मानक आधार: Difference between revisions

From Vigyanwiki
(modification)
Line 3: Line 3:
{{broader|Canonical basis}}
{{broader|Canonical basis}}
{{distinguish|text=another name for a [[Gröbner basis]]}}
{{distinguish|text=another name for a [[Gröbner basis]]}}
[[File:3D Vector.svg|right|thumb|300px|तीन आयामों में प्रत्येक वेक्टर मानक आधार वैक्टर i, j और k का एक [[ रैखिक संयोजन ]] है।]]गणित में, एक समन्वय सदिश स्थान का मानक आधार (जिसे प्राकृतिक आधार या [[ विहित आधार ]] भी कहा जाता है) (जैसे <math>\mathbb{R}^n</math> या <math>\mathbb{C}^n</math>) सदिशों का समुच्चय है जिसके सभी घटक शून्य हैं, सिवाय एक के जो 1 के बराबर है। उदाहरण के लिए, [[ यूक्लिडियन विमान ]] के मामले में <math>\mathbb{R}^2</math> जोड़ियों द्वारा गठित {{math|(''x'', ''y'')}} [[ वास्तविक संख्या ]]ओं का, मानक आधार सदिशों द्वारा बनता है
[[File:3D Vector.svg|right|thumb|300px|तीन आयामों में प्रत्येक वेक्टर मानक आधार वैक्टर i, j और k का एक [[ रैखिक संयोजन ]] है।]]गणित के अंदर, एक समन्वय सदिश स्थान का मानक आधार (जिसे प्राकृतिक आधार या[[ विहित आधार | विहित आधार]] भी कहा जाता है) (जैसे <math>\mathbb{R}^n</math> या <math>\mathbb{C}^n</math>) सदिशों का समुच्चय है जिसके सभी घटक शून्य हैं, सिवाय एक के जो 1 के बराबर है। उदाहरण के लिए,[[ यूक्लिडियन विमान ]] के मामले में <math>\mathbb{R}^2</math> जोड़ियों द्वारा गठित {{math|(''x'', ''y'')}} [[ वास्तविक संख्या | वास्तविक संख्याओं]] का, मानक आधार सदिशों द्वारा बनता है
:<math>\mathbf{e}_x = (1,0),\quad \mathbf{e}_y = (0,1).</math>
:<math>\mathbf{e}_x = (1,0),\quad \mathbf{e}_y = (0,1).</math>
इसी प्रकार, [[ त्रि-आयामी अंतरिक्ष ]] के लिए मानक आधार <math>\mathbb{R}^3</math> वैक्टर द्वारा बनता है
इसी प्रकार,[[ त्रि-आयामी अंतरिक्ष ]] के लिए मानक आधार <math>\mathbb{R}^3</math> वैक्टर द्वारा बनता है
:<math>\mathbf{e}_x = (1,0,0),\quad \mathbf{e}_y = (0,1,0),\quad \mathbf{e}_z=(0,0,1).</math>
:<math>\mathbf{e}_x = (1,0,0),\quad \mathbf{e}_y = (0,1,0),\quad \mathbf{e}_z=(0,0,1).</math>
यहाँ वेक्टर ई<sub>''x''</sub> x दिशा में बिंदु, वेक्टर 'ई'<sub>''y''</sub> y दिशा में इंगित करता है, और वेक्टर 'e'<sub>''z''</sub> z दिशा में अंक। मानक-आधारित सदिशों के लिए कई सामान्य गणितीय संकेतन हैं, जिनमें {'e'' भी शामिल है।<sub>''x''</sub>, तथा<sub>''y''</sub>, तथा<sub>''z''</sub>}, {तथा<sub>1</sub>, तथा<sub>2</sub>, तथा<sub>3</sub>}, {i, j, k}, और {x, y, z}। इन वैक्टरों को कभी-कभी [[ इकाई वेक्टर ]] (मानक यूनिट वैक्टर) के रूप में उनकी स्थिति पर जोर देने के लिए एक [[ सिकमफ़्लक्स ]] के साथ लिखा जाता है।
यहां वेक्टर एक्स एक्स दिशा में इंगित करता है, वेक्टर आई वाई दिशा में इंगित करता है, और वेक्टर ईज़ जेड दिशा में इंगित करता है। मानक-आधार सदिशों के लिए {ex, ey, ez}, {e1, e2, e3}, {i, j, k}, और {x, y, z} सहित कई सामान्य संकेत हैं।''[[ इकाई वेक्टर |इकाई वेक्टर]] (मानक यूनिट वैक्टर) के रूप में उनकी स्थिति पर जोर देने के लिए एक [[ सिकमफ़्लक्स | सिकमफ़्लक्स]] के साथ लिखा जाता है।''


ये सदिश इस अर्थ में एक [[ आधार (रैखिक बीजगणित) ]] हैं कि किसी भी अन्य सदिश को इनके रैखिक संयोजन के रूप में विशिष्ट रूप से व्यक्त किया जा सकता है। उदाहरण के लिए, त्रि-आयामी अंतरिक्ष में प्रत्येक वेक्टर वी को विशिष्ट रूप से लिखा जा सकता है:
ये सदिश इस अर्थ में एक[[ आधार (रैखिक बीजगणित) ]]हैं कि किसी भी अन्य सदिश को इनके रैखिक संयोजन के रूप में विशिष्ट रूप से व्यक्त किया जा सकता है। उदाहरण के लिए, त्रि-आयामी अंतरिक्ष में प्रत्येक वेक्टर वी को विशिष्ट रूप से लिखा जा सकता है:
:<math>v_x\,\mathbf{e}_x + v_y\,\mathbf{e}_y + v_z\,\mathbf{e}_z,</math>
:<math>v_x\,\mathbf{e}_x + v_y\,\mathbf{e}_y + v_z\,\mathbf{e}_z,</math>
[[ अदिश (गणित) ]] <math>v_x</math>, <math>v_y</math>, <math>v_z</math> वेक्टर वी के [[ अदिश घटक ]] होने के नाते।
[[ अदिश (गणित) |अदिश (गणित)]] <math>v_x</math>, <math>v_y</math>, <math>v_z</math> वेक्टर वी के[[ अदिश घटक | अदिश घटक]] होने के नाते होता है।


में {{mvar|n}}-[[ आयाम (रैखिक बीजगणित) ]] यूक्लिडियन स्थान <math>\mathbb R^n</math>, मानक आधार में n भिन्न सदिश होते हैं
यहाँ पर {{mvar|n}}-[[ आयाम (रैखिक बीजगणित) | आयाम (रैखिक बीजगणित)]] यूक्लिडियन स्थान <math>\mathbb R^n</math>, मानक आधार में n भिन्न सदिश होते हैं
:<math>\{ \mathbf{e}_i : 1\leq i\leq n\},</math>
:<math>\{ \mathbf{e}_i : 1\leq i\leq n\},</math>
जहां ई<sub>''i''</sub> में 1 के साथ वेक्टर को दर्शाता है {{mvar|i}}वें [[ समन्वय ]] और 0 कहीं और।
जहां ई<sub>''i''</sub> में 1 के साथ वेक्टर को दर्शाता है {{mvar|i}}वें [[ समन्वय | समन्वय]] और 0 कहीं और होता है।


मानक आधारों को अन्य वेक्टर रिक्त स्थान के लिए परिभाषित किया जा सकता है, जिनकी परिभाषा में [[ बहुपद ]] और [[ मैट्रिक्स (गणित) ]] जैसे गुणांक शामिल हैं। दोनों ही मामलों में, मानक आधार में अंतरिक्ष के तत्व शामिल होते हैं जैसे कि सभी गुणांक 0 होते हैं और गैर-शून्य एक 1 होता है। बहुपदों के लिए, मानक आधार में [[ एकपद ]] होते हैं और इसे आमतौर पर [[ मोनोमियल आधार ]] कहा जाता है। मेट्रिसेस के लिए <math>\mathcal{M}_{m \times n}</math>, मानक आधार में m×n-मेट्रिसेस शामिल होते हैं, जिसमें केवल एक गैर-शून्य प्रविष्टि होती है, जो कि 1 है। उदाहरण के लिए, 2×2 मैट्रिक्स के लिए मानक आधार 4 मैट्रिक्स द्वारा बनता है
मानक आधारों को अन्य वेक्टर रिक्त स्थान के लिए परिभाषित किया जा सकता है, जिनकी परिभाषा में [[ बहुपद |बहुपद]] और[[ मैट्रिक्स (गणित) | मैट्रिक्स (गणित)]] जैसे गुणांक शामिल हैं। दोनों ही मामलों में, मानक आधार में अंतरिक्ष के तत्व शामिल होते हैं जैसे कि सभी गुणांक 0 होते हैं और गैर-शून्य एक 1 होता है। बहुपदों के लिए, मानक आधार में [[ एकपद ]] होते हैं और इसे आमतौर पर [[ मोनोमियल आधार ]] कहा जाता है। मेट्रिसेस के लिए <math>\mathcal{M}_{m \times n}</math>, मानक आधार में m×n-मेट्रिसेस शामिल होते हैं, जिसमें केवल एक गैर-शून्य प्रविष्टि होती है, जो कि 1 है। उदाहरण के लिए, 2×2 मैट्रिक्स के लिए मानक आधार 4 मैट्रिक्स द्वारा बनता है
:<math>\mathbf{e}_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix},\quad
:<math>\mathbf{e}_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix},\quad
       \mathbf{e}_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},\quad
       \mathbf{e}_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},\quad
Line 25: Line 25:


== गुण ==
== गुण ==
परिभाषा के अनुसार, मानक आधार [[ ओर्थोगोनल ]] [[ यूनिट वैक्टर ]] का एक [[ क्रम ]] है। दूसरे शब्दों में, यह एक क्रमबद्ध आधार और ऑर्थोनॉर्मल आधार है।
परिभाषा के अनुसार, मानक आधार[[ ओर्थोगोनल | ओर्थोगोनल]] [[ यूनिट वैक्टर | यूनिट वैक्टर]] का एक [[ क्रम ]] है। दूसरे शब्दों में, यह एक क्रमबद्ध आधार और ऑर्थोनॉर्मल आधार है।


हालांकि, एक आदेशित ऑर्थोनॉर्मल आधार जरूरी नहीं कि एक मानक आधार हो। उदाहरण के लिए, ऊपर वर्णित 2डी मानक आधार के 30° रोटेशन का प्रतिनिधित्व करने वाले दो वैक्टर, यानी।
हालांकि, एक आदेशित ऑर्थोनॉर्मल आधार जरूरी नहीं कि एक मानक आधार हो। उदाहरण के लिए, ऊपर वर्णित 2डी मानक आधार के 30° रोटेशन का प्रतिनिधित्व करने वाले दो वैक्टर, यानी।
Line 31: Line 31:
:<math>v_1 = \left( {\sqrt 3 \over 2} ,  {1 \over 2} \right) \,</math>
:<math>v_1 = \left( {\sqrt 3 \over 2} ,  {1 \over 2} \right) \,</math>
:<math>v_2 = \left( {1 \over 2} , {-\sqrt 3 \over 2} \right) \,</math>
:<math>v_2 = \left( {1 \over 2} , {-\sqrt 3 \over 2} \right) \,</math>
ऑर्थोगोनल यूनिट वैक्टर भी हैं, लेकिन वे [[ कार्तीय समन्वय प्रणाली ]] की कुल्हाड़ियों के साथ संरेखित नहीं हैं, इसलिए इन वैक्टर के साथ आधार मानक आधार की परिभाषा को पूरा नहीं करता है।
ऑर्थोगोनल यूनिट वैक्टर भी हैं, लेकिन वे [[ कार्तीय समन्वय प्रणाली |कार्तीय समन्वय प्रणाली]] की कुल्हाड़ियों के साथ संरेखित नहीं हैं, इसलिए इन वैक्टर के साथ आधार मानक आधार की परिभाषा को पूरा नहीं करता है।


== सामान्यीकरण ==
== सामान्यीकरण ==

Revision as of 14:02, 8 January 2023

तीन आयामों में प्रत्येक वेक्टर मानक आधार वैक्टर i, j और k का एक रैखिक संयोजन है।

गणित के अंदर, एक समन्वय सदिश स्थान का मानक आधार (जिसे प्राकृतिक आधार या विहित आधार भी कहा जाता है) (जैसे या ) सदिशों का समुच्चय है जिसके सभी घटक शून्य हैं, सिवाय एक के जो 1 के बराबर है। उदाहरण के लिए,यूक्लिडियन विमान के मामले में जोड़ियों द्वारा गठित (x, y) वास्तविक संख्याओं का, मानक आधार सदिशों द्वारा बनता है

इसी प्रकार,त्रि-आयामी अंतरिक्ष के लिए मानक आधार वैक्टर द्वारा बनता है

यहां वेक्टर एक्स एक्स दिशा में इंगित करता है, वेक्टर आई वाई दिशा में इंगित करता है, और वेक्टर ईज़ जेड दिशा में इंगित करता है। मानक-आधार सदिशों के लिए {ex, ey, ez}, {e1, e2, e3}, {i, j, k}, और {x, y, z} सहित कई सामान्य संकेत हैं।इकाई वेक्टर (मानक यूनिट वैक्टर) के रूप में उनकी स्थिति पर जोर देने के लिए एक सिकमफ़्लक्स के साथ लिखा जाता है।

ये सदिश इस अर्थ में एकआधार (रैखिक बीजगणित) हैं कि किसी भी अन्य सदिश को इनके रैखिक संयोजन के रूप में विशिष्ट रूप से व्यक्त किया जा सकता है। उदाहरण के लिए, त्रि-आयामी अंतरिक्ष में प्रत्येक वेक्टर वी को विशिष्ट रूप से लिखा जा सकता है:

अदिश (गणित) वेक्टर वी के अदिश घटक होने के नाते होता है।

यहाँ पर n- आयाम (रैखिक बीजगणित) यूक्लिडियन स्थान , मानक आधार में n भिन्न सदिश होते हैं

जहां ईi में 1 के साथ वेक्टर को दर्शाता है iवें समन्वय और 0 कहीं और होता है।

मानक आधारों को अन्य वेक्टर रिक्त स्थान के लिए परिभाषित किया जा सकता है, जिनकी परिभाषा में बहुपद और मैट्रिक्स (गणित) जैसे गुणांक शामिल हैं। दोनों ही मामलों में, मानक आधार में अंतरिक्ष के तत्व शामिल होते हैं जैसे कि सभी गुणांक 0 होते हैं और गैर-शून्य एक 1 होता है। बहुपदों के लिए, मानक आधार में एकपद होते हैं और इसे आमतौर पर मोनोमियल आधार कहा जाता है। मेट्रिसेस के लिए , मानक आधार में m×n-मेट्रिसेस शामिल होते हैं, जिसमें केवल एक गैर-शून्य प्रविष्टि होती है, जो कि 1 है। उदाहरण के लिए, 2×2 मैट्रिक्स के लिए मानक आधार 4 मैट्रिक्स द्वारा बनता है


गुण

परिभाषा के अनुसार, मानक आधार ओर्थोगोनल यूनिट वैक्टर का एक क्रम है। दूसरे शब्दों में, यह एक क्रमबद्ध आधार और ऑर्थोनॉर्मल आधार है।

हालांकि, एक आदेशित ऑर्थोनॉर्मल आधार जरूरी नहीं कि एक मानक आधार हो। उदाहरण के लिए, ऊपर वर्णित 2डी मानक आधार के 30° रोटेशन का प्रतिनिधित्व करने वाले दो वैक्टर, यानी।

ऑर्थोगोनल यूनिट वैक्टर भी हैं, लेकिन वे कार्तीय समन्वय प्रणाली की कुल्हाड़ियों के साथ संरेखित नहीं हैं, इसलिए इन वैक्टर के साथ आधार मानक आधार की परिभाषा को पूरा नहीं करता है।

सामान्यीकरण

एक क्षेत्र (गणित) अर्थात् मोनोमियल्स पर n अनिश्चित में बहुपदों की अंगूठी के लिए एक मानक आधार भी है।

पूर्ववर्ती सभी परिवार के विशेष मामले हैं

कहाँ पे क्या कोई सेट है और क्रोनकर डेल्टा है, जब भी शून्य के बराबर ij और 1 के बराबर अगर i = j.

यह परिवार आर-मॉड्यूल (मुक्त मॉड्यूल) का विहित आधार है

सभी परिवारों की
I से एक वलय (गणित) R में, जो सूचकांकों की एक परिमित संख्या को छोड़कर शून्य हैं, यदि हम 1 को 1 के रूप में व्याख्या करते हैंR, आर में इकाई।

अन्य उपयोग

अन्य 'मानक' आधारों का अस्तित्व बीजगणितीय ज्यामिति में रुचि का विषय बन गया है, जिसकी शुरुआत डब्ल्यू.वी.डी. हॉज के 1943 में ग्रासमानियन ्स पर किए गए कार्य से हुई। यह अब प्रतिनिधित्व सिद्धांत का एक हिस्सा है जिसे मानक मोनोमियल सिद्धांत कहा जाता है। लाइ बीजगणित के सार्वभौमिक आवरण बीजगणित में मानक आधार का विचार पोंकारे-बिरखॉफ-विट प्रमेय द्वारा स्थापित किया गया है।

ग्रोबनेर आधार | ग्रोबनर आधारों को कभी-कभी मानक आधार भी कहा जाता है।

भौतिकी में, किसी दिए गए यूक्लिडियन स्थान के लिए मानक आधार वैक्टर को कभी-कभी संबंधित कार्टेशियन समन्वय प्रणाली के अक्षों के वर्सोर (भौतिकी) के रूप में संदर्भित किया जाता है।

यह भी देखें


संदर्भ

  • Ryan, Patrick J. (2000). Euclidean and non-Euclidean geometry: an analytical approach. Cambridge; New York: Cambridge University Press. ISBN 0-521-27635-7. (page 198)
  • Schneider, Philip J.; Eberly, David H. (2003). Geometric tools for computer graphics. Amsterdam; Boston: Morgan Kaufmann Publishers. ISBN 1-55860-594-0. (page 112)