दहनित्र: Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
{{short description|Part of a jet engine where fuel is burned}} | {{short description|Part of a jet engine where fuel is burned}} | ||
[[ दहन ]] [[ गैस टर्बाइन ]], [[ रामजेट | रैमजेट]] या [[ स्क्रैमजेट ]] [[ यन्त्र ]] का घटक या क्षेत्र है | [[ दहन ]] [[ गैस टर्बाइन ]], [[ रामजेट | रैमजेट]] या [[ स्क्रैमजेट ]] [[ यन्त्र ]] का घटक या क्षेत्र है जहाँ यह दहन होता है। इसे बर्नर, [[ दहन कक्ष ]] या फ्लेम धारक के रूप में भी जाना जाता है। किसी गैस टरबाइन इंजन में, '' दहनशीलता '' या दहन कक्ष को संपीड़न प्रणाली द्वारा उच्च दबाव वाली हवा दी जाती है। दहनकर्ता तब इस हवा को निरंतर दबाव में गर्म करता है क्योंकि ईंधन/हवा का मिश्रण जलता है। चूंकि यह ईंधन/हवा के मिश्रण को जला देता है और तेजी से फैलता है।नोजल गाइड वैन्स के माध्यम से टरबाइन तक नोजल गाइड वैन के माध्यम से जला हुआ मिश्रण समाप्त हो जाता है। रैमजेट या स्क्रैमजेट इंजन के स्थिति में, निकास को सीधे नोजल के माध्यम से खिलाया जाता है। | ||
एक दहनक को बहुत अधिक वायु प्रवाह दरों के अतिरिक्त स्थिर दहन में होना चाहिए और बनाए रखना | एक दहनक को बहुत अधिक वायु प्रवाह दरों के अतिरिक्त स्थिर दहन में होना चाहिए और बनाए रखना चाहिए। ऐसा करने के लिए दहन यंत्र को सावधानी से पहले मिश्रण और हवा और ईंधन को प्रज्वलित करने के लिए डिज़ाइन किया गया है, और फिर दहन प्रक्रिया को पूरा करने के लिए अधिक हवा में मिलाया जाता हैं। प्रारंभिक गैस टरबाइन इंजनों ने एकल कक्ष का उपयोग किया, जिसे कैन प्रकार के दहनक के रूप में जाना जाता है। आज तीन मुख्य व्यवस्था सम्मलित हैं: कैन, कुंडलाकार, और कैन्युलर (कैन-एंग्यूलर टुबो-एनाइल्यूलर के रूप में भी संदर्भित)। बर्नर के द्वारा दहन के पश्चात अधिकांशतः अन्य प्रकार का दहनशील मान लिया जाता है। | ||
एक इंजन की कई परिचालन विशेषताओं, जैसे कि [[ ईंधन दक्षता ]], उत्सर्जन के स्तर, और क्षणिक प्रतिक्रिया (ईंधन प्रवाह और हवा की गति जैसी बदलती परिस्थितियों की प्रतिक्रिया) जैसे कई प्रकार के संचालन में दहनक महत्वपूर्ण भूमिका निभाते हैं। | एक इंजन की कई परिचालन विशेषताओं, जैसे कि [[ ईंधन दक्षता ]], उत्सर्जन के स्तर, और क्षणिक प्रतिक्रिया (ईंधन प्रवाह और हवा की गति जैसी बदलती परिस्थितियों की प्रतिक्रिया) जैसे कई प्रकार के संचालन में दहनक महत्वपूर्ण भूमिका निभाते हैं। | ||
== फंडामेंटल == | == फंडामेंटल == | ||
[[File:Combustor on Rolls-Royce Nene turbojet (1).jpg|thumb|एक [[ रोल्स-रॉयस नेने ]] [[ टर्बोजेट ]] पर दहनक]]गैस टरबाइन में | [[File:Combustor on Rolls-Royce Nene turbojet (1).jpg|thumb|एक [[ रोल्स-रॉयस नेने ]] [[ टर्बोजेट ]] पर दहनक]]गैस टरबाइन में दहनशील का उद्देश्य [[ टर्बाइन ]] को बिजली देने के लिए प्रणाली में ऊर्जा जोड़ना है, और विमान अनुप्रयोगों में नोजल के माध्यम से निकास करने के लिए उच्च-वेग गैस का उत्पादन करना है।किसी भी अभियांत्रिकी की चुनौती के साथ, इसे पूरा करने के लिए कई डिजाइन विचारों को संतुलित करने की आवश्यकता होती है, जैसे कि निम्नलिखित दिए हुए हैं: | ||
* | *पूर्ण रूप से ईंधन का दहन करें अन्यथा, इंजन असंतुलित ईंधन को बर्बाद करता है और असंतुलित हाइड्रोकार्बन, कार्बन मोनोऑक्साइड (सीओ), और कालिख के अवांछित उत्सर्जन को बनाता है। | ||
*दहनक के पार कम दबाव | *दहनक के पार कम दबाव की हानि टरबाइन जो दहनशील फ़ीड करती है, कुशलता से संचालित करने के लिए उच्च दबाव वाले प्रवाह की आवश्यकता होती है। | ||
*ज्वाला (दहन) को दहनक के अंदर (निहित) आयोजित किया जाना चाहिए।यदि दहन इंजन में आगे वापस आता है, तो टरबाइन चरणों को | *ज्वाला (दहन) को दहनक के अंदर (निहित) आयोजित किया जाना चाहिए।यदि दहन इंजन में आगे वापस आता है, तो टरबाइन चरणों को सरलता से गर्म और क्षतिग्रस्त किया जा सकता है। इसके अतिरिक्त, जैसे -जैसे [[ टरबाइन ब्लेड ]] अधिक उन्नत होते रहते हैं और उच्च तापमान का सामना करने में सक्षम होती जाती हैं, दहनकों को उच्च तापमान पर जलने के लिए डिज़ाइन किया जा रहा है और दहनक के कुछ हिस्सों को उन उच्च तापमानों का सामना करने के लिए डिज़ाइन करने की आवश्यकता होती है। | ||
*यह इंजन फ्लेम-आउट की घटना में उच्च ऊंचाई पर रिलाइटिंग करने में सक्षम होना चाहिए। | *यह इंजन फ्लेम-आउट की घटना में उच्च ऊंचाई पर रिलाइटिंग करने में सक्षम होना चाहिए। | ||
* | *इसके निकास के लिए तापमान का प्रारूप यदि निकास प्रवाह में गर्म स्थान हैं, तो टरबाइन को ऊष्मीय तनाव या अन्य प्रकार के हानि के अधीन किया जा सकता है। इसी तरह, दहनशीलता के भीतर तापमान प्रारूप को गर्म स्थानों से बचना चाहिए, क्योंकि वे अंदर से दहनक को हानि पहुंचा सकते हैं या नष्ट कर सकते हैं। | ||
*छोटे भौतिक आकार और वजन।अंतरिक्ष और वजन विमान अनुप्रयोगों में | *छोटे भौतिक आकार और वजन।अंतरिक्ष और वजन विमान अनुप्रयोगों में अति महत्वपूर्ण हैं, इसलिए अच्छी तरह से डिज़ाइन किया गया दहन सिकुड़ने का प्रयास करता है। पावर-जनरेटिंग गैस टर्बाइन की तरह गैर-विमान अनुप्रयोग, इस कारक से विवश नहीं हैं। | ||
*ऑपरेशन की विस्तृत | *ऑपरेशन की विस्तृत श्रृंखला को अधिकांशतः दहनकों के विभिन्न प्रकार के इनलेट दबावों, तापमानों और द्रव्यमान प्रवाह के साथ संचालित करने में सक्षम होना चाहिए। ये कारक इंजन के प्रारूप और पर्यावरणीय स्थितियों दोनों के साथ परिवर्तित होते हैं (अर्ताथ, कम ऊंचाई पर पूर्ण थ्रॉटल उच्च ऊंचाई पर निष्क्रिय थ्रॉटल से पृथक हो सकते हैं)। | ||
*पर्यावरण | *पर्यावरण उत्सर्जन कार्बन डाइऑक्साइड और नाइट्रोजन ऑक्साइड जैसे प्रदूषकों के विमान उत्सर्जन पर कठोरता से नियम को मानते हैं, इसलिए उन उत्सर्जन को कम करने के लिए दहनकों को डिज़ाइन करने की आवश्यकता है।(नीचे उत्सर्जन अनुभाग देखें) | ||
स्रोत:<ref>Flack, p. 440.</ref><ref>Mattingly, Heiser, and Pratt, p. 325.</ref> | स्रोत:<ref>Flack, p. 440.</ref><ref>Mattingly, Heiser, and Pratt, p. 325.</ref> | ||
=== इतिहास === | === इतिहास === | ||
दहनक प्रौद्योगिकी में प्रगति कई अलग -अलग क्षेत्रों पर केंद्रित है;उत्सर्जन, ऑपरेटिंग रेंज और | दहनक प्रौद्योगिकी में प्रगति कई अलग-अलग क्षेत्रों पर केंद्रित है;उत्सर्जन, ऑपरेटिंग रेंज और स्थायित्व के आधआर पर प्रारंभिक जेट इंजनों ने बड़ी मात्रा में धुएं का उत्पादन करते हैं, इसलिए 1950 के दशक में प्रारंभिक दहनक अग्रिमों का उद्देश्य इंजन द्वारा उत्पादित धुएं को कम करना था। इस प्रकार धुएँ को अनिवार्य रूप से समाप्त किया गया, 1970 के दशक में अन्य उत्सर्जन को कम करने के प्रयासों को बदल दिया गया, जैसे कि असंतुलित [[ हाइड्रोकार्बन ]] और [[ कार्बन मोनोआक्साइड ]] (अधिक विवरण के लिए, नीचे उत्सर्जन अनुभाग देखें)। 1970 के दशक में भी दहनशीलता स्थायित्व में सुधार देखा गया, क्योंकि नए विनिर्माण विधियों ने लाइनर (नीचे दिए गए घटकों को देखें) जीवनकाल में लगभग 100 गुना प्रारंभिक लाइनरों में सुधार किया। 1980 के दशक में दहनियों ने पूरे ऑपरेटिंग रेंज में अपनी दक्षता में सुधार करना शुरू कर दिया; इस प्रकार पूरी शक्ति पर दहनशील्स अत्यधिक कुशल (99%+) थे, लेकिन यह दक्षता कम सेटिंग्स पर गिर गई। इस दशक में विकसित निचले स्तरों पर दक्षता में सुधार किया गया। 1990 और 2000 के दशक में उत्सर्जन, विशेष रूप से [[ नाइट्रोजन ऑक्साइड ]] को कम करने पर नए सिरे से ध्यान केंद्रित किया गया। दहनशीलता विधि को अभी भी सक्रिय रूप से शोध और उन्नत की जा रही है, और बहुत से आधुनिक शोध समान पहलुओं को और अच्छा बनाने पर केंद्रित है।<ref>{{cite journal |author=Koff, Bernard L. |title=गैस टरबाइन प्रौद्योगिकी विकास: एक डिजाइनर का परिप्रेक्ष्य।|journal=[[Journal of Propulsion and Power]] |volume=20 |number=4 |date=July–August 2004 |pages=577–595 |doi=10.2514/1.4361 |url=https://arc.aiaa.org/doi/10.2514/1.4361}}</ref> | ||
=== घटक === | === घटक === | ||
[[File:Combustor diagram componentsPNG.png|frameless | सीमा | ईमानदार = 2 | सही]] | [[File:Combustor diagram componentsPNG.png|frameless | सीमा | ईमानदार = 2 | सही]] इस स्थिति में दहनक का बाहरी खोल कुछ इस प्रकार दिखाई देता है, और इसकी संरचना बहुत सरल है। आवरण को सामान्यतः थोड़ा रखरखाव की आवश्यकता होती है।<ref>Henderson and Blazowski, pp. 119–20.</ref> इस स्थिति को ऊष्मीय लोड से संरक्षित किया जाता है, जिसमें हवा बहती है, इसलिए ऊष्मीय प्रदर्शन सीमित रहती है। चूंकि, आवरण दबाव पोत के रूप में कार्य करता है जो दहनक के अंदर उच्च दबाव और बाहर के कम दबाव के बीच के अंतर का सामना करना चाहिए। वह यांत्रिक (ऊष्मीय के अतिरिक्त) लोड स्थिति में ड्राइविंग डिज़ाइन कारक है।<ref>Mattingly, Heiser, and Pratt, p. 378.</ref> | ||
स्थिति दहनक का बाहरी खोल है, और | ;{{vanchor |विसारक}} | ||
;{{vanchor | | विसारक का प्रमुख उद्देश्य उच्च गति, अत्यधिक संकुचित, [[ गैस कंप्रेसर ]] से हवा को दहनक के लिए वेग को उच्चतम स्थिति से धीमा करना है। जिससे कुल दबाव में अपरिहार्य होने वाली हानि में वेग को कम किया जा सके जिसके परिणामस्वरूप डिजाइन की चुनौतियों में से दबाव से होने वाली हानि को यथासंभव सीमित किया जा सके।<ref>Mattingly, Heiser, and Pratt, p. 375.</ref> इसके अतिरिक्त, विसारक को [[ सीमा परत पृथक्करण ]] जैसे प्रवाह प्रभावों से बचने के लिए जितना संभव हो उतना प्रवाह विरूपण को सीमित करने के लिए डिज़ाइन किया जाना चाहिए। अधिकांश अन्य गैस टरबाइन इंजन घटकों की तरह, विसारक को यथासंभव छोटा और हल्का करने के लिए डिज़ाइन किया जाता है।<ref>Henderson and Blazowski, p. 121.</ref> | ||
;{{vanchor |लाइनर}} | |||
;{{vanchor | | लाइनर में दहन प्रक्रिया होती है और दहन क्षेत्र में विभिन्न एयरफ्लो (मध्यवर्ती, कमजोर पड़ने और ठंडा होने, हवा के प्रवाह पथ देखें) का परिचय देता है। लाइनर को विस्तारित उच्च तापमान चक्रों का सामना करने के लिए डिज़ाइन और बनाया जाना चाहिए। इस कारण से लाइनर्स को [[ hastelloy | हैस्टेलाय]] जैसे [[ सुपरकॉय ]] से बनाया जाता है। इसके अतिरिक्त, भले ही उच्च-प्रदर्शन मिश्र धातुओं का उपयोग किया जाता है, लाइनर को वायु प्रवाह के साथ ठंडा किया जाना चाहिए।<ref name=Mattingly760>Mattingly, p. 760.</ref> कुछ दहनक [[ थर्मल बाधा कोटिंग | ऊष्मीय बाधा कोटिंग]] का भी उपयोग करते हैं। चूंकि, एयर कूलिंग अभी भी आवश्यक है।सामान्यतः, लाइनर कूलिंग के दो मुख्य प्रकार हैं; फिल्म कूलिंग और भाप के निकासन के लिए कूलिंग को उपयोग किया जाता है। फिल्म कूलिंग लाइनर के बाहर से लेकर लाइनर के अंदर से ठंडी हवा द्वारा काम करती है। यह ठंडी हवा की पतली फिल्म बनाता है जो लाइनर की रक्षा करती है, उदाहरण के लिए, लगभग 1800 [[ केल्विन ]] (के) से लगभग 830 K तक लाइनर पर तापमान को कम करती है। अन्य प्रकार के लाइनर कूलिंग, भाप को कम करने वाली कूलिंग का बहुत अच्छा दृष्टिकोण है जो लाइनर के लिए छिद्रपूर्ण मध्यम सामग्री का उपयोग करता है। छिद्रपूर्ण लाइनर ठंडी हवा की छोटी मात्रा को इसके माध्यम से पारित करने की अनुमति देता है, जो फिल्म कूलिंग के समान शीतलन लाभ प्रदान करता है। दो प्राथमिक अंतर लाइनर के परिणामस्वरूप तापमान प्रारूप और आवश्यक शीतलन हवा की मात्रा में हैं। भाप कम करने वाली कूलिंग के परिणामस्वरूप बहुत अधिक तापमान प्रारूप होता है, क्योंकि शीतलन हवा समान रूप से छिद्रों के माध्यम से प्रस्तुत की जाती है। फिल्म कूलिंग एयर को सामान्यतः स्लैट्स या लूवर के माध्यम से प्रस्तुत किया जाता है, जिसके परिणामस्वरूप असमान प्रारूप होती है, जहां यह स्लैट में कूलर होता है और स्लैट्स के बीच गर्म होता है। इससे भी महत्वपूर्ण बात यह है कि भाप कम करने वाली कूलिंग बहुत कम शीतलन हवा का उपयोग करती है (फिल्म कूलिंग के लिए 20-50% के अतिरिक्त कुल एयरफ्लो के 10% के क्रम पर)। कूलिंग के लिए कम हवा का उपयोग करने से अधिक दहन के लिए उपयोग किया जा सकता है, जो उच्च प्रदर्शन, उच्च-थ्रस्ट इंजन के लिए अधिक से अधिक महत्वपूर्ण है।<ref>Mattingly, Heiser, and Pratt, pp. 372–4.</ref><ref>Henderson and Blazowski, pp. 124–7.</ref> | ||
लाइनर में दहन प्रक्रिया होती है और दहन क्षेत्र में विभिन्न एयरफ्लो (मध्यवर्ती, कमजोर पड़ने और ठंडा होने, हवा के प्रवाह पथ देखें) का परिचय देता | ;{{vanchor |स्नाउट}} | ||
;{{vanchor | | |||
थूथन गुंबद का विस्तार है (नीचे देखें) जो एयर स्प्लिटर के रूप में कार्य करता है, प्राथमिक हवा को द्वितीयक हवा के प्रवाह (मध्यवर्ती, कमजोर पड़ने और ठंडी हवा से अलग करता है; नीचे वायु प्रवाह पथ अनुभाग देखें)।<ref name=HandB124>Henderson and Blazowski, p. 124.</ref> | थूथन गुंबद का विस्तार है (नीचे देखें) जो एयर स्प्लिटर के रूप में कार्य करता है, प्राथमिक हवा को द्वितीयक हवा के प्रवाह (मध्यवर्ती, कमजोर पड़ने और ठंडी हवा से अलग करता है; नीचे वायु प्रवाह पथ अनुभाग देखें)।<ref name=HandB124>Henderson and Blazowski, p. 124.</ref> | ||
;{{vanchor |Dome}} / {{vanchor |swirler}} | ;{{vanchor |Dome}} / {{vanchor |swirler}} | ||
गुंबद और भंवर दहनक का हिस्सा हैं कि प्राथमिक हवा (नीचे वायु प्रवाह पथ देखें) के माध्यम से बहती है क्योंकि यह दहन क्षेत्र में प्रवेश करता | गुंबद और भंवर दहनक का हिस्सा हैं कि प्राथमिक हवा (नीचे वायु प्रवाह पथ देखें) के माध्यम से बहती है क्योंकि यह दहन क्षेत्र में प्रवेश करता है। उनकी भूमिका तेजी से ईंधन के साथ हवा को मिलाने के लिए प्रवाह में [[ अशांति ]] उत्पन्न करना है।<ref name=Mattingly760/> प्रारंभिक दहनकों ने ब्लफ़ बॉडी डोम (स्वर्गीर के अतिरिक्त) का उपयोग करने के लिए प्रवृत्त किया, जिसने ईंधन और हवा को मिलाने के लिए [[ हलचल जागृत करो ]] बनाने के लिए साधारण प्लेट का उपयोग किया। अधिकांश आधुनिक डिजाइन, चूंकि, भंवर स्थिर हैं (स्विरर्स का उपयोग करें)। भंवर स्थानीय कम दबाव क्षेत्र स्थापित करता है जो कुछ दहन उत्पादों को पुन: व्यवस्थित करने के लिए मजबूर करता है, जिससे उच्च अशांति पैदा होती है।<ref name=HandB124/> चूंकि, टर्बुलेंस जितनी अधिक होगी, दहनक के लिए दबाव का हानि उतना ही अधिक होगा, इसलिए गुंबद और भंवर को सावधानीपूर्वक डिज़ाइन किया जाना चाहिए जिससे कि ईंधन और हवा को पर्याप्त रूप से मिलाने के लिए अधिक अशांति उत्पन्न न हो।<ref>Flack, p. 441.</ref> | ||
;{{vanchor | | ;{{vanchor |ईंधन इंजेक्टर}} | ||
[[File:Cannular combustor on a Pratt & Whitney JT9D turbofan.jpg|thumb|एक प्रैट और व्हिटनी JT9D टर्बोफैन पर भंवर-कैन | [[File:Cannular combustor on a Pratt & Whitney JT9D turbofan.jpg|thumb|एक प्रैट और व्हिटनी JT9D टर्बोफैन पर भंवर-कैन दहनशील के ईंधन इंजेक्टर]]ईंधन इंजेक्टर दहन क्षेत्र में ईंधन शुरू करने के लिए जिम्मेदार है और, स्विरर (ऊपर) के साथ, ईंधन और हवा को मिलाने के लिए जिम्मेदार है। ईंधन इंजेक्टर के चार प्राथमिक प्रकार हैं;प्रेशर-एटोमाइज़िंग, एयर ब्लास्ट, वाष्पीकरण, और प्रीमिक्स/प्रीवापराइजिंग इंजेक्टर।<ref name=Mattingly760/> दबाव परमाणु ईंधन इंजेक्टर उच्च ईंधन दबावों पर निर्भर करते हैं (जितना अधिक {{convert|500|psi|order=flip}}) वह परमाणु था<ref group="nb" name="note1">While '''atomize''' has several definitions, in this context it means to form a fine spray. It is not meant to imply that the fuel is being broken down to its atomic components.</ref> ईंधन। इस प्रकार के ईंधन इंजेक्टर को बहुत सरल होने का फायदा है, लेकिन इसमें कई हानि हैं।इस तरह के उच्च दबावों का सामना करने के लिए ईंधन प्रणाली पर्याप्त मजबूत होनी चाहिए, और ईंधन विषम रूप से परमाणु हो जाता है, जिसके परिणामस्वरूप अधूरा या असमान दहन होता है जिसमें अधिक प्रदूषक और धुएं होते हैं।<ref>Henderson and Blazowski, p. 127.</ref><ref name=MHB379>Mattingly, Heiser, and Pratt, p. 379.</ref> | ||
दूसरे प्रकार का ईंधन इंजेक्टर एयर ब्लास्ट इंजेक्टर है।यह इंजेक्टर हवा की धारा के साथ ईंधन की शीट को विस्फोट करता है, जो ईंधन को सजातीय बूंदों में बदल देता है।इस प्रकार के ईंधन इंजेक्टर ने पहले धूम्रपान रहित दहनकों को जन्म दिया।उपयोग की जाने वाली हवा प्राथमिक हवा की ही मात्रा में होती है (नीचे वायु प्रवाह पथ देखें) जो कि घूमने वाले के अतिरिक्त इंजेक्टर के माध्यम से डायवर्ट की जाती | दूसरे प्रकार का ईंधन इंजेक्टर एयर ब्लास्ट इंजेक्टर है।यह इंजेक्टर हवा की धारा के साथ ईंधन की शीट को विस्फोट करता है, जो ईंधन को सजातीय बूंदों में बदल देता है।इस प्रकार के ईंधन इंजेक्टर ने पहले धूम्रपान रहित दहनकों को जन्म दिया।उपयोग की जाने वाली हवा प्राथमिक हवा की ही मात्रा में होती है (नीचे वायु प्रवाह पथ देखें) जो कि घूमने वाले के अतिरिक्त इंजेक्टर के माध्यम से डायवर्ट की जाती है। इस प्रकार के इंजेक्टर को दबाव परमाणु प्रकार की तुलना में कम ईंधन दबाव की आवश्यकता होती है।<ref name=MHB379/> | ||
वाष्पीकरण ईंधन इंजेक्टर, तीसरा प्रकार, उस प्राथमिक हवा में एयर ब्लास्ट इंजेक्टर के समान है, जिसे ईंधन के साथ मिलाया जाता है क्योंकि इसे दहन क्षेत्र में इंजेक्ट किया जाता | वाष्पीकरण ईंधन इंजेक्टर, तीसरा प्रकार, उस प्राथमिक हवा में एयर ब्लास्ट इंजेक्टर के समान है, जिसे ईंधन के साथ मिलाया जाता है क्योंकि इसे दहन क्षेत्र में इंजेक्ट किया जाता है। चूंकि, ईंधन-हवा का मिश्रण दहन क्षेत्र के भीतर ट्यूब के माध्यम से यात्रा करता है। दहन क्षेत्र से गर्मी को ईंधन-हवा के मिश्रण में स्थानांतरित किया जाता है, कुछ ईंधन (इसे बेहतर मिश्रण) से पहले वाष्पित किया जाता है। यह विधि ईंधन को कम ऊष्मीय विकिरण के साथ दहन करने की अनुमति देती है, जो लाइनर की सुरक्षा में मदद करती है।चूंकि, वेपोराइज़र ट्यूब में इसके भीतर कम ईंधन प्रवाह के साथ गंभीर स्थायित्व की समस्या हो सकती है (ट्यूब के अंदर ईंधन ट्यूब को दहन गर्मी से बचाता है)।<ref>Henderson and Blazowski, p. 128.</ref> दहन क्षेत्र तक पहुंचने से पहले ईंधन को मिलाकर या वाष्पीकरण करके प्रीमियरिंग/प्रीवापराइजिंग इंजेक्टर काम करते हैं। यह विधि ईंधन को हवा के साथ बहुत समान रूप से मिश्रित करने की अनुमति देती है, इंजन से उत्सर्जन को कम करती है। इस पद्धति का हानि यह है कि ईंधन ऑटो-गौरव या अन्यथा ईंधन-हवा के मिश्रण को दहन क्षेत्र तक पहुंचने से पहले दहन कर सकता है।यदि ऐसा होता है तो दहनशीलता को गंभीर रूप से क्षतिग्रस्त किया जा सकता है।<ref>Henderson and Blazowski, p. 129.</ref> | ||
दहन क्षेत्र तक पहुंचने से पहले ईंधन को मिलाकर या वाष्पीकरण करके प्रीमियरिंग/प्रीवापराइजिंग इंजेक्टर काम करते | |||
;{{vanchor |Igniter}} | ;{{vanchor |Igniter}} | ||
गैस टरबाइन अनुप्रयोगों में अधिकांश इग्नाइटर [[ स्पार्क प्लग ]] के समान विद्युत स्पार्क इग्नाइटर हैं।इग्नाइटर को दहन क्षेत्र में होना चाहिए जहां ईंधन और हवा पहले से ही मिश्रित हैं, लेकिन इसे काफी ऊपर की ओर होने की आवश्यकता है जिससे कि यह दहन से ही क्षतिग्रस्त न | गैस टरबाइन अनुप्रयोगों में अधिकांश इग्नाइटर [[ स्पार्क प्लग ]] के समान विद्युत स्पार्क इग्नाइटर हैं।इग्नाइटर को दहन क्षेत्र में होना चाहिए जहां ईंधन और हवा पहले से ही मिश्रित हैं, लेकिन इसे काफी ऊपर की ओर होने की आवश्यकता है जिससे कि यह दहन से ही क्षतिग्रस्त न हो। एक बार जब दहन शुरू में इग्नाइटर द्वारा शुरू किया जाता है, तो यह आत्मनिर्भर होता है, और इग्नाइटर का उपयोग नहीं किया जाता है।<ref>Mattingly, Heiser, and Pratt, p. 368.</ref> कैन-एंग्यूलर और कुंडलाकार दहनकों (नीचे दिए गए दहनकों के प्रकार देखें) में, लौ दहन क्षेत्र से दूसरे में प्रचारित कर सकती है, इसलिए हर पर इग्निटर्स की आवश्यकता नहीं होती है। कुछ प्रणालियों में इग्निशन-असिस्ट तकनीकों का उपयोग किया जाता है।ऐसी विधि ऑक्सीजन इंजेक्शन है, जहां ऑक्सीजन को इग्निशन क्षेत्र में खिलाया जाता है, जिससे ईंधन सरलता से दहन करने में मदद मिलती है।यह कुछ विमान अनुप्रयोगों में विशेष रूप से उपयोगी है जहां इंजन को उच्च ऊंचाई पर पुनरारंभ करना पड़ सकता है।<ref>Henderson and Blazowski, pp. 129–30.</ref> | ||
[[Category:All Wikipedia articles written in American English]] | [[Category:All Wikipedia articles written in American English]] | ||
| Line 57: | Line 51: | ||
=== वायु प्रवाह पथ === | === वायु प्रवाह पथ === | ||
[[File:Combustor diagram airflow.png|frameless | सीमा | ईमानदार = 2 | सही]]; प्राथमिक वायु | [[File:Combustor diagram airflow.png|frameless | सीमा | ईमानदार = 2 | सही]]; प्राथमिक वायु | ||
यह मुख्य दहन हवा है।यह उच्च दबाव वाले कंप्रेसर (अधिकांशतः | यह मुख्य दहन हवा है।यह उच्च दबाव वाले कंप्रेसर (अधिकांशतः विसारक के माध्यम से डिक्लेरेटेड) से अत्यधिक संकुचित हवा होती है, जिसे द दहनशीलता के गुंबद में मुख्य चैनलों के माध्यम से खिलाया जाता है और लाइनर छेद का पहला सेट होता है।इस हवा को ईंधन के साथ मिलाया जाता है, और फिर दहन किया जाता है।<ref>Henderson and Blazowski, p. 110.</ref> | ||
; इंटरमीडिएट एयर | ; इंटरमीडिएट एयर | ||
इंटरमीडिएट एयर लाइनर छेद के दूसरे सेट के माध्यम से दहन क्षेत्र में इंजेक्ट की गई हवा है (प्राथमिक हवा पहले सेट से गुजरती है)।यह हवा प्रतिक्रिया प्रक्रियाओं को पूरा करती है, हवा को ठंडा करती है और कार्बन मोनोऑक्साइड (सीओ) और [[ हाइड्रोजन ]] (एच) की उच्च सांद्रता को कम करती है<sub>2</sub>)।<ref name=HandB111>Henderson and Blazowski, p. 111.</ref> | इंटरमीडिएट एयर लाइनर छेद के दूसरे सेट के माध्यम से दहन क्षेत्र में इंजेक्ट की गई हवा है (प्राथमिक हवा पहले सेट से गुजरती है)।यह हवा प्रतिक्रिया प्रक्रियाओं को पूरा करती है, हवा को ठंडा करती है और कार्बन मोनोऑक्साइड (सीओ) और [[ हाइड्रोजन ]] (एच) की उच्च सांद्रता को कम करती है<sub>2</sub>)।<ref name=HandB111>Henderson and Blazowski, p. 111.</ref> | ||
; कमजोर पड़ने वाली हवा | ; कमजोर पड़ने वाली हवा | ||
कमजोर पड़ने वाली हवा एयरफ्लो को दहन कक्ष के अंत में लाइनर में छेद के माध्यम से इंजेक्ट किया जाता है जिससे कि टरबाइन चरणों तक पहुंचने से पहले हवा को ठंडा करने में मदद मिल सके।हवा का उपयोग सावधानीपूर्वक | कमजोर पड़ने वाली हवा एयरफ्लो को दहन कक्ष के अंत में लाइनर में छेद के माध्यम से इंजेक्ट किया जाता है जिससे कि टरबाइन चरणों तक पहुंचने से पहले हवा को ठंडा करने में मदद मिल सके।हवा का उपयोग सावधानीपूर्वक दहनशीलता में वांछित समान तापमान प्रारूप का उत्पादन करने के लिए किया जाता है।चूंकि, जैसा कि टरबाइन ब्लेड तकनीक में सुधार होता है, जिससे उन्हें उच्च तापमान का सामना करने की अनुमति मिलती है, कमजोर पड़ने वाली हवा का उपयोग कम किया जाता है, जिससे अधिक दहन हवा का उपयोग होता है।<ref name=HandB111/>; कूलिंग एयर | ||
कूलिंग एयर एयरफ्लो है जिसे लाइनर में छोटे छेदों के माध्यम से इंजेक्ट किया जाता है जिससे कि लाइनर को दहन तापमान से बचाने के लिए कूल एयर की परत (फिल्म) उत्पन्न हो सके।शीतलन हवा के कार्यान्वयन को सावधानीपूर्वक डिजाइन किया जाना है जिससे कि यह सीधे दहन हवा और प्रक्रिया के साथ बातचीत न करें।कुछ स्थितियों में, इनलेट हवा के 50% से अधिक का उपयोग ठंडी हवा के रूप में किया जाता है।इस शीतलन हवा को इंजेक्ट करने के कई अलग -अलग तरीके हैं, और विधि तापमान | कूलिंग एयर एयरफ्लो है जिसे लाइनर में छोटे छेदों के माध्यम से इंजेक्ट किया जाता है जिससे कि लाइनर को दहन तापमान से बचाने के लिए कूल एयर की परत (फिल्म) उत्पन्न हो सके।शीतलन हवा के कार्यान्वयन को सावधानीपूर्वक डिजाइन किया जाना है जिससे कि यह सीधे दहन हवा और प्रक्रिया के साथ बातचीत न करें।कुछ स्थितियों में, इनलेट हवा के 50% से अधिक का उपयोग ठंडी हवा के रूप में किया जाता है।इस शीतलन हवा को इंजेक्ट करने के कई अलग -अलग तरीके हैं, और विधि तापमान प्रारूप को प्रभावित कर सकती है जिसे लाइनर के संपर्क में है (देखें लाइनर, ऊपर)।<ref>Henderson and Blazowski, pp. 111, 125–7.</ref> | ||
[[Category:All Wikipedia articles written in American English]] | [[Category:All Wikipedia articles written in American English]] | ||
| Line 80: | Line 74: | ||
=== कैन === | === कैन === | ||
क्या दहनक स्व-निहित बेलनाकार दहन कक्ष हैं।प्रत्येक का अपना ईंधन इंजेक्टर, इग्नाइटर, लाइनर और आवरण हो सकता है।<ref name="nasa">Benson, Tom. [https://www.grc.nasa.gov/WWW/K-12/airplane/burner.html Combustor-Burner]. NASA Glenn Research Center. Last Updated 11 Jul 2008. Accessed 6 Jan 2010.</ref> कंप्रेसर से प्राथमिक हवा को प्रत्येक व्यक्ति के कैन में निर्देशित किया जाता है, जहां इसे डिक्लेरेट किया जाता है, ईंधन के साथ मिलाया जाता है, और फिर प्रज्वलित किया जाता है।माध्यमिक हवा भी कंप्रेसर से आती है, जहां इसे लाइनर के बाहर खिलाया जाता है (जिसके अंदर वह दहन हो रहा है)।द्वितीयक हवा को तब खिलाया जाता है, सामान्यतः लाइनर में स्लिट्स के माध्यम से, दहन क्षेत्र में पतली फिल्म कूलिंग के माध्यम से लाइनर को ठंडा करने के लिए।<ref>Flack, p. 442.</ref> | क्या दहनक स्व-निहित बेलनाकार दहन कक्ष हैं।प्रत्येक का अपना ईंधन इंजेक्टर, इग्नाइटर, लाइनर और आवरण हो सकता है।<ref name="nasa">Benson, Tom. [https://www.grc.nasa.gov/WWW/K-12/airplane/burner.html Combustor-Burner]. NASA Glenn Research Center. Last Updated 11 Jul 2008. Accessed 6 Jan 2010.</ref> कंप्रेसर से प्राथमिक हवा को प्रत्येक व्यक्ति के कैन में निर्देशित किया जाता है, जहां इसे डिक्लेरेट किया जाता है, ईंधन के साथ मिलाया जाता है, और फिर प्रज्वलित किया जाता है।माध्यमिक हवा भी कंप्रेसर से आती है, जहां इसे लाइनर के बाहर खिलाया जाता है (जिसके अंदर वह दहन हो रहा है)।द्वितीयक हवा को तब खिलाया जाता है, सामान्यतः लाइनर में स्लिट्स के माध्यम से, दहन क्षेत्र में पतली फिल्म कूलिंग के माध्यम से लाइनर को ठंडा करने के लिए।<ref>Flack, p. 442.</ref> | ||
अधिकांश अनुप्रयोगों में, इंजन के केंद्रीय अक्ष के आसपास कई डिब्बे की व्यवस्था की जाती है, और उनके साझा निकास को खिलाया जाता है {{not a typo|turbine(s)}}।कैन-प्रकार के दहनकों का उपयोग प्रारंभिक गैस टरबाइन इंजनों में सबसे व्यापक रूप से किया गया था, जो डिजाइन और परीक्षण में | अधिकांश अनुप्रयोगों में, इंजन के केंद्रीय अक्ष के आसपास कई डिब्बे की व्यवस्था की जाती है, और उनके साझा निकास को खिलाया जाता है {{not a typo|turbine(s)}}।कैन-प्रकार के दहनकों का उपयोग प्रारंभिक गैस टरबाइन इंजनों में सबसे व्यापक रूप से किया गया था, जो डिजाइन और परीक्षण में सरलता के कारण (एक एकल का परीक्षण कर सकते हैं, बजाय पूरे प्रणाली का परीक्षण करना है)।कैन-प्रकार के दहनकों को बनाए रखना आसान है, क्योंकि पूरे दहन अनुभाग के अतिरिक्त केवल एकल को हटाने की आवश्यकता हो सकती है।अधिकांश आधुनिक गैस टरबाइन इंजन (विशेष रूप से विमान अनुप्रयोगों के लिए) का उपयोग नहीं कर सकते हैं, क्योंकि वे अधिकांशतः विकल्पों की तुलना में अधिक वजन करते हैं।इसके अतिरिक्त, कैन के पार दबाव ड्रॉप सामान्यतः अन्य दहनकों (7%के क्रम पर) की तुलना में अधिक होता है।अधिकांश आधुनिक इंजन जो उपयोग कर सकते हैं, वे [[ टर्बोशाफ्ट ]] हैं, जो केन्द्रापसारक कंप्रेशर्स की विशेषता रखते हैं।<ref>Flack, pp. 442–3.</ref><ref>Henderson and Blazowski, p. 106.</ref> | ||
=== कैनुलर === | === कैनुलर === | ||
[[File:CanAnnularCombustor.svg|thumb|right|गैस टरबाइन इंजन के लिए कैनाुलर | [[File:CanAnnularCombustor.svg|thumb|right|गैस टरबाइन इंजन के लिए कैनाुलर दहनशीलता, एक्सिस को देखने के माध्यम से, निकास के माध्यम से]]अगले प्रकार का दहनशील कैनुलर दहनशीलता है;यह शब्द कुंडलाकार कैन का [[ सूटकेस ]] है।CAN-TYPE COMBUSTOR की तरह, कुंडलाकार दहनकों को अपने स्वयं के ईंधन इंजेक्टर के साथ अलग-अलग लाइनर्स में निहित दहन क्षेत्र में असतत दहन क्षेत्र हैं।कैन दहनशीलता के विपरीत, सभी दहन क्षेत्र सामान्य अंगूठी (एनलस) आवरण साझा करते हैं।प्रत्येक दहन क्षेत्र को अब दबाव पोत के रूप में काम नहीं करना पड़ता है।<ref>Mattingly, Heiser, and Pratt, pp. 377–8.</ref> दहन क्षेत्र भी लाइनर छेद या कनेक्टिंग ट्यूबों के माध्यम से -दूसरे के साथ संवाद कर सकते हैं जो कुछ हवा को परिधि में प्रवाहित करने की अनुमति देते हैं।कैन्युलर दहनशीलता से निकास प्रवाह में सामान्यतः अधिक समान तापमान प्रारूप होती है, जो टरबाइन सेक्शन के लिए बेहतर है।यह प्रत्येक कक्ष की अपनी इग्नाइटर की आवश्यकता को भी समाप्त करता है।एक बार आग या दो डिब्बे में जलाया जाता है, यह सरलता से दूसरों को फैल सकता है और प्रज्वलित कर सकता है।इस प्रकार का दहनशील भी टाइप की तुलना में हल्का होता है, और इसमें कम दबाव ड्रॉप होता है (6%के क्रम पर)।चूंकि, कैनुलर दहनशीलता कैन दहनशीलता की तुलना में बनाए रखने के लिए अधिक कठिन हो सकता है।<ref>Flack, pp. 442–4.</ref> कैनुलर दहनशीलता का उपयोग करने वाले गैस टरबाइन इंजनों के उदाहरणों में [[ जनरल इलेक्ट्रिक J79 ]] टर्बोजेट और प्रैट एंड व्हिटनी JT8D और रोल्स-रॉयस RB.183 Tay | रोल्स-रॉयस TAY TURBOFANS सम्मलित हैं।<ref>Henderson and Blazowski, pp. 106–7.</ref> | ||
=== कुंडलाकार === | === कुंडलाकार === | ||
[[File:AnnularCombustorNew.png|thumb|right|एक गैस टरबाइन इंजन के लिए कुंडलाकार | [[File:AnnularCombustorNew.png|thumb|right|एक गैस टरबाइन इंजन के लिए कुंडलाकार दहनशीलता, निकास के माध्यम से देखने पर अक्ष ने देखा।छोटे पीले घेरे ईंधन इंजेक्शन नलिका हैं, जबकि ऑरेंज रिंग दहन क्षेत्र के लिए निरंतर लाइनर है।]]अंतिम, और सबसे सामान्यतः उपयोग किया जाने वाला प्रकार का दहन पूरी तरह से कुंडलाकार दहनक है।कुंडलाकार दहनक अलग -अलग दहन क्षेत्रों के साथ दूर करते हैं और बस निरंतर लाइनर और अंगूठी (एनलस) में आवरण होते हैं।कुंडलाकार दहनकों के कई फायदे हैं, जिनमें अधिक समान दहन, छोटे आकार (इसलिए हल्का), और कम सतह क्षेत्र सम्मलित हैं।<ref>Henderson and Blazowski, p. 108.</ref><ref>Mattingly, p. 757.</ref> इसके अतिरिक्त, कुंडलाकार दहनकों में बहुत समान निकास तापमान होता है।उनके पास तीन डिजाइनों (5%के आदेश पर) का सबसे कम दबाव ड्रॉप भी है।<ref>Flack, p. 444.</ref> कुंडलाकार डिजाइन भी सरल है, चूंकि परीक्षण में सामान्यतः पूर्ण आकार परीक्षण रिग की आवश्यकता होती है।एक इंजन जो कुंडलाकार दहनक का उपयोग करता है, वह है CFM इंटरनेशनल CFM56।लगभग सभी आधुनिक गैस टरबाइन इंजन कुंडलाकार दहनकों का उपयोग करते हैं;इसी तरह, अधिकांश दहनक अनुसंधान और विकास इस प्रकार को बेहतर बनाने पर केंद्रित है। | ||
==== डबल कुंडलाकार दहनक ==== | ==== डबल कुंडलाकार दहनक ==== | ||
मानक कुंडलाकार दहनक पर भिन्नता डबल कुंडलाकार | मानक कुंडलाकार दहनक पर भिन्नता डबल कुंडलाकार दहनशीलता (डीएसी) है।एक कुंडलाकार दहनक की तरह, डीएसी त्रिज्या के चारों ओर अलग -अलग दहन क्षेत्रों के बिना निरंतर अंगूठी है।अंतर यह है कि दहनक के रिंग के चारों ओर दो दहन क्षेत्र होते हैं;एक पायलट ज़ोन और मुख्य क्षेत्र।पायलट ज़ोन एकल कुंडलाकार दहनक की तरह काम करता है, और कम बिजली के स्तर पर संचालित एकमात्र क्षेत्र है।उच्च शक्ति के स्तर पर, मुख्य क्षेत्र का उपयोग किया जाता है, साथ ही दहनक के माध्यम से हवा और द्रव्यमान प्रवाह को बढ़ाते हैं।इस प्रकार के दहनशीलता का जीई का कार्यान्वयन कम करने पर केंद्रित है {{NOx}} और {{CO2}} उत्सर्जन।<ref>[http://www.cfm56.com/press/news/cfms+advanced+double+annular+combustor+technology/198?page_index=23 CFM'S Advanced Double Annular Combustor Technology] {{webarchive|url=https://archive.today/20120728235534/http://www.cfm56.com/press/news/cfms+advanced+double+annular+combustor+technology/198?page_index=23 |date=2012-07-28}}. Press Release. 9 Jul 1998. Accessed 6 Jan 2010.</ref> ]combust.jpg DAC का अच्छा आरेख पर्ड्यू से उपलब्ध है]।डबल कुंडलाकार दहनक, ट्रिपल कुंडलाकार और कई कुंडलाकार दहनकों के समान सिद्धांतों का विस्तार किया गया है और यहां तक कि पेटेंट कराया गया है।<ref>Ekstedt, Edward E., et al (1994). {{US patent|5323604}} Triple annular combustor for gas turbine engine].</ref><ref>Schilling, Jan C., et al (1997). {{US patent|5630319}} Dome assembly for a multiple annular combustor].</ref> | ||
== उत्सर्जन == | == उत्सर्जन == | ||
आधुनिक गैस टरबाइन डिजाइन में ड्राइविंग कारकों में से उत्सर्जन को कम कर रहा है, और | आधुनिक गैस टरबाइन डिजाइन में ड्राइविंग कारकों में से उत्सर्जन को कम कर रहा है, और दहनशील गैस टरबाइन के उत्सर्जन में प्राथमिक योगदानकर्ता है।सामान्यतया, गैस टरबाइन इंजन से पांच प्रमुख प्रकार के उत्सर्जन हैं: स्मोक, [[ कार्बन डाइआक्साइड ]] (सीओ)<sub>2</sub>), कार्बन मोनोऑक्साइड (सीओ), असंतुलित हाइड्रोकार्बन (यूएचसी), और नाइट्रोजन ऑक्साइड (नहीं<sub>x</sub>)।<ref name="reg">Verkamp, F. J., Verdouw, A. J., Tomlinson, J. G. (1974). Impact of Emission Regulations on Future Gas Turbine Engine Combustors. ''Journal of Aircraft''. June 1974. Vol. 11, No. 6. pp. 340–344.</ref><ref name="reduct">{{cite journal |author1=Sturgess, G.J. |author2=Zelina, J. |author3=Shouse D. T. |author4=Roquemore, W.M. |title=सैन्य गैस टरबाइन इंजन के लिए उत्सर्जन में कमी प्रौद्योगिकियां|journal=Journal of Propulsion and Power |date=March–April 2005 |volume=21 |number=2 |pages=193–217 |doi=10.2514/1.6528 |url=https://arc.aiaa.org/doi/10.2514/1.6528}}</ref> | ||
धूम्रपान मुख्य रूप से हवा के साथ ईंधन को अधिक समान रूप से मिलाकर कम किया जाता है।जैसा कि उपरोक्त ईंधन इंजेक्टर अनुभाग में चर्चा की गई है, आधुनिक ईंधन इंजेक्टर (जैसे कि एयरब्लास्ट ईंधन इंजेक्टर) समान रूप से ईंधन पर निर्भर करते हैं और उच्च ईंधन एकाग्रता की स्थानीय जेब को खत्म करते हैं।अधिकांश आधुनिक इंजन इस प्रकार के ईंधन इंजेक्टर का उपयोग करते हैं और अनिवार्य रूप से धूम्रपान रहित होते हैं।<ref name="reg"/> | धूम्रपान मुख्य रूप से हवा के साथ ईंधन को अधिक समान रूप से मिलाकर कम किया जाता है।जैसा कि उपरोक्त ईंधन इंजेक्टर अनुभाग में चर्चा की गई है, आधुनिक ईंधन इंजेक्टर (जैसे कि एयरब्लास्ट ईंधन इंजेक्टर) समान रूप से ईंधन पर निर्भर करते हैं और उच्च ईंधन एकाग्रता की स्थानीय जेब को खत्म करते हैं।अधिकांश आधुनिक इंजन इस प्रकार के ईंधन इंजेक्टर का उपयोग करते हैं और अनिवार्य रूप से धूम्रपान रहित होते हैं।<ref name="reg"/> | ||
| Line 102: | Line 96: | ||
अनबर्न-हाइड्रोकार्बन (यूएचसी) और कार्बन-मोनोक्साइड (सीओ) उत्सर्जन अत्यधिक संबंधित हैं।यूएचसी अनिवार्य रूप से ईंधन हैं जो पूरी तरह से दहन नहीं किए गए थे, और यूएचसी ज्यादातर कम बिजली के स्तर (जहां इंजन सभी ईंधन को नहीं जला रहा है) पर उत्पादित किया जाता है।<ref name="reduct"/>UHC सामग्री का अधिकांश हिस्सा दहनक के भीतर सह -सह -सह होता है, यही वजह है कि दो प्रकार के उत्सर्जन भारी रूप से संबंधित हैं।इस करीबी संबंध के परिणामस्वरूप, सीओ उत्सर्जन के लिए अच्छी तरह से अनुकूलित दहनक यूएचसी उत्सर्जन के लिए स्वाभाविक रूप से अच्छी तरह से अनुकूलित है, इसलिए अधिकांश डिजाइन काम सीओ उत्सर्जन पर केंद्रित है।<ref name="reg"/> | अनबर्न-हाइड्रोकार्बन (यूएचसी) और कार्बन-मोनोक्साइड (सीओ) उत्सर्जन अत्यधिक संबंधित हैं।यूएचसी अनिवार्य रूप से ईंधन हैं जो पूरी तरह से दहन नहीं किए गए थे, और यूएचसी ज्यादातर कम बिजली के स्तर (जहां इंजन सभी ईंधन को नहीं जला रहा है) पर उत्पादित किया जाता है।<ref name="reduct"/>UHC सामग्री का अधिकांश हिस्सा दहनक के भीतर सह -सह -सह होता है, यही वजह है कि दो प्रकार के उत्सर्जन भारी रूप से संबंधित हैं।इस करीबी संबंध के परिणामस्वरूप, सीओ उत्सर्जन के लिए अच्छी तरह से अनुकूलित दहनक यूएचसी उत्सर्जन के लिए स्वाभाविक रूप से अच्छी तरह से अनुकूलित है, इसलिए अधिकांश डिजाइन काम सीओ उत्सर्जन पर केंद्रित है।<ref name="reg"/> | ||
कार्बन मोनोऑक्साइड दहन का मध्यवर्ती उत्पाद है, और इसे [[ ऑक्सीकरण ]] द्वारा समाप्त कर दिया जाता है।सीओ और हाइड्रॉक्सिल कट्टरपंथी सीओ बनाने के लिए प्रतिक्रिया<sub>2</sub> और हाइड्रोजन।यह प्रक्रिया, जो सीओ की खपत करती है, को अपेक्षाकृत लंबे समय की आवश्यकता होती है (अपेक्षाकृत उपयोग किया जाता है क्योंकि दहन प्रक्रिया अविश्वसनीय रूप से जल्दी होती है), उच्च तापमान और उच्च दबाव।इस तथ्य का अर्थ है कि कम-सीओ | कार्बन मोनोऑक्साइड दहन का मध्यवर्ती उत्पाद है, और इसे [[ ऑक्सीकरण ]] द्वारा समाप्त कर दिया जाता है।सीओ और हाइड्रॉक्सिल कट्टरपंथी सीओ बनाने के लिए प्रतिक्रिया<sub>2</sub> और हाइड्रोजन।यह प्रक्रिया, जो सीओ की खपत करती है, को अपेक्षाकृत लंबे समय की आवश्यकता होती है (अपेक्षाकृत उपयोग किया जाता है क्योंकि दहन प्रक्रिया अविश्वसनीय रूप से जल्दी होती है), उच्च तापमान और उच्च दबाव।इस तथ्य का अर्थ है कि कम-सीओ दहनशीलता में लंबा निवास समय होता है (अनिवार्य रूप से गैसों को दहन कक्ष में समय की मात्रा होती है)।<ref name="reg"/> | ||
सीओ, नाइट्रोजन ऑक्साइड की तरह (नहीं)<sub>x</sub>) दहन क्षेत्र में उत्पादित होते हैं।चूंकि, सीओ के विपरीत, यह उन स्थितियों के समय सबसे अधिक उत्पादित होता है जो सीओ सबसे अधिक खपत होती हैं (उच्च तापमान, उच्च दबाव, लंबे निवास समय)।इसका मतलब है कि, सामान्य रूप से, सीओ उत्सर्जन को कम करने से NO में वृद्धि होती है<sub>x</sub>, और इसके विपरीत।इस तथ्य का अर्थ है कि अधिकांश सफल उत्सर्जन कटौती को कई तरीकों के संयोजन की आवश्यकता होती है।<ref name="reg"/> | सीओ, नाइट्रोजन ऑक्साइड की तरह (नहीं)<sub>x</sub>) दहन क्षेत्र में उत्पादित होते हैं।चूंकि, सीओ के विपरीत, यह उन स्थितियों के समय सबसे अधिक उत्पादित होता है जो सीओ सबसे अधिक खपत होती हैं (उच्च तापमान, उच्च दबाव, लंबे निवास समय)।इसका मतलब है कि, सामान्य रूप से, सीओ उत्सर्जन को कम करने से NO में वृद्धि होती है<sub>x</sub>, और इसके विपरीत।इस तथ्य का अर्थ है कि अधिकांश सफल उत्सर्जन कटौती को कई तरीकों के संयोजन की आवश्यकता होती है।<ref name="reg"/> | ||
| Line 118: | Line 112: | ||
== रैमजेट्स == | == रैमजेट्स == | ||
{{Main|Ramjet}} | {{Main|Ramjet}} | ||
रैमजेट इंजन पारंपरिक गैस टरबाइन इंजन से कई मायनों में भिन्न होते हैं, लेकिन अधिकांश समान सिद्धांत हैं।एक बड़ा अंतर दहनक के बाद घूर्णन मशीनरी (एक टरबाइन) की कमी | रैमजेट इंजन पारंपरिक गैस टरबाइन इंजन से कई मायनों में भिन्न होते हैं, लेकिन अधिकांश समान सिद्धांत हैं।एक बड़ा अंतर दहनक के बाद घूर्णन मशीनरी (एक टरबाइन) की कमी है।दहनशीलता एग्जॉस्ट को सीधे नोजल के लिए खिलाया जाता है।यह रैमजेट दहनकों को उच्च तापमान पर जलने की अनुमति देता है।एक और अंतर यह है कि कई रैमजेट दहनशील्स लाइनर का उपयोग नहीं करते हैं जैसे गैस टरबाइन दहनक करते हैं।इसके अतिरिक्त, कुछ रैमजेट दहनक अधिक पारंपरिक प्रकार के अतिरिक्त डंप दहनक हैं।डंप दहनशील्स ईंधन को इंजेक्ट करते हैं और दहनशीलता में क्षेत्र में बड़े बदलाव (कई गैस टरबाइन दहनकों में घूमने वालों के अतिरिक्त) द्वारा उत्पन्न पुनरावर्तन पर भरोसा करते हैं।<ref name="fh">Stull, F. D. and Craig, R. R. (1975). Investigation of Dump Combustors with Flameholders. ''13th AIAA Aerospace Sciences Meeting''. Pasadena, CA. 20–22 January 1975. AIAA 75-165</ref> उस ने कहा, कई रैमजेट दहनशील्स पारंपरिक गैस टरबाइन दहनकों के समान हैं, जैसे कि रैमजेट में द दहनशीलता [[ रिम -8 टैलोस ]] मिसाइल द्वारा उपयोग किया जाता है, जिसमें कैन-टाइप दहनशीलता का उपयोग किया गया था।<ref name="hist">{{cite journal |author1=Waltrup, P.J. |author2=White M.E. |author3=Zarlingo F |author4=Gravlin E. S. |title=अमेरिकी नौसेना रामजेट, स्क्रैमजेट, और मिश्रित-चक्र प्रणोदन विकास का इतिहास|journal=Journal of Propulsion and Power |volume=18 |number=1 |date=January–February 2002 |pages=14–27 |doi=10.2514/2.5928 |url=https://arc.aiaa.org/doi/abs/10.2514/2.5928 |url-status=live |archive-url=https://web.archive.org/web/20070413051619/http://pdf.aiaa.org/downloads/1996/1996_3152.pdf |archive-date=2007-04-13}}</ref> | ||
== स्क्रैमजेट्स == | == स्क्रैमजेट्स == | ||
[[File:ScramjetDiagram.gif|thumb|right|upright=2.0|आरेख स्क्रैमजेट इंजन को दर्शाता है।संपीड़न इनलेट और दहन कक्ष के बीच आइसोलेटर सेक्शन को नोटिस करें।(HY-V स्क्रैमजेट उड़ान प्रयोग से चित्रण।)]] | [[File:ScramjetDiagram.gif|thumb|right|upright=2.0|आरेख स्क्रैमजेट इंजन को दर्शाता है।संपीड़न इनलेट और दहन कक्ष के बीच आइसोलेटर सेक्शन को नोटिस करें।(HY-V स्क्रैमजेट उड़ान प्रयोग से चित्रण।)]] | ||
{{Main|Scramjet}} | {{Main|Scramjet}} | ||
स्क्रैमजेट (सुपरसोनिक दहन रैमजेट) इंजन पारंपरिक गैस टरबाइन इंजनों की तुलना में दहनक के लिए बहुत अलग स्थिति | स्क्रैमजेट (सुपरसोनिक दहन रैमजेट) इंजन पारंपरिक गैस टरबाइन इंजनों की तुलना में दहनक के लिए बहुत अलग स्थिति प्रस्तुत करते हैं (स्क्रैमजेट गैस टर्बाइन नहीं हैं, क्योंकि उनके पास सामान्यतः कुछ या कोई चलती भाग नहीं हैं)।जबकि स्क्रैमजेट दहनशील्स पारंपरिक दहनकों से शारीरिक रूप से काफी अलग हो सकते हैं, वे कई समान डिजाइन चुनौतियों का सामना करते हैं, जैसे ईंधन मिश्रण और लौ होल्डिंग।चूंकि, जैसा कि इसके नाम का अर्थ है, स्क्रैमजेट दहनशीलता को इन चुनौतियों को सुपरसोनिक प्रवाह वातावरण में संबोधित करना चाहिए।उदाहरण के लिए, [[ माच संख्या ]] 5 पर उड़ान भरने वाले स्क्रैमजेट के लिए, दहनशीलता में प्रवेश करने वाले वायु प्रवाह को नाममात्र के रूप में मच होगा। स्क्रैमजेट इंजन में प्रमुख चुनौतियों में से दहनशील द्वारा उत्पन्न सदमे तरंगों को इनलेट में ऊपर की ओर यात्रा करने से रोक रहा है।यदि ऐसा होता है, तो इंजन [[ अयोग्य ]] हो सकता है, जिसके परिणामस्वरूप अन्य समस्याओं के बीच जोर का हानि होता है।इसे रोकने के लिए, स्क्रैमजेट इंजन में दहन क्षेत्र से तुरंत पहले आइसोलेटर सेक्शन (छवि देखें) होता है।<ref name="hyv">{{cite conference |author1=Goyne, C. P |author2=Hall, C. D. |author3=O'Brian, W. F. |author4=Schetz, J. A |title=HY-V SCRAMJET उड़ान प्रयोग (AIAA 2006-7901)|doi=10.2514/6.2006-7901 |url=https://arc.aiaa.org/doi/abs/10.2514/6.2006-7901 |url-status=live |archive-url=https://web.archive.org/web/20070930183608/http://pdf.aiaa.org/preview/CDReadyMHYP06_1276/PV2006_7901.pdf |archive-date=2007-09-30 |conference=14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference |date=November 2006}}</ref> | ||
==टिप्पणियाँ== | ==टिप्पणियाँ== | ||
Revision as of 16:03, 5 January 2023
दहन गैस टर्बाइन , रैमजेट या स्क्रैमजेट यन्त्र का घटक या क्षेत्र है जहाँ यह दहन होता है। इसे बर्नर, दहन कक्ष या फ्लेम धारक के रूप में भी जाना जाता है। किसी गैस टरबाइन इंजन में, दहनशीलता या दहन कक्ष को संपीड़न प्रणाली द्वारा उच्च दबाव वाली हवा दी जाती है। दहनकर्ता तब इस हवा को निरंतर दबाव में गर्म करता है क्योंकि ईंधन/हवा का मिश्रण जलता है। चूंकि यह ईंधन/हवा के मिश्रण को जला देता है और तेजी से फैलता है।नोजल गाइड वैन्स के माध्यम से टरबाइन तक नोजल गाइड वैन के माध्यम से जला हुआ मिश्रण समाप्त हो जाता है। रैमजेट या स्क्रैमजेट इंजन के स्थिति में, निकास को सीधे नोजल के माध्यम से खिलाया जाता है।
एक दहनक को बहुत अधिक वायु प्रवाह दरों के अतिरिक्त स्थिर दहन में होना चाहिए और बनाए रखना चाहिए। ऐसा करने के लिए दहन यंत्र को सावधानी से पहले मिश्रण और हवा और ईंधन को प्रज्वलित करने के लिए डिज़ाइन किया गया है, और फिर दहन प्रक्रिया को पूरा करने के लिए अधिक हवा में मिलाया जाता हैं। प्रारंभिक गैस टरबाइन इंजनों ने एकल कक्ष का उपयोग किया, जिसे कैन प्रकार के दहनक के रूप में जाना जाता है। आज तीन मुख्य व्यवस्था सम्मलित हैं: कैन, कुंडलाकार, और कैन्युलर (कैन-एंग्यूलर टुबो-एनाइल्यूलर के रूप में भी संदर्भित)। बर्नर के द्वारा दहन के पश्चात अधिकांशतः अन्य प्रकार का दहनशील मान लिया जाता है।
एक इंजन की कई परिचालन विशेषताओं, जैसे कि ईंधन दक्षता , उत्सर्जन के स्तर, और क्षणिक प्रतिक्रिया (ईंधन प्रवाह और हवा की गति जैसी बदलती परिस्थितियों की प्रतिक्रिया) जैसे कई प्रकार के संचालन में दहनक महत्वपूर्ण भूमिका निभाते हैं।
फंडामेंटल
गैस टरबाइन में दहनशील का उद्देश्य टर्बाइन को बिजली देने के लिए प्रणाली में ऊर्जा जोड़ना है, और विमान अनुप्रयोगों में नोजल के माध्यम से निकास करने के लिए उच्च-वेग गैस का उत्पादन करना है।किसी भी अभियांत्रिकी की चुनौती के साथ, इसे पूरा करने के लिए कई डिजाइन विचारों को संतुलित करने की आवश्यकता होती है, जैसे कि निम्नलिखित दिए हुए हैं:
- पूर्ण रूप से ईंधन का दहन करें अन्यथा, इंजन असंतुलित ईंधन को बर्बाद करता है और असंतुलित हाइड्रोकार्बन, कार्बन मोनोऑक्साइड (सीओ), और कालिख के अवांछित उत्सर्जन को बनाता है।
- दहनक के पार कम दबाव की हानि टरबाइन जो दहनशील फ़ीड करती है, कुशलता से संचालित करने के लिए उच्च दबाव वाले प्रवाह की आवश्यकता होती है।
- ज्वाला (दहन) को दहनक के अंदर (निहित) आयोजित किया जाना चाहिए।यदि दहन इंजन में आगे वापस आता है, तो टरबाइन चरणों को सरलता से गर्म और क्षतिग्रस्त किया जा सकता है। इसके अतिरिक्त, जैसे -जैसे टरबाइन ब्लेड अधिक उन्नत होते रहते हैं और उच्च तापमान का सामना करने में सक्षम होती जाती हैं, दहनकों को उच्च तापमान पर जलने के लिए डिज़ाइन किया जा रहा है और दहनक के कुछ हिस्सों को उन उच्च तापमानों का सामना करने के लिए डिज़ाइन करने की आवश्यकता होती है।
- यह इंजन फ्लेम-आउट की घटना में उच्च ऊंचाई पर रिलाइटिंग करने में सक्षम होना चाहिए।
- इसके निकास के लिए तापमान का प्रारूप यदि निकास प्रवाह में गर्म स्थान हैं, तो टरबाइन को ऊष्मीय तनाव या अन्य प्रकार के हानि के अधीन किया जा सकता है। इसी तरह, दहनशीलता के भीतर तापमान प्रारूप को गर्म स्थानों से बचना चाहिए, क्योंकि वे अंदर से दहनक को हानि पहुंचा सकते हैं या नष्ट कर सकते हैं।
- छोटे भौतिक आकार और वजन।अंतरिक्ष और वजन विमान अनुप्रयोगों में अति महत्वपूर्ण हैं, इसलिए अच्छी तरह से डिज़ाइन किया गया दहन सिकुड़ने का प्रयास करता है। पावर-जनरेटिंग गैस टर्बाइन की तरह गैर-विमान अनुप्रयोग, इस कारक से विवश नहीं हैं।
- ऑपरेशन की विस्तृत श्रृंखला को अधिकांशतः दहनकों के विभिन्न प्रकार के इनलेट दबावों, तापमानों और द्रव्यमान प्रवाह के साथ संचालित करने में सक्षम होना चाहिए। ये कारक इंजन के प्रारूप और पर्यावरणीय स्थितियों दोनों के साथ परिवर्तित होते हैं (अर्ताथ, कम ऊंचाई पर पूर्ण थ्रॉटल उच्च ऊंचाई पर निष्क्रिय थ्रॉटल से पृथक हो सकते हैं)।
- पर्यावरण उत्सर्जन कार्बन डाइऑक्साइड और नाइट्रोजन ऑक्साइड जैसे प्रदूषकों के विमान उत्सर्जन पर कठोरता से नियम को मानते हैं, इसलिए उन उत्सर्जन को कम करने के लिए दहनकों को डिज़ाइन करने की आवश्यकता है।(नीचे उत्सर्जन अनुभाग देखें)
इतिहास
दहनक प्रौद्योगिकी में प्रगति कई अलग-अलग क्षेत्रों पर केंद्रित है;उत्सर्जन, ऑपरेटिंग रेंज और स्थायित्व के आधआर पर प्रारंभिक जेट इंजनों ने बड़ी मात्रा में धुएं का उत्पादन करते हैं, इसलिए 1950 के दशक में प्रारंभिक दहनक अग्रिमों का उद्देश्य इंजन द्वारा उत्पादित धुएं को कम करना था। इस प्रकार धुएँ को अनिवार्य रूप से समाप्त किया गया, 1970 के दशक में अन्य उत्सर्जन को कम करने के प्रयासों को बदल दिया गया, जैसे कि असंतुलित हाइड्रोकार्बन और कार्बन मोनोआक्साइड (अधिक विवरण के लिए, नीचे उत्सर्जन अनुभाग देखें)। 1970 के दशक में भी दहनशीलता स्थायित्व में सुधार देखा गया, क्योंकि नए विनिर्माण विधियों ने लाइनर (नीचे दिए गए घटकों को देखें) जीवनकाल में लगभग 100 गुना प्रारंभिक लाइनरों में सुधार किया। 1980 के दशक में दहनियों ने पूरे ऑपरेटिंग रेंज में अपनी दक्षता में सुधार करना शुरू कर दिया; इस प्रकार पूरी शक्ति पर दहनशील्स अत्यधिक कुशल (99%+) थे, लेकिन यह दक्षता कम सेटिंग्स पर गिर गई। इस दशक में विकसित निचले स्तरों पर दक्षता में सुधार किया गया। 1990 और 2000 के दशक में उत्सर्जन, विशेष रूप से नाइट्रोजन ऑक्साइड को कम करने पर नए सिरे से ध्यान केंद्रित किया गया। दहनशीलता विधि को अभी भी सक्रिय रूप से शोध और उन्नत की जा रही है, और बहुत से आधुनिक शोध समान पहलुओं को और अच्छा बनाने पर केंद्रित है।[3]
घटक
सही इस स्थिति में दहनक का बाहरी खोल कुछ इस प्रकार दिखाई देता है, और इसकी संरचना बहुत सरल है। आवरण को सामान्यतः थोड़ा रखरखाव की आवश्यकता होती है।[4] इस स्थिति को ऊष्मीय लोड से संरक्षित किया जाता है, जिसमें हवा बहती है, इसलिए ऊष्मीय प्रदर्शन सीमित रहती है। चूंकि, आवरण दबाव पोत के रूप में कार्य करता है जो दहनक के अंदर उच्च दबाव और बाहर के कम दबाव के बीच के अंतर का सामना करना चाहिए। वह यांत्रिक (ऊष्मीय के अतिरिक्त) लोड स्थिति में ड्राइविंग डिज़ाइन कारक है।[5]
- विसारक
विसारक का प्रमुख उद्देश्य उच्च गति, अत्यधिक संकुचित, गैस कंप्रेसर से हवा को दहनक के लिए वेग को उच्चतम स्थिति से धीमा करना है। जिससे कुल दबाव में अपरिहार्य होने वाली हानि में वेग को कम किया जा सके जिसके परिणामस्वरूप डिजाइन की चुनौतियों में से दबाव से होने वाली हानि को यथासंभव सीमित किया जा सके।[6] इसके अतिरिक्त, विसारक को सीमा परत पृथक्करण जैसे प्रवाह प्रभावों से बचने के लिए जितना संभव हो उतना प्रवाह विरूपण को सीमित करने के लिए डिज़ाइन किया जाना चाहिए। अधिकांश अन्य गैस टरबाइन इंजन घटकों की तरह, विसारक को यथासंभव छोटा और हल्का करने के लिए डिज़ाइन किया जाता है।[7]
- लाइनर
लाइनर में दहन प्रक्रिया होती है और दहन क्षेत्र में विभिन्न एयरफ्लो (मध्यवर्ती, कमजोर पड़ने और ठंडा होने, हवा के प्रवाह पथ देखें) का परिचय देता है। लाइनर को विस्तारित उच्च तापमान चक्रों का सामना करने के लिए डिज़ाइन और बनाया जाना चाहिए। इस कारण से लाइनर्स को हैस्टेलाय जैसे सुपरकॉय से बनाया जाता है। इसके अतिरिक्त, भले ही उच्च-प्रदर्शन मिश्र धातुओं का उपयोग किया जाता है, लाइनर को वायु प्रवाह के साथ ठंडा किया जाना चाहिए।[8] कुछ दहनक ऊष्मीय बाधा कोटिंग का भी उपयोग करते हैं। चूंकि, एयर कूलिंग अभी भी आवश्यक है।सामान्यतः, लाइनर कूलिंग के दो मुख्य प्रकार हैं; फिल्म कूलिंग और भाप के निकासन के लिए कूलिंग को उपयोग किया जाता है। फिल्म कूलिंग लाइनर के बाहर से लेकर लाइनर के अंदर से ठंडी हवा द्वारा काम करती है। यह ठंडी हवा की पतली फिल्म बनाता है जो लाइनर की रक्षा करती है, उदाहरण के लिए, लगभग 1800 केल्विन (के) से लगभग 830 K तक लाइनर पर तापमान को कम करती है। अन्य प्रकार के लाइनर कूलिंग, भाप को कम करने वाली कूलिंग का बहुत अच्छा दृष्टिकोण है जो लाइनर के लिए छिद्रपूर्ण मध्यम सामग्री का उपयोग करता है। छिद्रपूर्ण लाइनर ठंडी हवा की छोटी मात्रा को इसके माध्यम से पारित करने की अनुमति देता है, जो फिल्म कूलिंग के समान शीतलन लाभ प्रदान करता है। दो प्राथमिक अंतर लाइनर के परिणामस्वरूप तापमान प्रारूप और आवश्यक शीतलन हवा की मात्रा में हैं। भाप कम करने वाली कूलिंग के परिणामस्वरूप बहुत अधिक तापमान प्रारूप होता है, क्योंकि शीतलन हवा समान रूप से छिद्रों के माध्यम से प्रस्तुत की जाती है। फिल्म कूलिंग एयर को सामान्यतः स्लैट्स या लूवर के माध्यम से प्रस्तुत किया जाता है, जिसके परिणामस्वरूप असमान प्रारूप होती है, जहां यह स्लैट में कूलर होता है और स्लैट्स के बीच गर्म होता है। इससे भी महत्वपूर्ण बात यह है कि भाप कम करने वाली कूलिंग बहुत कम शीतलन हवा का उपयोग करती है (फिल्म कूलिंग के लिए 20-50% के अतिरिक्त कुल एयरफ्लो के 10% के क्रम पर)। कूलिंग के लिए कम हवा का उपयोग करने से अधिक दहन के लिए उपयोग किया जा सकता है, जो उच्च प्रदर्शन, उच्च-थ्रस्ट इंजन के लिए अधिक से अधिक महत्वपूर्ण है।[9][10]
- स्नाउट
थूथन गुंबद का विस्तार है (नीचे देखें) जो एयर स्प्लिटर के रूप में कार्य करता है, प्राथमिक हवा को द्वितीयक हवा के प्रवाह (मध्यवर्ती, कमजोर पड़ने और ठंडी हवा से अलग करता है; नीचे वायु प्रवाह पथ अनुभाग देखें)।[11]
- Dome / swirler
गुंबद और भंवर दहनक का हिस्सा हैं कि प्राथमिक हवा (नीचे वायु प्रवाह पथ देखें) के माध्यम से बहती है क्योंकि यह दहन क्षेत्र में प्रवेश करता है। उनकी भूमिका तेजी से ईंधन के साथ हवा को मिलाने के लिए प्रवाह में अशांति उत्पन्न करना है।[8] प्रारंभिक दहनकों ने ब्लफ़ बॉडी डोम (स्वर्गीर के अतिरिक्त) का उपयोग करने के लिए प्रवृत्त किया, जिसने ईंधन और हवा को मिलाने के लिए हलचल जागृत करो बनाने के लिए साधारण प्लेट का उपयोग किया। अधिकांश आधुनिक डिजाइन, चूंकि, भंवर स्थिर हैं (स्विरर्स का उपयोग करें)। भंवर स्थानीय कम दबाव क्षेत्र स्थापित करता है जो कुछ दहन उत्पादों को पुन: व्यवस्थित करने के लिए मजबूर करता है, जिससे उच्च अशांति पैदा होती है।[11] चूंकि, टर्बुलेंस जितनी अधिक होगी, दहनक के लिए दबाव का हानि उतना ही अधिक होगा, इसलिए गुंबद और भंवर को सावधानीपूर्वक डिज़ाइन किया जाना चाहिए जिससे कि ईंधन और हवा को पर्याप्त रूप से मिलाने के लिए अधिक अशांति उत्पन्न न हो।[12]
- ईंधन इंजेक्टर
ईंधन इंजेक्टर दहन क्षेत्र में ईंधन शुरू करने के लिए जिम्मेदार है और, स्विरर (ऊपर) के साथ, ईंधन और हवा को मिलाने के लिए जिम्मेदार है। ईंधन इंजेक्टर के चार प्राथमिक प्रकार हैं;प्रेशर-एटोमाइज़िंग, एयर ब्लास्ट, वाष्पीकरण, और प्रीमिक्स/प्रीवापराइजिंग इंजेक्टर।[8] दबाव परमाणु ईंधन इंजेक्टर उच्च ईंधन दबावों पर निर्भर करते हैं (जितना अधिक 3,400 kilopascals (500 psi)) वह परमाणु था[nb 1] ईंधन। इस प्रकार के ईंधन इंजेक्टर को बहुत सरल होने का फायदा है, लेकिन इसमें कई हानि हैं।इस तरह के उच्च दबावों का सामना करने के लिए ईंधन प्रणाली पर्याप्त मजबूत होनी चाहिए, और ईंधन विषम रूप से परमाणु हो जाता है, जिसके परिणामस्वरूप अधूरा या असमान दहन होता है जिसमें अधिक प्रदूषक और धुएं होते हैं।[13][14]
दूसरे प्रकार का ईंधन इंजेक्टर एयर ब्लास्ट इंजेक्टर है।यह इंजेक्टर हवा की धारा के साथ ईंधन की शीट को विस्फोट करता है, जो ईंधन को सजातीय बूंदों में बदल देता है।इस प्रकार के ईंधन इंजेक्टर ने पहले धूम्रपान रहित दहनकों को जन्म दिया।उपयोग की जाने वाली हवा प्राथमिक हवा की ही मात्रा में होती है (नीचे वायु प्रवाह पथ देखें) जो कि घूमने वाले के अतिरिक्त इंजेक्टर के माध्यम से डायवर्ट की जाती है। इस प्रकार के इंजेक्टर को दबाव परमाणु प्रकार की तुलना में कम ईंधन दबाव की आवश्यकता होती है।[14]
वाष्पीकरण ईंधन इंजेक्टर, तीसरा प्रकार, उस प्राथमिक हवा में एयर ब्लास्ट इंजेक्टर के समान है, जिसे ईंधन के साथ मिलाया जाता है क्योंकि इसे दहन क्षेत्र में इंजेक्ट किया जाता है। चूंकि, ईंधन-हवा का मिश्रण दहन क्षेत्र के भीतर ट्यूब के माध्यम से यात्रा करता है। दहन क्षेत्र से गर्मी को ईंधन-हवा के मिश्रण में स्थानांतरित किया जाता है, कुछ ईंधन (इसे बेहतर मिश्रण) से पहले वाष्पित किया जाता है। यह विधि ईंधन को कम ऊष्मीय विकिरण के साथ दहन करने की अनुमति देती है, जो लाइनर की सुरक्षा में मदद करती है।चूंकि, वेपोराइज़र ट्यूब में इसके भीतर कम ईंधन प्रवाह के साथ गंभीर स्थायित्व की समस्या हो सकती है (ट्यूब के अंदर ईंधन ट्यूब को दहन गर्मी से बचाता है)।[15] दहन क्षेत्र तक पहुंचने से पहले ईंधन को मिलाकर या वाष्पीकरण करके प्रीमियरिंग/प्रीवापराइजिंग इंजेक्टर काम करते हैं। यह विधि ईंधन को हवा के साथ बहुत समान रूप से मिश्रित करने की अनुमति देती है, इंजन से उत्सर्जन को कम करती है। इस पद्धति का हानि यह है कि ईंधन ऑटो-गौरव या अन्यथा ईंधन-हवा के मिश्रण को दहन क्षेत्र तक पहुंचने से पहले दहन कर सकता है।यदि ऐसा होता है तो दहनशीलता को गंभीर रूप से क्षतिग्रस्त किया जा सकता है।[16]
- Igniter
गैस टरबाइन अनुप्रयोगों में अधिकांश इग्नाइटर स्पार्क प्लग के समान विद्युत स्पार्क इग्नाइटर हैं।इग्नाइटर को दहन क्षेत्र में होना चाहिए जहां ईंधन और हवा पहले से ही मिश्रित हैं, लेकिन इसे काफी ऊपर की ओर होने की आवश्यकता है जिससे कि यह दहन से ही क्षतिग्रस्त न हो। एक बार जब दहन शुरू में इग्नाइटर द्वारा शुरू किया जाता है, तो यह आत्मनिर्भर होता है, और इग्नाइटर का उपयोग नहीं किया जाता है।[17] कैन-एंग्यूलर और कुंडलाकार दहनकों (नीचे दिए गए दहनकों के प्रकार देखें) में, लौ दहन क्षेत्र से दूसरे में प्रचारित कर सकती है, इसलिए हर पर इग्निटर्स की आवश्यकता नहीं होती है। कुछ प्रणालियों में इग्निशन-असिस्ट तकनीकों का उपयोग किया जाता है।ऐसी विधि ऑक्सीजन इंजेक्शन है, जहां ऑक्सीजन को इग्निशन क्षेत्र में खिलाया जाता है, जिससे ईंधन सरलता से दहन करने में मदद मिलती है।यह कुछ विमान अनुप्रयोगों में विशेष रूप से उपयोगी है जहां इंजन को उच्च ऊंचाई पर पुनरारंभ करना पड़ सकता है।[18]
वायु प्रवाह पथ
सही; प्राथमिक वायु यह मुख्य दहन हवा है।यह उच्च दबाव वाले कंप्रेसर (अधिकांशतः विसारक के माध्यम से डिक्लेरेटेड) से अत्यधिक संकुचित हवा होती है, जिसे द दहनशीलता के गुंबद में मुख्य चैनलों के माध्यम से खिलाया जाता है और लाइनर छेद का पहला सेट होता है।इस हवा को ईंधन के साथ मिलाया जाता है, और फिर दहन किया जाता है।[19]
- इंटरमीडिएट एयर
इंटरमीडिएट एयर लाइनर छेद के दूसरे सेट के माध्यम से दहन क्षेत्र में इंजेक्ट की गई हवा है (प्राथमिक हवा पहले सेट से गुजरती है)।यह हवा प्रतिक्रिया प्रक्रियाओं को पूरा करती है, हवा को ठंडा करती है और कार्बन मोनोऑक्साइड (सीओ) और हाइड्रोजन (एच) की उच्च सांद्रता को कम करती है2)।[20]
- कमजोर पड़ने वाली हवा
कमजोर पड़ने वाली हवा एयरफ्लो को दहन कक्ष के अंत में लाइनर में छेद के माध्यम से इंजेक्ट किया जाता है जिससे कि टरबाइन चरणों तक पहुंचने से पहले हवा को ठंडा करने में मदद मिल सके।हवा का उपयोग सावधानीपूर्वक दहनशीलता में वांछित समान तापमान प्रारूप का उत्पादन करने के लिए किया जाता है।चूंकि, जैसा कि टरबाइन ब्लेड तकनीक में सुधार होता है, जिससे उन्हें उच्च तापमान का सामना करने की अनुमति मिलती है, कमजोर पड़ने वाली हवा का उपयोग कम किया जाता है, जिससे अधिक दहन हवा का उपयोग होता है।[20]; कूलिंग एयर कूलिंग एयर एयरफ्लो है जिसे लाइनर में छोटे छेदों के माध्यम से इंजेक्ट किया जाता है जिससे कि लाइनर को दहन तापमान से बचाने के लिए कूल एयर की परत (फिल्म) उत्पन्न हो सके।शीतलन हवा के कार्यान्वयन को सावधानीपूर्वक डिजाइन किया जाना है जिससे कि यह सीधे दहन हवा और प्रक्रिया के साथ बातचीत न करें।कुछ स्थितियों में, इनलेट हवा के 50% से अधिक का उपयोग ठंडी हवा के रूप में किया जाता है।इस शीतलन हवा को इंजेक्ट करने के कई अलग -अलग तरीके हैं, और विधि तापमान प्रारूप को प्रभावित कर सकती है जिसे लाइनर के संपर्क में है (देखें लाइनर, ऊपर)।[21]
प्रकार
कैन
क्या दहनक स्व-निहित बेलनाकार दहन कक्ष हैं।प्रत्येक का अपना ईंधन इंजेक्टर, इग्नाइटर, लाइनर और आवरण हो सकता है।[22] कंप्रेसर से प्राथमिक हवा को प्रत्येक व्यक्ति के कैन में निर्देशित किया जाता है, जहां इसे डिक्लेरेट किया जाता है, ईंधन के साथ मिलाया जाता है, और फिर प्रज्वलित किया जाता है।माध्यमिक हवा भी कंप्रेसर से आती है, जहां इसे लाइनर के बाहर खिलाया जाता है (जिसके अंदर वह दहन हो रहा है)।द्वितीयक हवा को तब खिलाया जाता है, सामान्यतः लाइनर में स्लिट्स के माध्यम से, दहन क्षेत्र में पतली फिल्म कूलिंग के माध्यम से लाइनर को ठंडा करने के लिए।[23] अधिकांश अनुप्रयोगों में, इंजन के केंद्रीय अक्ष के आसपास कई डिब्बे की व्यवस्था की जाती है, और उनके साझा निकास को खिलाया जाता है turbine(s)।कैन-प्रकार के दहनकों का उपयोग प्रारंभिक गैस टरबाइन इंजनों में सबसे व्यापक रूप से किया गया था, जो डिजाइन और परीक्षण में सरलता के कारण (एक एकल का परीक्षण कर सकते हैं, बजाय पूरे प्रणाली का परीक्षण करना है)।कैन-प्रकार के दहनकों को बनाए रखना आसान है, क्योंकि पूरे दहन अनुभाग के अतिरिक्त केवल एकल को हटाने की आवश्यकता हो सकती है।अधिकांश आधुनिक गैस टरबाइन इंजन (विशेष रूप से विमान अनुप्रयोगों के लिए) का उपयोग नहीं कर सकते हैं, क्योंकि वे अधिकांशतः विकल्पों की तुलना में अधिक वजन करते हैं।इसके अतिरिक्त, कैन के पार दबाव ड्रॉप सामान्यतः अन्य दहनकों (7%के क्रम पर) की तुलना में अधिक होता है।अधिकांश आधुनिक इंजन जो उपयोग कर सकते हैं, वे टर्बोशाफ्ट हैं, जो केन्द्रापसारक कंप्रेशर्स की विशेषता रखते हैं।[24][25]
कैनुलर
अगले प्रकार का दहनशील कैनुलर दहनशीलता है;यह शब्द कुंडलाकार कैन का सूटकेस है।CAN-TYPE COMBUSTOR की तरह, कुंडलाकार दहनकों को अपने स्वयं के ईंधन इंजेक्टर के साथ अलग-अलग लाइनर्स में निहित दहन क्षेत्र में असतत दहन क्षेत्र हैं।कैन दहनशीलता के विपरीत, सभी दहन क्षेत्र सामान्य अंगूठी (एनलस) आवरण साझा करते हैं।प्रत्येक दहन क्षेत्र को अब दबाव पोत के रूप में काम नहीं करना पड़ता है।[26] दहन क्षेत्र भी लाइनर छेद या कनेक्टिंग ट्यूबों के माध्यम से -दूसरे के साथ संवाद कर सकते हैं जो कुछ हवा को परिधि में प्रवाहित करने की अनुमति देते हैं।कैन्युलर दहनशीलता से निकास प्रवाह में सामान्यतः अधिक समान तापमान प्रारूप होती है, जो टरबाइन सेक्शन के लिए बेहतर है।यह प्रत्येक कक्ष की अपनी इग्नाइटर की आवश्यकता को भी समाप्त करता है।एक बार आग या दो डिब्बे में जलाया जाता है, यह सरलता से दूसरों को फैल सकता है और प्रज्वलित कर सकता है।इस प्रकार का दहनशील भी टाइप की तुलना में हल्का होता है, और इसमें कम दबाव ड्रॉप होता है (6%के क्रम पर)।चूंकि, कैनुलर दहनशीलता कैन दहनशीलता की तुलना में बनाए रखने के लिए अधिक कठिन हो सकता है।[27] कैनुलर दहनशीलता का उपयोग करने वाले गैस टरबाइन इंजनों के उदाहरणों में जनरल इलेक्ट्रिक J79 टर्बोजेट और प्रैट एंड व्हिटनी JT8D और रोल्स-रॉयस RB.183 Tay | रोल्स-रॉयस TAY TURBOFANS सम्मलित हैं।[28]
कुंडलाकार
अंतिम, और सबसे सामान्यतः उपयोग किया जाने वाला प्रकार का दहन पूरी तरह से कुंडलाकार दहनक है।कुंडलाकार दहनक अलग -अलग दहन क्षेत्रों के साथ दूर करते हैं और बस निरंतर लाइनर और अंगूठी (एनलस) में आवरण होते हैं।कुंडलाकार दहनकों के कई फायदे हैं, जिनमें अधिक समान दहन, छोटे आकार (इसलिए हल्का), और कम सतह क्षेत्र सम्मलित हैं।[29][30] इसके अतिरिक्त, कुंडलाकार दहनकों में बहुत समान निकास तापमान होता है।उनके पास तीन डिजाइनों (5%के आदेश पर) का सबसे कम दबाव ड्रॉप भी है।[31] कुंडलाकार डिजाइन भी सरल है, चूंकि परीक्षण में सामान्यतः पूर्ण आकार परीक्षण रिग की आवश्यकता होती है।एक इंजन जो कुंडलाकार दहनक का उपयोग करता है, वह है CFM इंटरनेशनल CFM56।लगभग सभी आधुनिक गैस टरबाइन इंजन कुंडलाकार दहनकों का उपयोग करते हैं;इसी तरह, अधिकांश दहनक अनुसंधान और विकास इस प्रकार को बेहतर बनाने पर केंद्रित है।
डबल कुंडलाकार दहनक
मानक कुंडलाकार दहनक पर भिन्नता डबल कुंडलाकार दहनशीलता (डीएसी) है।एक कुंडलाकार दहनक की तरह, डीएसी त्रिज्या के चारों ओर अलग -अलग दहन क्षेत्रों के बिना निरंतर अंगूठी है।अंतर यह है कि दहनक के रिंग के चारों ओर दो दहन क्षेत्र होते हैं;एक पायलट ज़ोन और मुख्य क्षेत्र।पायलट ज़ोन एकल कुंडलाकार दहनक की तरह काम करता है, और कम बिजली के स्तर पर संचालित एकमात्र क्षेत्र है।उच्च शक्ति के स्तर पर, मुख्य क्षेत्र का उपयोग किया जाता है, साथ ही दहनक के माध्यम से हवा और द्रव्यमान प्रवाह को बढ़ाते हैं।इस प्रकार के दहनशीलता का जीई का कार्यान्वयन कम करने पर केंद्रित है NOx और CO2 उत्सर्जन।[32] ]combust.jpg DAC का अच्छा आरेख पर्ड्यू से उपलब्ध है]।डबल कुंडलाकार दहनक, ट्रिपल कुंडलाकार और कई कुंडलाकार दहनकों के समान सिद्धांतों का विस्तार किया गया है और यहां तक कि पेटेंट कराया गया है।[33][34]
उत्सर्जन
आधुनिक गैस टरबाइन डिजाइन में ड्राइविंग कारकों में से उत्सर्जन को कम कर रहा है, और दहनशील गैस टरबाइन के उत्सर्जन में प्राथमिक योगदानकर्ता है।सामान्यतया, गैस टरबाइन इंजन से पांच प्रमुख प्रकार के उत्सर्जन हैं: स्मोक, कार्बन डाइआक्साइड (सीओ)2), कार्बन मोनोऑक्साइड (सीओ), असंतुलित हाइड्रोकार्बन (यूएचसी), और नाइट्रोजन ऑक्साइड (नहींx)।[35][36] धूम्रपान मुख्य रूप से हवा के साथ ईंधन को अधिक समान रूप से मिलाकर कम किया जाता है।जैसा कि उपरोक्त ईंधन इंजेक्टर अनुभाग में चर्चा की गई है, आधुनिक ईंधन इंजेक्टर (जैसे कि एयरब्लास्ट ईंधन इंजेक्टर) समान रूप से ईंधन पर निर्भर करते हैं और उच्च ईंधन एकाग्रता की स्थानीय जेब को खत्म करते हैं।अधिकांश आधुनिक इंजन इस प्रकार के ईंधन इंजेक्टर का उपयोग करते हैं और अनिवार्य रूप से धूम्रपान रहित होते हैं।[35]
कार्बन डाइऑक्साइड दहन प्रक्रिया का उत्पाद (रसायन विज्ञान) है, और यह मुख्य रूप से ईंधन के उपयोग को कम करके कम किया जाता है।औसतन, 1 & nbsp; जेट ईंधन जलाया गया kg; 3.2 & nbsp; co का kg उत्पादन करता है2।कार्बन डाइऑक्साइड उत्सर्जन जारी रहेगा क्योंकि निर्माता गैस टरबाइन इंजन को अधिक कुशल बनाते हैं।[36]
अनबर्न-हाइड्रोकार्बन (यूएचसी) और कार्बन-मोनोक्साइड (सीओ) उत्सर्जन अत्यधिक संबंधित हैं।यूएचसी अनिवार्य रूप से ईंधन हैं जो पूरी तरह से दहन नहीं किए गए थे, और यूएचसी ज्यादातर कम बिजली के स्तर (जहां इंजन सभी ईंधन को नहीं जला रहा है) पर उत्पादित किया जाता है।[36]UHC सामग्री का अधिकांश हिस्सा दहनक के भीतर सह -सह -सह होता है, यही वजह है कि दो प्रकार के उत्सर्जन भारी रूप से संबंधित हैं।इस करीबी संबंध के परिणामस्वरूप, सीओ उत्सर्जन के लिए अच्छी तरह से अनुकूलित दहनक यूएचसी उत्सर्जन के लिए स्वाभाविक रूप से अच्छी तरह से अनुकूलित है, इसलिए अधिकांश डिजाइन काम सीओ उत्सर्जन पर केंद्रित है।[35]
कार्बन मोनोऑक्साइड दहन का मध्यवर्ती उत्पाद है, और इसे ऑक्सीकरण द्वारा समाप्त कर दिया जाता है।सीओ और हाइड्रॉक्सिल कट्टरपंथी सीओ बनाने के लिए प्रतिक्रिया2 और हाइड्रोजन।यह प्रक्रिया, जो सीओ की खपत करती है, को अपेक्षाकृत लंबे समय की आवश्यकता होती है (अपेक्षाकृत उपयोग किया जाता है क्योंकि दहन प्रक्रिया अविश्वसनीय रूप से जल्दी होती है), उच्च तापमान और उच्च दबाव।इस तथ्य का अर्थ है कि कम-सीओ दहनशीलता में लंबा निवास समय होता है (अनिवार्य रूप से गैसों को दहन कक्ष में समय की मात्रा होती है)।[35]
सीओ, नाइट्रोजन ऑक्साइड की तरह (नहीं)x) दहन क्षेत्र में उत्पादित होते हैं।चूंकि, सीओ के विपरीत, यह उन स्थितियों के समय सबसे अधिक उत्पादित होता है जो सीओ सबसे अधिक खपत होती हैं (उच्च तापमान, उच्च दबाव, लंबे निवास समय)।इसका मतलब है कि, सामान्य रूप से, सीओ उत्सर्जन को कम करने से NO में वृद्धि होती हैx, और इसके विपरीत।इस तथ्य का अर्थ है कि अधिकांश सफल उत्सर्जन कटौती को कई तरीकों के संयोजन की आवश्यकता होती है।[35]
afterburners
एक afterburner (या रिहेट) अतिरिक्त घटक है जो कुछ जेट इंजिन ों में जोड़ा जाता है, मुख्य रूप से सैन्य पराध्वनिक विमानों पर।इसका उद्देश्य सुपरसोनिक उड़ान के लिए और टेकऑफ़ के लिए थ्रस्ट में अस्थायी वृद्धि प्रदान करना है (जैसा कि सुपरसोनिक विमान डिजाइनों के उच्च विंग लोडिंग विशिष्ट का अर्थ है कि टेक-ऑफ की गति बहुत अधिक है)।सैन्य विमान पर अतिरिक्त जोर हवाई युद्ध स्थितियों के लिए भी उपयोगी है।यह टरबाइन के (अर्ताथ बाद) के जेट पाइप के नीचे की ओर अतिरिक्त जेट ईंधन को इंजेक्ट करके और इसे दहन करके प्राप्त किया जाता है।आफ्टरबर्निंग का लाभ काफी बढ़ गया है;हानि इसकी बहुत उच्च ईंधन की खपत और अक्षमता है, चूंकि यह अधिकांशतः छोटी अवधि के लिए स्वीकार्य माना जाता है, जिसके समय इसका उपयोग किया जाता है।
जेट इंजन को ऑपरेटिंग गीला के रूप में संदर्भित किया जाता है जब बाद में उपयोग किया जाता है और सूखने पर सूख जाता है, जब इंजन का उपयोग किए बिना उपयोग किया जाता है।अधिकतम थ्रस्ट वेट का उत्पादन करने वाला इंजन अधिकतम शक्ति या अधिकतम रिहेट पर होता है (यह अधिकतम शक्ति है जिसे इंजन उत्पादन कर सकता है);अधिकतम थ्रस्ट ड्राई का उत्पादन करने वाला इंजन सैन्य शक्ति या अधिकतम सूखी है।
गैस टरबाइन में मुख्य दहनक के साथ, आफ्टरबर्नर के पास स्थिति और लाइनर दोनों हैं, जो उनके मुख्य दहनक समकक्षों के समान उद्देश्य से सेवा करते हैं।एक मुख्य दहनक और afterburner के बीच बड़ा अंतर यह है कि तापमान में वृद्धि टरबाइन खंड द्वारा विवश नहीं है, इसलिए afterburners मुख्य दहनकों की तुलना में बहुत अधिक तापमान वृद्धि होती है।[37] और अंतर यह है कि afterburners को ईंधन के साथ -साथ प्राथमिक दहनकों को मिलाने के लिए डिज़ाइन नहीं किया गया है, इसलिए सभी ईंधन को आफ्टरबर्नर सेक्शन के भीतर नहीं जलाया जाता है।[38] Afterburners भी अधिकांशतः लौ धारक के उपयोग की आवश्यकता होती है जिससे कि आफ्टरबर्नर में हवा के वेग को फ्लेम को उड़ाने से बाहर रखा जा सके।ये अधिकांशतः ईंधन इंजेक्टर के पीछे सीधे शरीर या वी-गटर होते हैं जो स्थानीयकृत कम गति वाले प्रवाह को उसी तरह से बनाते हैं जिस तरह से गुंबद मुख्य दहनक में करता है।[39]
रैमजेट्स
रैमजेट इंजन पारंपरिक गैस टरबाइन इंजन से कई मायनों में भिन्न होते हैं, लेकिन अधिकांश समान सिद्धांत हैं।एक बड़ा अंतर दहनक के बाद घूर्णन मशीनरी (एक टरबाइन) की कमी है।दहनशीलता एग्जॉस्ट को सीधे नोजल के लिए खिलाया जाता है।यह रैमजेट दहनकों को उच्च तापमान पर जलने की अनुमति देता है।एक और अंतर यह है कि कई रैमजेट दहनशील्स लाइनर का उपयोग नहीं करते हैं जैसे गैस टरबाइन दहनक करते हैं।इसके अतिरिक्त, कुछ रैमजेट दहनक अधिक पारंपरिक प्रकार के अतिरिक्त डंप दहनक हैं।डंप दहनशील्स ईंधन को इंजेक्ट करते हैं और दहनशीलता में क्षेत्र में बड़े बदलाव (कई गैस टरबाइन दहनकों में घूमने वालों के अतिरिक्त) द्वारा उत्पन्न पुनरावर्तन पर भरोसा करते हैं।[40] उस ने कहा, कई रैमजेट दहनशील्स पारंपरिक गैस टरबाइन दहनकों के समान हैं, जैसे कि रैमजेट में द दहनशीलता रिम -8 टैलोस मिसाइल द्वारा उपयोग किया जाता है, जिसमें कैन-टाइप दहनशीलता का उपयोग किया गया था।[41]
स्क्रैमजेट्स
स्क्रैमजेट (सुपरसोनिक दहन रैमजेट) इंजन पारंपरिक गैस टरबाइन इंजनों की तुलना में दहनक के लिए बहुत अलग स्थिति प्रस्तुत करते हैं (स्क्रैमजेट गैस टर्बाइन नहीं हैं, क्योंकि उनके पास सामान्यतः कुछ या कोई चलती भाग नहीं हैं)।जबकि स्क्रैमजेट दहनशील्स पारंपरिक दहनकों से शारीरिक रूप से काफी अलग हो सकते हैं, वे कई समान डिजाइन चुनौतियों का सामना करते हैं, जैसे ईंधन मिश्रण और लौ होल्डिंग।चूंकि, जैसा कि इसके नाम का अर्थ है, स्क्रैमजेट दहनशीलता को इन चुनौतियों को सुपरसोनिक प्रवाह वातावरण में संबोधित करना चाहिए।उदाहरण के लिए, माच संख्या 5 पर उड़ान भरने वाले स्क्रैमजेट के लिए, दहनशीलता में प्रवेश करने वाले वायु प्रवाह को नाममात्र के रूप में मच होगा। स्क्रैमजेट इंजन में प्रमुख चुनौतियों में से दहनशील द्वारा उत्पन्न सदमे तरंगों को इनलेट में ऊपर की ओर यात्रा करने से रोक रहा है।यदि ऐसा होता है, तो इंजन अयोग्य हो सकता है, जिसके परिणामस्वरूप अन्य समस्याओं के बीच जोर का हानि होता है।इसे रोकने के लिए, स्क्रैमजेट इंजन में दहन क्षेत्र से तुरंत पहले आइसोलेटर सेक्शन (छवि देखें) होता है।[42]
टिप्पणियाँ
- ↑ While atomize has several definitions, in this context it means to form a fine spray. It is not meant to imply that the fuel is being broken down to its atomic components.
संदर्भ
- Notes
- ↑ Flack, p. 440.
- ↑ Mattingly, Heiser, and Pratt, p. 325.
- ↑ Koff, Bernard L. (July–August 2004). "गैस टरबाइन प्रौद्योगिकी विकास: एक डिजाइनर का परिप्रेक्ष्य।". Journal of Propulsion and Power. 20 (4): 577–595. doi:10.2514/1.4361.
- ↑ Henderson and Blazowski, pp. 119–20.
- ↑ Mattingly, Heiser, and Pratt, p. 378.
- ↑ Mattingly, Heiser, and Pratt, p. 375.
- ↑ Henderson and Blazowski, p. 121.
- ↑ 8.0 8.1 8.2 Mattingly, p. 760.
- ↑ Mattingly, Heiser, and Pratt, pp. 372–4.
- ↑ Henderson and Blazowski, pp. 124–7.
- ↑ 11.0 11.1 Henderson and Blazowski, p. 124.
- ↑ Flack, p. 441.
- ↑ Henderson and Blazowski, p. 127.
- ↑ 14.0 14.1 Mattingly, Heiser, and Pratt, p. 379.
- ↑ Henderson and Blazowski, p. 128.
- ↑ Henderson and Blazowski, p. 129.
- ↑ Mattingly, Heiser, and Pratt, p. 368.
- ↑ Henderson and Blazowski, pp. 129–30.
- ↑ Henderson and Blazowski, p. 110.
- ↑ 20.0 20.1 Henderson and Blazowski, p. 111.
- ↑ Henderson and Blazowski, pp. 111, 125–7.
- ↑ Benson, Tom. Combustor-Burner. NASA Glenn Research Center. Last Updated 11 Jul 2008. Accessed 6 Jan 2010.
- ↑ Flack, p. 442.
- ↑ Flack, pp. 442–3.
- ↑ Henderson and Blazowski, p. 106.
- ↑ Mattingly, Heiser, and Pratt, pp. 377–8.
- ↑ Flack, pp. 442–4.
- ↑ Henderson and Blazowski, pp. 106–7.
- ↑ Henderson and Blazowski, p. 108.
- ↑ Mattingly, p. 757.
- ↑ Flack, p. 444.
- ↑ CFM'S Advanced Double Annular Combustor Technology Archived 2012-07-28 at archive.today. Press Release. 9 Jul 1998. Accessed 6 Jan 2010.
- ↑ Ekstedt, Edward E., et al (1994). U.S. Patent 5,323,604 Triple annular combustor for gas turbine engine].
- ↑ Schilling, Jan C., et al (1997). U.S. Patent 5,630,319 Dome assembly for a multiple annular combustor].
- ↑ 35.0 35.1 35.2 35.3 35.4 Verkamp, F. J., Verdouw, A. J., Tomlinson, J. G. (1974). Impact of Emission Regulations on Future Gas Turbine Engine Combustors. Journal of Aircraft. June 1974. Vol. 11, No. 6. pp. 340–344.
- ↑ 36.0 36.1 36.2 Sturgess, G.J.; Zelina, J.; Shouse D. T.; Roquemore, W.M. (March–April 2005). "सैन्य गैस टरबाइन इंजन के लिए उत्सर्जन में कमी प्रौद्योगिकियां". Journal of Propulsion and Power. 21 (2): 193–217. doi:10.2514/1.6528.
- ↑ Mattingly, pp. 770–1.
- ↑ Flack, pp. 445–6.
- ↑ Mattingly, p. 747.
- ↑ Stull, F. D. and Craig, R. R. (1975). Investigation of Dump Combustors with Flameholders. 13th AIAA Aerospace Sciences Meeting. Pasadena, CA. 20–22 January 1975. AIAA 75-165
- ↑ Waltrup, P.J.; White M.E.; Zarlingo F; Gravlin E. S. (January–February 2002). "अमेरिकी नौसेना रामजेट, स्क्रैमजेट, और मिश्रित-चक्र प्रणोदन विकास का इतिहास". Journal of Propulsion and Power. 18 (1): 14–27. doi:10.2514/2.5928. Archived (PDF) from the original on 2007-04-13.
- ↑ Goyne, C. P; Hall, C. D.; O'Brian, W. F.; Schetz, J. A (November 2006). HY-V SCRAMJET उड़ान प्रयोग (AIAA 2006-7901). 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. doi:10.2514/6.2006-7901. Archived (PDF) from the original on 2007-09-30.
- Bibliography
- Flack, Ronald D. (2005). "Chapter 9: Combustors and Afterburners". Fundamentals of Jet Propulsion with Applications. Cambridge Aerospace Series. New York, NY: Cambridge University Press. ISBN 978-0-521-81983-1.
- Henderson, Robert E.; Blazowski, William S. (1989). "Chapter 2: Turbopropulsion Combustion Technology". In Oates, Gordon C. (ed.). Aircraft Propulsion Systems Technology and Design. AIAA Education Series. Washington, DC: American Institute of Aeronautics and Astronautics. ISBN 0-930403-24-X.
- Mattingly, Jack D.; Heiser, William H.; Pratt, David T. (2002). "Chapter 9: Engine Component Design: Combustion Systems". Aircraft Engine Design. AIAA Education Series (2nd ed.). Reston, VA: American Institute of Aeronautics and Astronautics. ISBN 1-56347-538-3.
- Mattingly, Jack D. (2006). "Chapter 10: Inlets, Nozzles, and Combustion Systems". Elements of Propulsion: Gas Turbines and Rockets. AIAA Education Series. Reston, VA: American Institute of Aeronautics and Astronautics. ISBN 1-56347-779-3.