डेटा लिंक लेयर: Difference between revisions

From Vigyanwiki
No edit summary
Line 149: Line 149:
* [http://www.codeproject.com/Articles/57072/DataLink-Simulator DataLink layer simulation, written in C#]
* [http://www.codeproject.com/Articles/57072/DataLink-Simulator DataLink layer simulation, written in C#]
* [http://www.cs.gmu.edu/~huangyih/656/error.pdf DataLink Layer, Part 2: Error Detection and Correction]
* [http://www.cs.gmu.edu/~huangyih/656/error.pdf DataLink Layer, Part 2: Error Detection and Correction]
[[Category:ओएसआई मॉडल]]
 
[[Category:लिंक प्रोटोकॉल]]
 


[[डी:ओएसआई-मॉडल#लेयर 2 - डेटा लिंक लेयर|डी:ओएसआई-मॉडल#परत 2 - डेटा लिंक परत]]
[[डी:ओएसआई-मॉडल#लेयर 2 - डेटा लिंक लेयर|डी:ओएसआई-मॉडल#परत 2 - डेटा लिंक परत]]


 
[[Category:All Wikipedia articles written in American English]]
[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Articles with short description]]
[[Category:CS1 français-language sources (fr)]]
[[Category:CS1 maint]]
[[Category:CS1 Ελληνικά-language sources (el)]]
[[Category:Citation Style 1 templates|W]]
[[Category:Collapse templates]]
[[Category:Created On 14/12/2022]]
[[Category:Created On 14/12/2022]]
[[Category:Vigyan Ready]]
[[Category:Exclude in print]]
[[Category:Interwiki category linking templates]]
[[Category:Interwiki link templates]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Multi-column templates]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages using div col with small parameter]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates based on the Citation/CS1 Lua module]]
[[Category:Templates generating COinS|Cite web]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates used by AutoWikiBrowser|Cite web]]
[[Category:Templates using TemplateData]]
[[Category:Templates using under-protected Lua modules]]
[[Category:Use American English from March 2019]]
[[Category:Use mdy dates from March 2019]]
[[Category:Wikimedia Commons templates]]
[[Category:Wikipedia fully protected templates|Div col]]
[[Category:Wikipedia metatemplates]]
[[Category:ओएसआई मॉडल]]
[[Category:लिंक प्रोटोकॉल]]

Revision as of 10:13, 6 January 2023

डेटा लिंक परत, कंप्यूटर नेटवर्किंग मे ओएसआई प्रारूप की सात-परत मे से दूसरी परत होती है। यह परत प्रोटोकॉल परत होती है। जो भौतिक परत मे एक नेटवर्क के भाग पर नोड्स के बीच डेटा स्थानांतरित करती है।[2] डेटा लिंक परत नेटवर्क संस्थाओं के बीच डेटा स्थानांतरित करने के लिए कार्यात्मक और प्रक्रियात्मक साधन प्रदान करती है तथा भौतिक परत में होने वाली त्रुटियों का पता लगाने और संभावित रूप से सही करने के साधन भी प्रदान कर सकती है।

डेटा लिंक परत नेटवर्क के समान स्तर पर नोड्स के बीच फ़्रेम के स्थानीय वितरण से संबंधित है। डेटा-लिंक फ़्रेम जैसा कि उन प्रोटोकॉल डेटा इकाइयों को कहा जाता है, जो स्थानीय क्षेत्र नेटवर्क की सीमाओं को पार नहीं करते हैं। इंटर-नेटवर्क रूटिंग और ग्लोबल एड्रेसिंग उच्च-स्तरीय कार्य होता हैं, जो डेटा-लिंक प्रोटोकॉल को स्थानीय वितरण, एड्रेसिंग और मीडिया मध्यस्थता पर ध्यान केंद्रित करने की अनुमति देते हैं। इस तरह डेटा लिंक परत पास के नियंत्रित स्थानांतरण के अनुरूप होती है। यह अपने अंतिम स्थान के लिए बिना संबंध के एक माध्यम तक पहुंचने के लिए संघर्ष करने वाले पक्षों के बीच मध्यस्थता करने का प्रयास करती है। जब उपकरण एक साथ एक माध्यम का उपयोग करने का प्रयास करते हैं, तो फ्रेम टकराव होता है। जो डेटा-लिंक प्रोटोकॉल को निर्दिष्ट करते हैं कि किस प्रकार के उपकरण ऐसे टकरावों का पता लगा सकते हैं और उनका सामना कर सकते हैं, तथा उन्हें कम करने या रोकने के लिए सुरक्षा प्रदान कर सकते हैं।

डेटा लिंक प्रोटोकॉल के उदाहरण ईथरनेट, पॉइंट-टू-पॉइंट प्रोटोकॉल, एचडीएलसी और एडीसीसीपी होते हैं। जो इंटरनेट प्रोटोकॉल सूट (टीसीपी/आईपी) में, डेटा लिंक परत की कार्यक्षमता लिंक परत के अन्दर समाहित होते है, तथा यह वर्णनात्मक प्रारूप की सबसे नीचे की परत है, जिसे भौतिक मूलढ़ांचा से स्वतंत्र माना जाता है।

फलन

डेटा लिंक परत भौतिक लिंक परत से जुड़े होस्ट के बीच डेटा फ्रेम को संचार के लिए प्रदान करता है। ओएसआई नेटवर्क संरचना के सेमेन्टिक्स के अन्दर डेटा लिंक परत के प्रोटोकॉल नेटवर्क परत से सेवाओ के अनुरोधों का जवाब देते हैं, तथा भौतिक स्तर पर सेवा अनुरोध जारी करके अपना कार्य करते हैं। वह स्थानांतरण विश्वसनीय या विश्वसनीयता (कंप्यूटर नेटवर्किंग) हो सकता है। कई डेटा लिंक प्रोटोकॉल में सफल फ्रेम अधिग्रहण और स्वीकृति का परिकलन नहीं होता है। और कुछ डेटा लिंक प्रोटोकॉल संचार त्रुटियों के लिए कोई जांच भी नहीं कर सकते हैं। तथा उन परिस्थितियों में उच्च-स्तरीय प्रोटोकॉल को प्रवाह नियंत्रण, त्रुटि जाँच परिकलन और पुन: प्रसारण प्रदान करना चाहिए।

फ़्रेम हेडर में स्रोत और डेस्टिनेशन के एड्रेस होते हैं, जो इंगित करते हैं कि कौन से उपकरण ने फ़्रेम की उत्पत्ति की है और किस उपकरण से इसे प्राप्त करने और संसाधित करने की उम्मीद होती है। नेटवर्क परत के पदानुक्रमित और रूट करने योग्य एड्रेसों के विपरीत, परत-2 के एड्रेस समतल होते हैं, जिसका अर्थ है कि एड्रेस के किसी भी भाग का उपयोग उस तार्किक या भौतिक समूह की पहचान करने के लिए नहीं किया जा सकता है जिससे एड्रेस संबंधित होता है।

कुछ नेटवर्क में जैसे IEEE 802 स्थानीय क्षेत्र नेटवर्क, डेटा लिंक परत को मीडिया एक्सेस कंट्रोल और लॉजिकल लिंक कंट्रोल उप परत के साथ अधिक विस्तार से वर्णित किया गया है। इसका अर्थ यह है कि IEEE 802.2 एलएलसी प्रोटोकॉल का उपयोग IEEE 802 मैक की सभी परतों, जैसे ईथरनेट, टोकन रिंग, IEEE 802.11 आदि के साथ-साथ एफडीडीआई जैसी कुछ IEEE-802 मैक परतों के साथ किया जा सकता है। अन्य डेटा-लिंक-परत प्रोटोकॉल, जैसे एचडीएलसी, दोनों उपपरत को सम्मिलित करने के लिए निर्दिष्ट होते हैं, हालांकि कुछ अन्य प्रोटोकॉल, जैसे कि सिस्को एचडीएलसी, एक अलग एलएलसी परत के साथ संयोजन में मैक परत के रूप में एचडीएलसी के निम्न-स्तरीय फ़्रेमिंग का उपयोग करते हैं। आईटीयू-टी G.hn मानक में, जो उपस्थित घर की वायरिंग पावर लाइन, फोन लाइन और ईथरनेट केबल का उपयोग करके एक उच्च-गति 1 गीगाबिट/सेकंड तक स्थानीय क्षेत्र नेटवर्क बनाने का एक तरीका प्रदान करता है, डेटा लिंक परत तीन उप-परतों, एप्लिकेशन प्रोटोकॉल अभिसरण, लॉजिकल लिंक कंट्रोल और मीडिया एक्सेस कंट्रोल में विभाजित होता है।

उप-परत

डेटा लिंक परत को प्रायः दो उपपरतों में विभाजित किया जाता है। जिनमे लॉजिकल लिंक कंट्रोल और मीडिया एक्सेस कंट्रोल सम्मिलित है।[3]

लॉजिकल लिंक कंट्रोल उप-परत

सर्वोच्च उपपरत एलएलसी बहुसंकेतक प्रोटोकॉल डेटा लिंक परत के शीर्ष पर चल रहा है, और वैकल्पिक रूप से प्रवाह नियंत्रण, परिकलन और त्रुटि सूचना प्रदान करता है। एलएलसी डेटा लिंक का पता लगाना और नियंत्रण प्रदान करता है। यह निर्दिष्ट करता है कि संचरण माध्यम की स्थिति को संबोधित करने के लिए प्रवर्तक और प्राप्तकर्ता मशीनों के बीच आदान-प्रदान किए गए डेटा को नियंत्रित करने के लिए कौन से यंत्र का उपयोग किया जाना है।

मीडिया नियंत्रण कंट्रोल उप परत

मैक उस उपपरत को संदर्भित कर सकता है, जो यह निर्धारित करता है कि किसी एक समय में मीडिया को नियंत्रण करने की अनुमति किसे प्राप्त है। (जैसे सीएसएमए/सीडी) दूसरी बार यह मैक एड्रेसों के आधार पर वितरित फ्रेम संरचना को संदर्भित करता है।

सामान्य रूप से मीडिया एक्सेस कंट्रोल के वितरित और केंद्रीकृत दो रूप होते हैं।[4] इन दोनों की तुलना लोगों के बीच संचार से की जा सकती है। बोलने वाले लोगों से बने एक नेटवर्क में, अर्थात एक वार्तालाप, वे प्रत्येक यादृच्छिक समय को रोकेंगे और फिर से बोलने का प्रयास करेंगे। प्रभावी रूप से "नहीं, आप पहले" यह कहने का एक लंबा और विस्तृत खेल स्थापित करेंगे।

मीडिया एक्सेस कंट्रोल उपपरत फ्रेम तुल्यकालन भी करता है, जो संचार बिटस्ट्रीम में डेटा के प्रत्येक फ्रेम के प्रारंभ और अंत को निर्धारित करता है। इसमें कई विधियों में से एक है। समय-आधारित पहचान, वर्ण गणना, बाइट स्टफिंग और बिट स्टफिंग सम्मिलित है।

  • समय-आधारित दृष्टिकोण फ्रेम के बीच एक निर्दिष्ट समय की अपेक्षा करता है।
  • कैरेक्टर काउंटिंग फ्रेम हेडर में बचे हुए कैरेक्टर्स की गिनती को नितंत्रित करता है। हालाँकि, यदि यह क्षेत्र दूषित होता है, तो यह विधि सरलता से बाधित हो जाती है।
  • बाइट स्टफिंग डीएलई एसटीएक्स जैसे विशेष बाइट अनुक्रम के साथ फ्रेम से पहले होती है और इसे डीएलई ईटीएक्स के साथ सफल बनाती है। डीएलई बाइट मान 0x10 की उपस्थिति को अन्य डीएलई से बचाना होगा। प्राप्तकर्ता पर प्रारम्भ और स्टॉप मार्क का पता लगाया जाता है और साथ ही डाले गए डीएलई वर्णों को हटा दिया जाता है।
  • इसी तरह, बिट स्टफिंग मे प्रारंभ और अंत चिह्नों को एक विशेष बिट पैटर्न (जैसे a 0, 6 1 बिट्स और a 0) वाले चिह्नों से परिवर्तित कर देता है। प्रेषित किए जाने वाले डेटा में इस बिट तरीके की घटनाओं को थोड़ा डालने से बचा जाता है। उदाहरण का उपयोग करने के लिए जहां चिह्न 01111110 होते है, डेटा स्ट्रीम में 5 लगातार 1 के बाद 0 डाला जाता है। प्राप्त अंत में चिह्न और सम्मिलित 0 को हटा दिया जाता है। यह प्राप्तकर्ता के लिए मनमाने ढंग से लंबे फ्रेम और साधारण तुल्यकालन बनाता है। स्टफ्ड बिट जोड़ा जाता है, यद्यपि निम्न डेटा बिट 0 हो, जिसे सिंक अनुक्रम के लिए गलत नहीं माना जा सकता है, ताकि प्राप्तकर्ता स्पष्ट रूप से स्टफ्ड बिट्स को सामान्य बिट्स से अलग कर सके।

सेवाएं

डेटा लिंक परत द्वारा प्रदान की जाने वाली सेवाएं हैं:

त्रुटि का पता लगाना और सुधार

फ़्रेमिंग के अतिरिक्त, डेटा लिंक परत संचार त्रुटियों का पता लगा सकती है और उनको पुनः प्राप्त भी कर सकती है। संचार त्रुटियों का पता लगाने के लिए या पुनः प्राप्त के लिए प्रेषक को भेजे गए फ्रेम में त्रुटि पहचान कोड के रूप में अनावश्यक जानकारी जोड़नी होती है। जब प्राप्तकर्ता एक फ्रेम को प्राप्त करता है, तो यह सत्यापित करता है कि प्राप्त त्रुटि पहचान कोड एक पुनर्गणना त्रुटि पहचान कोड के अनुरूप है या नहीं।

एक त्रुटि पहचान कोड को एक फलन के रूप में परिभाषित किया जा सकता है, जो बिट्स की कुल संख्या N के प्रत्येक स्ट्रिंग के अनुरूप r (अनावश्यक बिट्स की मात्रा) की गणना करता है। सबसे सरल त्रुटि पहचान कोड समतुल्यता बिट होती है, जो एक प्राप्तकर्ता को संचार त्रुटियों का पता लगाने की अनुमति देता है। तथा प्रेषित N + r बिट्स के बीच एक बिट को प्रभावित करता है। यदि कई फ़्लिप बिट्स होती हैं, तो जाँच विधि प्राप्तकर्ता की तरफ इसका पता लगाने में सक्षम नहीं हो सकती है। समतुल्यता त्रुटि पहचान की तुलना में अधिक उन्नत तरीके उपस्थित होते हैं, जो गुणवत्ता और सुविधाओं के उच्च ग्रेड प्रदान करते हैं।

H E L L O
8 5 12 12 15

मेटा डेटा का उपयोग करके यह कैसे काम करता है इसका एक सरल उदाहरण वर्णमाला में प्रत्येक अक्षर को उसकी स्थिति के रूप में एन्कोड करके "HELLO" शब्द प्रसारित कर रहा है। इस प्रकार अक्षर A को 1 के रूप में, B को 2 के रूप में कोड किया गया है। और इसी तरह दाईं ओर तालिका में दिखाया गया है। कि परिणामी संख्याओं को जोड़ने पर 8 + 5 + 12 + 12 + 15 = 52 प्राप्त होता है, और 5 + 2 = 7 मेटाडेटा की गणना करता है। अंत में, "8 5 12 12 15 7" संख्या क्रम प्रसारित किया जाता है, जिसे प्राप्तकर्ता अपने अंत में देखेगा यदि कोई संचरण त्रुटियां नहीं हैं। प्राप्तकर्ता जानता है कि प्राप्त अंतिम संख्या त्रुटि-पता लगाने वाला मेटाडेटा है और इससे पहले कि सभी डेटा संदेश है, इसलिए प्राप्तकर्ता उपरोक्त गणित की पुनर्गणना कर सकता है और यदि मेटाडेटा अनुरूप है, तो यह निष्कर्ष निकाला जा सकता है कि डेटा त्रुटि मुक्त प्राप्त हुआ है। हालांकि, यदि प्राप्तकर्ता "7 5 12 12 15 7" अनुक्रम (कुछ त्रुटि द्वारा बदला गया पहला तत्व) जैसा कुछ देखता है, तो यह 7 + 5 + 12 + 12 + 15 = 51 और 5 + 1 = 6, की गणना करके चला सकता है। और प्राप्त डेटा को दोषपूर्ण के रूप में छोड़ दें क्योंकि 6, 7 के बराबर नहीं होता है।

अधिक परिष्कृत त्रुटि का पता लगाने और सुधार कलनविधि से इस जोखिम को कम करने के लिए प्रतिरूपित किया गया है कि डेटा में कई संचरण त्रुटियां एक दूसरे को नष्ट कर देंगी और पता नहीं चलेगा। एक कलनविधि जो यह भी पता लगा सकती है कि सही बाइट प्राप्त हुए हैं, लेकिन आदेश से बाहर चक्र्रीय अतिरिक्तता जांच या सीआरसी है। इस कलनविधि का उपयोग प्रायः डेटा लिंक परत में किया जाता है।

प्रोटोकॉल उदाहरण

टीसीपी/आईपी प्रारूप से संबंध

इंटरनेट प्रोटोकॉल सूट (टीसीपी/आईपी) में ओएसआई की डेटा लिंक परत कार्यक्षमता इसकी सबसे नीचे की परत, लिंक परत के अन्दर समाहित होती है। टीसीपी/आईपी लिंक परत में उस लिंक का ऑपरेटिंग स्कोप होता है, जिससे एक होस्ट जुड़ा होता है। और लिंक पर होस्ट का पता लगाने तथा लिंक पर डेटा फ्रेम संचार करने के लिए हार्डवेयर एड्रेस प्राप्त करने के बिंदु केवल हार्डवेयर वितरण के साथ स्वयं को चिंतित करता है। लिंक-परत की कार्यक्षमता RFC 1122 में वर्णित की गई थी और इसे ओएसआई की डेटा लिंक परत से भिन्न रूप से परिभाषित किया गया है, तथा इसमें स्थानीय लिंक को प्रभावित करने वाली सभी विधियों को सम्मिलित किया गया है।

टीसीपी/आईपी प्रारूप नेटवर्क के लिए ऊपर से नीचे विस्तृत परिकलन संदर्भ नहीं होता है। यह इंटरनेट के संचालन के लिए आवश्यक टीसीपी/आईपी के इंटरनेटवर्किंग प्रोटोकॉल के सूट के प्रारूप में आवश्यक तार्किक समूहों और कार्यों के दायरे को दर्शाने के उद्देश्य से तैयार किया गया था। सामान्य रूप से ओएसआई और टीसीपी/आईपी प्रारूप की प्रत्यक्ष या सख्त तुलना से बचा जाना चाहिए।, क्योंकि टीसीपी/आईपी में परत एक प्रमुख परिकलन मानदंड नहीं होता है। और सामान्य तरीके से (RFC 3439) इसे हानिकारक माना जाता है। तथा विशेष रूप से टीसीपी/आईपी एनकैप्सुलेशन आवश्यकताओं के सख्त पदानुक्रमित अनुक्रम को निर्धारित नहीं करता है। जैसा कि ओएसआई प्रोटोकॉल के लिए जिम्मेदार होता है।

यह भी देखें

संदर्भ

  1. "X.225 : Information technology – Open Systems Interconnection – Connection-oriented Session protocol: Protocol specification". Archived from the original on February 1, 2021. Retrieved November 24, 2021.
  2. "परत 2 क्या है, और आपको परवाह क्यों करनी चाहिए?". accel-networks.com. Archived from the original on February 18, 2010. Retrieved September 29, 2009.
  3. Regis J. Bates and Donald W. Gregory (2007). आवाज और डेटा संचार पुस्तिका (5th ed.). McGraw-Hill Professional. p. 45. ISBN 978-0-07-226335-0.
  4. Guowang Miao; Guocong Song (2014). ऊर्जा और स्पेक्ट्रम कुशल वायरलेस नेटवर्क डिजाइन. Cambridge University Press. ISBN 978-1107039889.


बाहरी संबंध


डी:ओएसआई-मॉडल#परत 2 - डेटा लिंक परत