैक्टर द्वारा बनता है

यहां वेक्टर ex, x दिशा में इंगित करता है, वेक्टर ey y दिशा में इंगित करता है, और वेक्टर ez z दिशा में इंगित करता है। मानक-आधार सदिशों के लिए {ex, ey, ez}, {e1, e2, e3}, {i, j, k}, और {x, y, z} सहित कई सामान्य संकेत हैं।इकाई वेक्टर (मानक यूनिट वैक्टर) के रूप में उनकी स्थिति पर जोर देने के लिए एक सिकमफ़्लक्स के साथ लिखा जाता है।

ये सदिश इस अर्थ में एकआधार (रैखिक बीजगणित) हैं कि किसी भी अन्य सदिश को इनके रैखिक संयोजन के रूप में विशिष्ट रूप से व्यक्त किया जा सकता है। उदाहरण के लिए, त्रि-आयामी अंतरिक्ष में प्रत्येक वेक्टर वी को विशिष्ट रूप से लिखा जा सकता है:

अदिश (गणित) वेक्टर v के अदिश घटक होने के नाते होता है।

यहाँ पर n- आयाम (रैखिक बीजगणित) यूक्लिडियन स्थान , मानक आधार में n भिन्न सदिश होते हैं

जहाँ ei में 1 के साथ वेक्टर को दर्शाता है ith समन्वय और 0 कहीं और होता है।

मानक आधारों को अन्य वेक्टर रिक्त स्थान के लिए परिभाषित किया जा सकता है, जिनकी परिभाषा में बहुपद और मैट्रिक्स (गणित) जैसे गुणांक सम्मिलित हैं। दोनों ही मामलों में, मानक आधार में अंतरिक्ष के तत्व सम्मिलित होते हैं जैसे कि सभी गुणांक 0 होते हैं और शून्येतर (नॉन-ज़ीरो) वाले 1 होता है। बहुपदों के लिए, मानक आधार में एकपद होते हैं और इसे सामान्यतः मोनोमियल आधार कहा जाता है। आव्यूहों के लिए , मानक आधार में m×n-आव्यूहों सम्मिलित होते हैं, जिसमें केवल एक शून्येतर प्रविष्टि होती है, जो कि 1 है। उदाहरण के लिए, 2×2 आव्यूहों के लिए मानक आधार 4आव्यूहों द्वारा बनता है

गुण

परिभाषा के अनुसार, मानक आधार ओर्थोगोनल यूनिट वैक्टर का एक क्रम है। दूसरे शब्दों में, यह एक क्रमबद्ध आधार और ऑर्थोनॉर्मल आधार है।

हालांकि, एक आदेशित ऑर्थोनॉर्मल आधार जरूरी नहीं कि एक मानक आधार हो। उदाहरण के लिए, ऊपर वर्णित 2D मानक आधार के 30° रोटेशन का प्रतिनिधित्व करने वाले दो वैक्टर, यानी।

ऑर्थोगोनल यूनिट वैक्टर भी हैं, लेकिन वे कार्तीय समन्वय प्रणाली की कुल्हाड़ियों के साथ संरेखित नहीं हैं, इसलिए इन वैक्टर के साथ आधार मानक आधार की परिभाषा को पूरा नहीं करता है।

सामान्यीकरण

एकक्षेत्र (गणित) अर्थात् मोनोमियल्स पर n अनिश्चित में बहुपदों की वलय के लिए एक मानक आधार भी है।

पूर्ववर्ती सभी समूह के विशेष मामले हैं

जहाँ पे क्या कोई सेट है और क्रोनकर डेल्टा है, जब भी शून्य के बराबर ij और 1 के बराबर अगर i = j.

यह परिवार आर-मॉड्यूल (फ्री मॉड्यूल) का विहित आधार है

सभी समूहों की
I से एक वलय (गणित) R में, जो सूचकांकों की एक परिमित संख्या को छोड़कर शून्य हैं, यदि हम 1 को 1R के रूप में व्याख्या करते हैं, R में इकाई।

अन्य उपयोग

अन्य 'मानक' आधारों का अस्तित्वबीजगणितीय ज्यामिति में रुचि का विषय बन गया है, जिसकी शुरुआत डब्ल्यू.वी.डी. हॉज के 1943 में ग्रस्मान्नियंस पर किए गए कार्य से हुई है। यह अब प्रतिनिधित्व सिद्धांत का एक हिस्सा है जिसे मानक मोनोमियल सिद्धांत कहा जाता है। लाइ बीजगणित के सार्वभौमिक आवरण बीजगणित में मानक आधार का विचार पोंकारे-बिरखॉफ-विट प्रमेय द्वारा स्थापित किया गया है।

ग्रोबनेर आधार के सन्दर्भ में, ग्रोबनर आधारों को कभी-कभी मानक आधार भी कहा जाता है।

भौतिकी में, किसी दिए गए यूक्लिडियन स्थान के लिए मानक आधार वैक्टर को कभी-कभी संबंधित कार्टेशियन समन्वय प्रणाली के अक्षों के वर्सोर (भौतिकी) के रूप में संदर्भित किया जाता है।

यह भी देखें

संदर्भ

  • Ryan, Patrick J. (2000). Euclidean and non-Euclidean geometry: an analytical approach. Cambridge; New York: Cambridge University Press. ISBN 0-521-27635-7. (page 198)
  • Schneider, Philip J.; Eberly, David H. (2003). Geometric tools for computer graphics. Amsterdam; Boston: Morgan Kaufmann Publishers. ISBN 1-55860-594-0. (page 112)