अनुपात: Difference between revisions
No edit summary |
(TEXT) |
||
| Line 1: | Line 1: | ||
{{short description|Relationship between two numbers of the same kind}} | {{short description|Relationship between two numbers of the same kind}} | ||
{{for| | {{for|गैर-आयामहीन अनुपात|दर (गणित) {{!}} दरें}} | ||
{{other uses}} | {{other uses}} | ||
{{redirect| | {{redirect|प्रति है|व्याकरणिक निर्माण|प्रति हूँ}} | ||
[[File:Aspect-ratio-4x3.svg|thumb|[[मानक-परिभाषा टेलीविजन]] की चौड़ाई और ऊंचाई का अनुपात]]गणित में, एक अनुपात दर्शाता है कि एक [[संख्या]] में कितनी बार दूसरी संख्या | [[File:Aspect-ratio-4x3.svg|thumb|[[मानक-परिभाषा टेलीविजन]] की चौड़ाई और ऊंचाई का अनुपात]]गणित में, एक अनुपात दर्शाता है कि एक [[संख्या]] में कितनी बार दूसरी संख्या सम्मिलित है। उदाहरण के लिए, यदि एक फल की कटोरी में आठ संतरे और छह नींबू हैं, तो संतरे से नींबू का अनुपात आठ से छह (अर्थात, 8:6, जो अनुपात 4:3 के बराबर है) है। इसी तरह, नींबू का संतरे से अनुपात 6:8 (या 3:4) है और संतरे का फल की कुल मात्रा से अनुपात 8:14 (या 4:7) है। | ||
किसी अनुपात में संख्याएँ किसी भी प्रकार की मात्राएँ हो सकती हैं, जैसे लोगों या वस्तुओं की संख्या, या जैसे लम्बाई, भार, समय आदि की माप। अधिकांश संदर्भों में, दोनों संख्याएँ धनात्मक पूर्णांक तक सीमित हैं। | किसी अनुपात में संख्याएँ किसी भी प्रकार की मात्राएँ हो सकती हैं, जैसे लोगों या वस्तुओं की संख्या, या जैसे लम्बाई, भार, समय आदि की माप। अधिकांश संदर्भों में, दोनों संख्याएँ धनात्मक पूर्णांक तक सीमित हैं। | ||
| Line 10: | Line 10: | ||
एक अनुपात या तो दोनों गठित संख्याओं को देकर निर्दिष्ट किया जा सकता है, जिसे ''a'' से ''b'' या ''a'':''b'' के रूप में लिखा जाता है, या उनके भागफल का मूल्य देकर {{nowrap|{{sfrac|''a''|''b''}}.<ref>New International Encyclopedia</ref>}}<ref>{{Cite web|title=अनुपात|url=https://www.mathsisfun.com/numbers/ratio.html|access-date=2020-08-22|website=www.mathsisfun.com}}</ref><ref>{{Cite web|last=Stapel|first=Elizabeth|title=अनुपात|url=https://www.purplemath.com/modules/ratio.htm|access-date=2020-08-22|website=Purplemath}}</ref> समान भागफल समान अनुपात के अनुरूप हैं। | एक अनुपात या तो दोनों गठित संख्याओं को देकर निर्दिष्ट किया जा सकता है, जिसे ''a'' से ''b'' या ''a'':''b'' के रूप में लिखा जाता है, या उनके भागफल का मूल्य देकर {{nowrap|{{sfrac|''a''|''b''}}.<ref>New International Encyclopedia</ref>}}<ref>{{Cite web|title=अनुपात|url=https://www.mathsisfun.com/numbers/ratio.html|access-date=2020-08-22|website=www.mathsisfun.com}}</ref><ref>{{Cite web|last=Stapel|first=Elizabeth|title=अनुपात|url=https://www.purplemath.com/modules/ratio.htm|access-date=2020-08-22|website=Purplemath}}</ref> समान भागफल समान अनुपात के अनुरूप हैं। | ||
नतीजतन, एक अनुपात को संख्याओं की एक क्रमबद्ध जोड़ी के रूप में माना जा सकता है, एक [[अंश (गणित)]] अंश में पहली संख्या के साथ और दूसरा भाजक में, या इस अंश द्वारा निरूपित मूल्य के रूप | नतीजतन, एक अनुपात को संख्याओं की एक क्रमबद्ध जोड़ी के रूप में माना जा सकता है, एक [[अंश (गणित)]] अंश में पहली संख्या के साथ और दूसरा भाजक में, या इस अंश द्वारा निरूपित मूल्य के रूप में माना जा सकता है। (गैर-शून्य) [[प्राकृतिक संख्या]]ओं द्वारा दिए गए गणनाओं के अनुपात [[परिमेय संख्या]]एँ हैं, और कभी-कभी प्राकृतिक संख्याएँ भी हो सकती हैं। जब दो मात्राओं को एक ही इकाई से मापा जाता है, जैसा कि प्रायः होता है, उनका अनुपात एक विमाहीन संख्या होती है। दो मात्राओं का भागफल जो विभिन्न इकाइयों से मापा जाता है, [[दर (गणित)]] कहलाती है।<ref>''"The quotient of two numbers (or quantities); the relative sizes of two numbers (or quantities)"'', "The Mathematics Dictionary" [https://books.google.com/books?id=UyIfgBIwLMQC&lpg=PA349&dq=dictionary%20ratio&pg=PA349#v=onepage&q=dictionary%20ratio&f=false]</ref> | ||
== संकेतन और शब्दावली == | == संकेतन और शब्दावली == | ||
संख्या A और B के अनुपात को इस प्रकार व्यक्त किया जा सकता है:<ref>New International Encyclopedia</ref> | |||
* A से B का अनुपात | * A से B का अनुपात | ||
* | *A:B | ||
*A, B के लिए है (जब इसके बाद C, D के लिए है | *A, B के लिए है (जब इसके बाद C, D के लिए है; नीचे देखें) | ||
*एक अंश (गणित) जिसमें A अंश और B भाजक के रूप में होता है जो भागफल का प्रतिनिधित्व करता है (अर्थात, A को B से विभाजित किया जाता है, या <math>\tfrac{A}{B}</math>). इसे साधारण या दशमलव अंश, या प्रतिशत आदि के रूप में व्यक्त किया जा सकता है।<ref>Decimal fractions are frequently used in technological areas where ratio comparisons are important, such as aspect ratios (imaging), compression ratios (engines or data storage), etc.</ref> | *एक अंश (गणित) जिसमें A अंश और B भाजक के रूप में होता है जो भागफल का प्रतिनिधित्व करता है (अर्थात, A को B से विभाजित किया जाता है, या <math>\tfrac{A}{B}</math>). इसे साधारण या दशमलव अंश, या प्रतिशत आदि के रूप में व्यक्त किया जा सकता है।<ref>Decimal fractions are frequently used in technological areas where ratio comparisons are important, such as aspect ratios (imaging), compression ratios (engines or data storage), etc.</ref> | ||
जब एक अनुपात को A:B के रूप में लिखा जाता है, तो दो- | जब एक अनुपात को A:B के रूप में लिखा जाता है, तो दो- बिन्दु वर्ण कभी-कभी अपूर्ण विराम चिह्न होते हैं।<ref name="MathWorld-colon">{{cite web |url=https://mathworld.wolfram.com/Colon.html |title=पेट|last=Weisstein |first=Eric W. |author-link=Eric W. Weisstein |website=[[MathWorld]] |date=2022-11-04 |access-date=2022-11-26 }}</ref> [[यूनिकोड|एकल कूट]] में, {{unichar|3a|अपूर्ण विराम}} यह है, हालांकि [[यूनिकोड|एकल कूट]] एक समर्पित अनुपात संप्रतीक {{unichar|2236|अनुपात}} भी प्रदान करता है, .<ref name="Unicode">{{cite web |url=https://www.unicode.org/charts/PDF/U0000.pdf |publisher=Unicode, Inc. |website=The Unicode Standard, Version 15.0 |title=ASCII विराम चिह्न|date=2022 |access-date=2022-11-26 |quote=[003A is] का उपयोग विभाजन या पैमाने को दर्शाने के लिए भी किया जाता है; उस गणितीय उपयोग के लिए 2236 {{टाइपो नहीं|∶}} is preferred }}</ref> | ||
A | संख्या A और B को कभी-कभी अनुपात का पद कहा जाता है, जिसमें A [[पूर्ववर्ती (व्याकरण)]] और B परिणामी होता है।<ref>[http://www.britannica.com/topic/ratio from the Encyclopædia Britannica]</ref> | ||
दो से अधिक पदों वाले अनुपातों के ऐसे अनुपात का अर्थ यह है कि बायीं ओर किन्हीं दो पदों का अनुपात दायीं ओर के | दो अनुपात A:B और C:D की समानता व्यक्त करने वाला कथन 'अनुपात' कहलाता है,<ref>Heath, p. 126</ref> और A:B = C:D या A:B∷C:D के रूप में लिखा गया है। यह अनुवर्ती रूप, जब अंग्रेजी भाषा में बोला या लिखा जाता है, प्रायः (A से B है) जैसे (C से D) व्यक्त किया जाता है। | ||
A, B, C और D को समानुपात के पद कहते हैं। A और D को इसके चरम कहा जाता है, और B और C को इसका साधन कहा जाता है। तीन या अधिक अनुपातों की समानता, जैसे A:B = C:D = E:F, को 'सतत अनुपात' कहा जाता है।<ref>New International Encyclopedia</ref> | |||
अनुपात का उपयोग कभी-कभी तीन या इससे भी अधिक शब्दों के साथ किया जाता है, उदाहरण के लिए, एक [[आयामी लकड़ी]] के किनारे की लंबाई का अनुपात जो कि दस इंच लंबा होता है, अतः | |||
:<math>\text {मोटाई : चौड़ाई : लंबाई} = 2:4:10;</math> | |||
:(अनियोजित माप; लकड़ी को मुलायम रखने पर पहली दो संख्याएँ थोड़ी कम हो जाती हैं) | |||
एक अच्छा स्थूल मिश्रण (आयतन इकाइयों में) कभी-कभी उद्धृत किया जाता है | |||
:<math>\text{ बज्रलेप : रेत : कंकड़ } = 1:2:4.</math><ref>[http://www.bellegroup.com/es/support/mixingHints.html Belle Group concrete mixing hints]</ref> | |||
बज्रलेप और पानी की मात्रा में 4/1 भागों के (बल्कि सूखे) मिश्रण के लिए, यह कहा जा सकता है कि बज्रलेप से पानी का अनुपात 4:1 है, या कि बज्रलेप पानी से 4 गुना ज्यादा है, या कि वहाँ एक चौथाई (1/4) बज्रलेप जितना पानी है। | |||
दो से अधिक पदों वाले अनुपातों के ऐसे अनुपात का अर्थ यह है कि बायीं ओर किन्हीं दो पदों का अनुपात दायीं ओर के दो पदों के अनुपात के बराबर होता है। | |||
== इतिहास और व्युत्पत्ति == | == इतिहास और व्युत्पत्ति == | ||
अनुपात शब्द की उत्पत्ति [[प्राचीन यूनानी]] | अनुपात शब्द की उत्पत्ति [[प्राचीन यूनानी]] {{lang|grc|λόγος}} ([[लोगो|लोगस]]) में खोजी जा सकती है। शुरुआती अनुवादकों ने इसे [[लैटिन]] में इसे अनुपात (कारण; तर्कसंगत शब्द के रूप में) के रूप में प्रस्तुत किया । एक और आधुनिक व्याख्या यूक्लिड का अर्थ अभिकलन या गणना के अधिक समान है।<ref>Penny Cyclopædia, p. 307</ref> मध्यकालीन लेखकों ने इस शब्द का प्रयोग किया था{{lang|la|proportio}}(अनुपात) अनुपात को इंगित करने के लिए और{{lang|la|proportionalitas}}(आनुपातिकता) अनुपात की समानता के लिए।<ref>Smith, p. 478</ref> | ||
यूक्लिड ने तत्वों में दिखाई देने वाले परिणामों को पहले के स्रोतों से एकत्रित किया। [[पाइथागोरसवाद]] ने संख्याओं पर लागू होने वाले अनुपात और समानुपात के सिद्धांत को विकसित किया।<ref>Heath, p. 112</ref> पाइथागोरस की संख्या की अवधारणा में केवल वह | यूक्लिड ने तत्वों में दिखाई देने वाले परिणामों को पहले के स्रोतों से एकत्रित किया। [[पाइथागोरसवाद]] ने संख्याओं पर लागू होने वाले अनुपात और समानुपात के सिद्धांत को विकसित किया।<ref>Heath, p. 112</ref> पाइथागोरस की संख्या की अवधारणा में केवल वह सम्मिलित था जिसे आज परिमेय संख्या कहा जाता है, ज्यामिति में सिद्धांत की वैधता पर संदेह पैदा करता है, जहां पाइथागोरस ने भी खोज की, अतुलनीय अनुपात ([[अपरिमेय संख्या]] के अनुरूप) मौजूद हैं। अनुपात के एक सिद्धांत की खोज जो अनुरूपता नहीं मानती है, शायद कनिडस के यूडोक्सस के कारण है। द एलिमेंट्स की पुस्तक VII में प्रकट होने वाले अनुपात के सिद्धांत की व्याख्या आनुपातिकता के अनुपात के पहले के सिद्धांत को दर्शाती है।<ref>Heath, p. 113</ref> | ||
कई सिद्धांतों का अस्तित्व अनावश्यक रूप से जटिल लगता है क्योंकि अनुपात, काफी हद तक, भागफल और उनके संभावित मूल्यों के साथ पहचाने जाते हैं। हालांकि, यह एक अपेक्षाकृत हालिया विकास है, जैसा कि इस तथ्य से देखा जा सकता है कि आधुनिक ज्यामिति पाठ्यपुस्तकें अभी भी अनुपात और भागफल के लिए विशिष्ट शब्दावली और संकेतन का उपयोग करती हैं। इसके दो कारण हैं: पहला, अपरिमेय संख्याओं को सही संख्या के रूप में स्वीकार करने के लिए पहले उल्लेखित अनिच्छा थी, और दूसरा, अनुपातों की पहले से स्थापित शब्दावली को बदलने के लिए व्यापक रूप से उपयोग किए जाने वाले प्रतीकवाद की कमी ने विकल्प के रूप में भिन्नों की पूर्ण स्वीकृति में देरी की। 16 वीं शताब्दी।<ref>Smith, p. 480</ref> | कई सिद्धांतों का अस्तित्व अनावश्यक रूप से जटिल लगता है क्योंकि अनुपात, काफी हद तक, भागफल और उनके संभावित मूल्यों के साथ पहचाने जाते हैं। हालांकि, यह एक अपेक्षाकृत हालिया विकास है, जैसा कि इस तथ्य से देखा जा सकता है कि आधुनिक ज्यामिति पाठ्यपुस्तकें अभी भी अनुपात और भागफल के लिए विशिष्ट शब्दावली और संकेतन का उपयोग करती हैं। इसके दो कारण हैं: पहला, अपरिमेय संख्याओं को सही संख्या के रूप में स्वीकार करने के लिए पहले उल्लेखित अनिच्छा थी, और दूसरा, अनुपातों की पहले से स्थापित शब्दावली को बदलने के लिए व्यापक रूप से उपयोग किए जाने वाले प्रतीकवाद की कमी ने विकल्प के रूप में भिन्नों की पूर्ण स्वीकृति में देरी की। 16 वीं शताब्दी।<ref>Smith, p. 480</ref> | ||
===यूक्लिड की परिभाषाएं=== | ===यूक्लिड की परिभाषाएं=== | ||
यूक्लिड के तत्वों की पुस्तक V में 18 परिभाषाएँ हैं, जो सभी अनुपातों से संबंधित हैं।<ref>Heath, reference for section</ref> इसके अलावा, यूक्लिड उन विचारों का उपयोग करता है जो इतने सामान्य उपयोग में थे कि उन्होंने उनके लिए परिभाषाएँ | यूक्लिड के तत्वों की पुस्तक V में 18 परिभाषाएँ हैं, जो सभी अनुपातों से संबंधित हैं।<ref>Heath, reference for section</ref> इसके अलावा, यूक्लिड उन विचारों का उपयोग करता है जो इतने सामान्य उपयोग में थे कि उन्होंने उनके लिए परिभाषाएँ सम्मिलित नहीं कीं। पहली दो परिभाषाएँ कहती हैं कि एक मात्रा का एक हिस्सा एक और मात्रा है जो इसे मापता है और इसके विपरीत, एक मात्रा का गुणक एक और मात्रा है जिसे यह मापता है। आधुनिक शब्दावली में, इसका मतलब यह है कि एक मात्रा का गुणक वह मात्रा है जिसे एक से अधिक पूर्णांक से गुणा किया जाता है - और मात्रा का एक हिस्सा (अर्थात् [[विभाज्य भाग]]) एक हिस्सा है, जो एक से अधिक पूर्णांक से गुणा करने पर, देता है मात्रा। | ||
यूक्लिड शब्द माप को परिभाषित नहीं करता है जैसा कि यहाँ प्रयोग किया गया है, हालांकि, कोई यह अनुमान लगा सकता है कि यदि एक मात्रा को माप की इकाई के रूप में लिया जाता है, और दूसरी मात्रा को इन इकाइयों की एक पूर्णांक संख्या के रूप में दिया जाता है, तो पहली मात्रा दूसरी को मापती है। पुस्तक VII में परिभाषाओं 3 और 5 के रूप में, इन परिभाषाओं को दोहराया गया है, लगभग शब्द के लिए शब्द। | यूक्लिड शब्द माप को परिभाषित नहीं करता है जैसा कि यहाँ प्रयोग किया गया है, हालांकि, कोई यह अनुमान लगा सकता है कि यदि एक मात्रा को माप की इकाई के रूप में लिया जाता है, और दूसरी मात्रा को इन इकाइयों की एक पूर्णांक संख्या के रूप में दिया जाता है, तो पहली मात्रा दूसरी को मापती है। पुस्तक VII में परिभाषाओं 3 और 5 के रूप में, इन परिभाषाओं को दोहराया गया है, लगभग शब्द के लिए शब्द। | ||
| Line 57: | Line 59: | ||
सामान्य तौर पर, दो-इकाई अनुपात की मात्राओं की तुलना अनुपात से प्राप्त अंश (गणित) के रूप में व्यक्त की जा सकती है। उदाहरण के लिए, 2:3 के अनुपात में, पहली इकाई की मात्रा, आकार, आयतन या मात्रा है <math>\tfrac{2}{3}</math> दूसरी इकाई का। | सामान्य तौर पर, दो-इकाई अनुपात की मात्राओं की तुलना अनुपात से प्राप्त अंश (गणित) के रूप में व्यक्त की जा सकती है। उदाहरण के लिए, 2:3 के अनुपात में, पहली इकाई की मात्रा, आकार, आयतन या मात्रा है <math>\tfrac{2}{3}</math> दूसरी इकाई का। | ||
यदि 2 संतरे और 3 सेब हैं, तो संतरे से सेब का अनुपात 2:3 है, और संतरे का फल के टुकड़ों की कुल संख्या से अनुपात 2:5 है। इन अनुपातों को अंश के रूप में भी व्यक्त किया जा सकता है: सेब के रूप में 2/3 संतरे हैं, और फलों के 2/5 टुकड़े संतरे हैं। यदि संतरे के रस के सांद्रण को 1:4 के अनुपात में पानी से पतला करना है, तो सांद्र के एक भाग को पानी के चार भागों के साथ मिलाया जाता है, जिससे कुल पाँच भाग मिलते हैं; संतरे के रस की मात्रा पानी की मात्रा का 1/4 है, जबकि संतरे के रस की मात्रा कुल तरल का 1/5 है। दोनों अनुपातों और अंशों में, यह स्पष्ट होना महत्वपूर्ण है कि किसकी तुलना किससे की जा रही है, और शुरुआती लोग | यदि 2 संतरे और 3 सेब हैं, तो संतरे से सेब का अनुपात 2:3 है, और संतरे का फल के टुकड़ों की कुल संख्या से अनुपात 2:5 है। इन अनुपातों को अंश के रूप में भी व्यक्त किया जा सकता है: सेब के रूप में 2/3 संतरे हैं, और फलों के 2/5 टुकड़े संतरे हैं। यदि संतरे के रस के सांद्रण को 1:4 के अनुपात में पानी से पतला करना है, तो सांद्र के एक भाग को पानी के चार भागों के साथ मिलाया जाता है, जिससे कुल पाँच भाग मिलते हैं; संतरे के रस की मात्रा पानी की मात्रा का 1/4 है, जबकि संतरे के रस की मात्रा कुल तरल का 1/5 है। दोनों अनुपातों और अंशों में, यह स्पष्ट होना महत्वपूर्ण है कि किसकी तुलना किससे की जा रही है, और शुरुआती लोग प्रायः इस कारण से गलतियाँ करते हैं। | ||
भिन्नों को दो से अधिक इकाइयों वाले अनुपातों से भी अनुमान लगाया जा सकता है; हालाँकि, दो से अधिक संस्थाओं वाले अनुपात को पूरी तरह से एक अंश में परिवर्तित नहीं किया जा सकता है, क्योंकि एक अंश केवल दो मात्राओं की तुलना कर सकता है। अनुपात द्वारा कवर की गई किन्हीं दो संस्थाओं की मात्राओं की तुलना करने के लिए एक अलग अंश का उपयोग किया जा सकता है: उदाहरण के लिए, 2:3:7 के अनुपात से हम यह अनुमान लगा सकते हैं कि दूसरी इकाई की मात्रा है <math>\tfrac{3}{7}</math> तीसरी इकाई का। | भिन्नों को दो से अधिक इकाइयों वाले अनुपातों से भी अनुमान लगाया जा सकता है; हालाँकि, दो से अधिक संस्थाओं वाले अनुपात को पूरी तरह से एक अंश में परिवर्तित नहीं किया जा सकता है, क्योंकि एक अंश केवल दो मात्राओं की तुलना कर सकता है। अनुपात द्वारा कवर की गई किन्हीं दो संस्थाओं की मात्राओं की तुलना करने के लिए एक अलग अंश का उपयोग किया जा सकता है: उदाहरण के लिए, 2:3:7 के अनुपात से हम यह अनुमान लगा सकते हैं कि दूसरी इकाई की मात्रा है <math>\tfrac{3}{7}</math> तीसरी इकाई का। | ||
== अनुपात और [[[[प्रतिशत]]]] अनुपात == | == अनुपात और [[[[प्रतिशत]]]] अनुपात == | ||
यदि हम अनुपात में | यदि हम अनुपात में सम्मिलित सभी राशियों को समान संख्या से गुणा करते हैं, तो अनुपात वैध रहता है। उदाहरण के लिए, 3:2 का अनुपात 12:8 के समान है। यह सामान्य है कि या तो शब्दों को सबसे कम सामान्य भाजक तक कम किया जाए, या उन्हें प्रति सौ (प्रतिशत) भागों में व्यक्त किया जाए। | ||
यदि किसी मिश्रण में पदार्थ A, B, C और D 5:9:4:2 के अनुपात में हैं तो B के प्रत्येक 9 भागों के लिए A के 5 भाग, C के 4 भाग और D के 2 भाग हैं। 5+9 के रूप में +4+2=20, कुल मिश्रण में A का 5/20 (20 में से 5 भाग), B का 9/20, C का 4/20 और D का 2/20 होता है। कुल और 100 से गुणा करें, हमने प्रतिशत में परिवर्तित किया है: 25% ए, 45% बी, 20% सी, और 10% डी (25:45:20:10 के रूप में अनुपात लिखने के बराबर)। | यदि किसी मिश्रण में पदार्थ A, B, C और D 5:9:4:2 के अनुपात में हैं तो B के प्रत्येक 9 भागों के लिए A के 5 भाग, C के 4 भाग और D के 2 भाग हैं। 5+9 के रूप में +4+2=20, कुल मिश्रण में A का 5/20 (20 में से 5 भाग), B का 9/20, C का 4/20 और D का 2/20 होता है। कुल और 100 से गुणा करें, हमने प्रतिशत में परिवर्तित किया है: 25% ए, 45% बी, 20% सी, और 10% डी (25:45:20:10 के रूप में अनुपात लिखने के बराबर)। | ||
यदि किसी विशेष स्थिति में दो या अधिक अनुपात मात्राएँ सभी मात्राओं को | यदि किसी विशेष स्थिति में दो या अधिक अनुपात मात्राएँ सभी मात्राओं को सम्मिलित करती हैं, तो यह कहा जाता है कि संपूर्ण में भागों का योग होता है: उदाहरण के लिए, एक फल की टोकरी जिसमें दो सेब और तीन संतरे होते हैं और कोई अन्य फल नहीं बनता है दो भाग सेब और तीन भाग संतरे। इस मामले में, <math>\tfrac{2}{5}</math>, या पूरे का 40% सेब और है <math>\tfrac{3}{5}</math>, या पूरे का 60% संतरे हैं। किसी विशिष्ट मात्रा की संपूर्ण से तुलना को अनुपात कहा जाता है। | ||
यदि अनुपात में केवल दो मान होते हैं, तो इसे एक अंश के रूप में दर्शाया जा सकता है, विशेष रूप से दशमलव अंश के रूप में। उदाहरण के लिए, पुराने [[टेलीविजन]] में 4:3 [[पहलू अनुपात प्रदर्शित करें]] होता है, जिसका अर्थ है कि चौड़ाई ऊंचाई की 4/3 है (इसे 1.33:1 के रूप में भी व्यक्त किया जा सकता है या केवल 1.33 को दो दशमलव स्थानों तक गोल किया जा सकता है)। हाल ही के वाइडस्क्रीन टीवी में 16:9 का पक्षानुपात है, या 1.78 को दो दशमलव स्थानों तक गोल किया गया है। लोकप्रिय वाइडस्क्रीन मूवी प्रारूपों में से एक 2.35:1 या केवल 2.35 है। अनुपातों को दशमलव भिन्न के रूप में प्रदर्शित करने से उनकी तुलना सरल हो जाती है। 1.33, 1.78 और 2.35 की तुलना करते समय, यह स्पष्ट है कि कौन सा प्रारूप व्यापक छवि प्रदान करता है। इस तरह की तुलना केवल तभी काम करती है जब तुलना की जा रही वैल्यू सुसंगत होती है, जैसे ऊंचाई के संबंध में हमेशा चौड़ाई व्यक्त करना। | यदि अनुपात में केवल दो मान होते हैं, तो इसे एक अंश के रूप में दर्शाया जा सकता है, विशेष रूप से दशमलव अंश के रूप में। उदाहरण के लिए, पुराने [[टेलीविजन]] में 4:3 [[पहलू अनुपात प्रदर्शित करें]] होता है, जिसका अर्थ है कि चौड़ाई ऊंचाई की 4/3 है (इसे 1.33:1 के रूप में भी व्यक्त किया जा सकता है या केवल 1.33 को दो दशमलव स्थानों तक गोल किया जा सकता है)। हाल ही के वाइडस्क्रीन टीवी में 16:9 का पक्षानुपात है, या 1.78 को दो दशमलव स्थानों तक गोल किया गया है। लोकप्रिय वाइडस्क्रीन मूवी प्रारूपों में से एक 2.35:1 या केवल 2.35 है। अनुपातों को दशमलव भिन्न के रूप में प्रदर्शित करने से उनकी तुलना सरल हो जाती है। 1.33, 1.78 और 2.35 की तुलना करते समय, यह स्पष्ट है कि कौन सा प्रारूप व्यापक छवि प्रदान करता है। इस तरह की तुलना केवल तभी काम करती है जब तुलना की जा रही वैल्यू सुसंगत होती है, जैसे ऊंचाई के संबंध में हमेशा चौड़ाई व्यक्त करना। | ||
| Line 108: | Line 110: | ||
== त्रिकोणीय निर्देशांक == | == त्रिकोणीय निर्देशांक == | ||
शीर्ष (ज्यामिति) A, B, और C और भुजाओं AB, BC, और CA के साथ त्रिभुज के सापेक्ष बिंदुओं के स्थान | शीर्ष (ज्यामिति) A, B, और C और भुजाओं AB, BC, और CA के साथ त्रिभुज के सापेक्ष बिंदुओं के स्थान प्रायः त्रिकोणीय निर्देशांक के रूप में विस्तारित अनुपात रूप में व्यक्त किए जाते हैं। | ||
[[बैरीसेंट्रिक निर्देशांक (गणित)]] में, निर्देशांक α, β, γ के साथ एक बिंदु वह बिंदु है जिस पर त्रिकोण के आकार और आकार में धातु की एक भारहीन शीट बिल्कुल संतुलित होती है, यदि वज़न को कोने पर रखा जाता है, के अनुपात के साथ A और B पर भार α: β है, B और C पर भार का अनुपात β: γ है, और इसलिए A और C पर भार का अनुपात α: γ है। | [[बैरीसेंट्रिक निर्देशांक (गणित)]] में, निर्देशांक α, β, γ के साथ एक बिंदु वह बिंदु है जिस पर त्रिकोण के आकार और आकार में धातु की एक भारहीन शीट बिल्कुल संतुलित होती है, यदि वज़न को कोने पर रखा जाता है, के अनुपात के साथ A और B पर भार α: β है, B और C पर भार का अनुपात β: γ है, और इसलिए A और C पर भार का अनुपात α: γ है। | ||
Revision as of 12:04, 24 December 2022
गणित में, एक अनुपात दर्शाता है कि एक संख्या में कितनी बार दूसरी संख्या सम्मिलित है। उदाहरण के लिए, यदि एक फल की कटोरी में आठ संतरे और छह नींबू हैं, तो संतरे से नींबू का अनुपात आठ से छह (अर्थात, 8:6, जो अनुपात 4:3 के बराबर है) है। इसी तरह, नींबू का संतरे से अनुपात 6:8 (या 3:4) है और संतरे का फल की कुल मात्रा से अनुपात 8:14 (या 4:7) है।
किसी अनुपात में संख्याएँ किसी भी प्रकार की मात्राएँ हो सकती हैं, जैसे लोगों या वस्तुओं की संख्या, या जैसे लम्बाई, भार, समय आदि की माप। अधिकांश संदर्भों में, दोनों संख्याएँ धनात्मक पूर्णांक तक सीमित हैं।
एक अनुपात या तो दोनों गठित संख्याओं को देकर निर्दिष्ट किया जा सकता है, जिसे a से b या a:b के रूप में लिखा जाता है, या उनके भागफल का मूल्य देकर a/b.[1][2][3] समान भागफल समान अनुपात के अनुरूप हैं।
नतीजतन, एक अनुपात को संख्याओं की एक क्रमबद्ध जोड़ी के रूप में माना जा सकता है, एक अंश (गणित) अंश में पहली संख्या के साथ और दूसरा भाजक में, या इस अंश द्वारा निरूपित मूल्य के रूप में माना जा सकता है। (गैर-शून्य) प्राकृतिक संख्याओं द्वारा दिए गए गणनाओं के अनुपात परिमेय संख्याएँ हैं, और कभी-कभी प्राकृतिक संख्याएँ भी हो सकती हैं। जब दो मात्राओं को एक ही इकाई से मापा जाता है, जैसा कि प्रायः होता है, उनका अनुपात एक विमाहीन संख्या होती है। दो मात्राओं का भागफल जो विभिन्न इकाइयों से मापा जाता है, दर (गणित) कहलाती है।[4]
संकेतन और शब्दावली
संख्या A और B के अनुपात को इस प्रकार व्यक्त किया जा सकता है:[5]
- A से B का अनुपात
- A:B
- A, B के लिए है (जब इसके बाद C, D के लिए है; नीचे देखें)
- एक अंश (गणित) जिसमें A अंश और B भाजक के रूप में होता है जो भागफल का प्रतिनिधित्व करता है (अर्थात, A को B से विभाजित किया जाता है, या ). इसे साधारण या दशमलव अंश, या प्रतिशत आदि के रूप में व्यक्त किया जा सकता है।[6]
जब एक अनुपात को A:B के रूप में लिखा जाता है, तो दो- बिन्दु वर्ण कभी-कभी अपूर्ण विराम चिह्न होते हैं।[7] एकल कूट में, U+003A : अपूर्ण विराम यह है, हालांकि एकल कूट एक समर्पित अनुपात संप्रतीक U+2236 ∶ अनुपात भी प्रदान करता है, .[8]
संख्या A और B को कभी-कभी अनुपात का पद कहा जाता है, जिसमें A पूर्ववर्ती (व्याकरण) और B परिणामी होता है।[9]
दो अनुपात A:B और C:D की समानता व्यक्त करने वाला कथन 'अनुपात' कहलाता है,[10] और A:B = C:D या A:B∷C:D के रूप में लिखा गया है। यह अनुवर्ती रूप, जब अंग्रेजी भाषा में बोला या लिखा जाता है, प्रायः (A से B है) जैसे (C से D) व्यक्त किया जाता है।
A, B, C और D को समानुपात के पद कहते हैं। A और D को इसके चरम कहा जाता है, और B और C को इसका साधन कहा जाता है। तीन या अधिक अनुपातों की समानता, जैसे A:B = C:D = E:F, को 'सतत अनुपात' कहा जाता है।[11]
अनुपात का उपयोग कभी-कभी तीन या इससे भी अधिक शब्दों के साथ किया जाता है, उदाहरण के लिए, एक आयामी लकड़ी के किनारे की लंबाई का अनुपात जो कि दस इंच लंबा होता है, अतः
- (अनियोजित माप; लकड़ी को मुलायम रखने पर पहली दो संख्याएँ थोड़ी कम हो जाती हैं)
एक अच्छा स्थूल मिश्रण (आयतन इकाइयों में) कभी-कभी उद्धृत किया जाता है
बज्रलेप और पानी की मात्रा में 4/1 भागों के (बल्कि सूखे) मिश्रण के लिए, यह कहा जा सकता है कि बज्रलेप से पानी का अनुपात 4:1 है, या कि बज्रलेप पानी से 4 गुना ज्यादा है, या कि वहाँ एक चौथाई (1/4) बज्रलेप जितना पानी है।
दो से अधिक पदों वाले अनुपातों के ऐसे अनुपात का अर्थ यह है कि बायीं ओर किन्हीं दो पदों का अनुपात दायीं ओर के दो पदों के अनुपात के बराबर होता है।
इतिहास और व्युत्पत्ति
अनुपात शब्द की उत्पत्ति प्राचीन यूनानी λόγος (लोगस) में खोजी जा सकती है। शुरुआती अनुवादकों ने इसे लैटिन में इसे अनुपात (कारण; तर्कसंगत शब्द के रूप में) के रूप में प्रस्तुत किया । एक और आधुनिक व्याख्या यूक्लिड का अर्थ अभिकलन या गणना के अधिक समान है।[13] मध्यकालीन लेखकों ने इस शब्द का प्रयोग किया थाproportio(अनुपात) अनुपात को इंगित करने के लिए औरproportionalitas(आनुपातिकता) अनुपात की समानता के लिए।[14] यूक्लिड ने तत्वों में दिखाई देने वाले परिणामों को पहले के स्रोतों से एकत्रित किया। पाइथागोरसवाद ने संख्याओं पर लागू होने वाले अनुपात और समानुपात के सिद्धांत को विकसित किया।[15] पाइथागोरस की संख्या की अवधारणा में केवल वह सम्मिलित था जिसे आज परिमेय संख्या कहा जाता है, ज्यामिति में सिद्धांत की वैधता पर संदेह पैदा करता है, जहां पाइथागोरस ने भी खोज की, अतुलनीय अनुपात (अपरिमेय संख्या के अनुरूप) मौजूद हैं। अनुपात के एक सिद्धांत की खोज जो अनुरूपता नहीं मानती है, शायद कनिडस के यूडोक्सस के कारण है। द एलिमेंट्स की पुस्तक VII में प्रकट होने वाले अनुपात के सिद्धांत की व्याख्या आनुपातिकता के अनुपात के पहले के सिद्धांत को दर्शाती है।[16] कई सिद्धांतों का अस्तित्व अनावश्यक रूप से जटिल लगता है क्योंकि अनुपात, काफी हद तक, भागफल और उनके संभावित मूल्यों के साथ पहचाने जाते हैं। हालांकि, यह एक अपेक्षाकृत हालिया विकास है, जैसा कि इस तथ्य से देखा जा सकता है कि आधुनिक ज्यामिति पाठ्यपुस्तकें अभी भी अनुपात और भागफल के लिए विशिष्ट शब्दावली और संकेतन का उपयोग करती हैं। इसके दो कारण हैं: पहला, अपरिमेय संख्याओं को सही संख्या के रूप में स्वीकार करने के लिए पहले उल्लेखित अनिच्छा थी, और दूसरा, अनुपातों की पहले से स्थापित शब्दावली को बदलने के लिए व्यापक रूप से उपयोग किए जाने वाले प्रतीकवाद की कमी ने विकल्प के रूप में भिन्नों की पूर्ण स्वीकृति में देरी की। 16 वीं शताब्दी।[17]
यूक्लिड की परिभाषाएं
यूक्लिड के तत्वों की पुस्तक V में 18 परिभाषाएँ हैं, जो सभी अनुपातों से संबंधित हैं।[18] इसके अलावा, यूक्लिड उन विचारों का उपयोग करता है जो इतने सामान्य उपयोग में थे कि उन्होंने उनके लिए परिभाषाएँ सम्मिलित नहीं कीं। पहली दो परिभाषाएँ कहती हैं कि एक मात्रा का एक हिस्सा एक और मात्रा है जो इसे मापता है और इसके विपरीत, एक मात्रा का गुणक एक और मात्रा है जिसे यह मापता है। आधुनिक शब्दावली में, इसका मतलब यह है कि एक मात्रा का गुणक वह मात्रा है जिसे एक से अधिक पूर्णांक से गुणा किया जाता है - और मात्रा का एक हिस्सा (अर्थात् विभाज्य भाग) एक हिस्सा है, जो एक से अधिक पूर्णांक से गुणा करने पर, देता है मात्रा।
यूक्लिड शब्द माप को परिभाषित नहीं करता है जैसा कि यहाँ प्रयोग किया गया है, हालांकि, कोई यह अनुमान लगा सकता है कि यदि एक मात्रा को माप की इकाई के रूप में लिया जाता है, और दूसरी मात्रा को इन इकाइयों की एक पूर्णांक संख्या के रूप में दिया जाता है, तो पहली मात्रा दूसरी को मापती है। पुस्तक VII में परिभाषाओं 3 और 5 के रूप में, इन परिभाषाओं को दोहराया गया है, लगभग शब्द के लिए शब्द।
परिभाषा 3 बताती है कि सामान्य तरीके से अनुपात क्या होता है। यह एक गणितीय अर्थ में कठोर नहीं है और कुछ ने यूक्लिड के स्वयं के बजाय यूक्लिड के संपादकों को इसका श्रेय दिया है।[19] यूक्लिड एक अनुपात को एक ही प्रकार की दो मात्राओं के बीच परिभाषित करता है, इसलिए इस परिभाषा के द्वारा दो लंबाई या दो क्षेत्रों के अनुपात को परिभाषित किया जाता है, लेकिन एक लंबाई और एक क्षेत्र के अनुपात को नहीं। परिभाषा 4 इसे और अधिक कठोर बनाती है। इसमें कहा गया है कि दो मात्राओं का अनुपात मौजूद होता है, जब प्रत्येक का एक गुणक दूसरे से अधिक होता है। आधुनिक संकेतन में, मात्रा p और q के बीच एक अनुपात मौजूद होता है, यदि पूर्णांक m और n मौजूद हों जैसे कि mp>q और nq>p। इस स्थिति को आर्किमिडीज संपत्ति के रूप में जाना जाता है।
परिभाषा 5 सबसे जटिल और कठिन है। यह परिभाषित करता है कि दो अनुपातों के बराबर होने का क्या मतलब है। आज, यह केवल यह कहकर किया जा सकता है कि अनुपात बराबर होते हैं जब शर्तों के अंश समान होते हैं, लेकिन ऐसी परिभाषा यूक्लिड के लिए अर्थहीन होती। आधुनिक संकेतन में, यूक्लिड की समानता की परिभाषा यह है कि दी गई राशियाँ p, q, r और s, p:q∷r :s अगर और केवल अगर, किसी भी सकारात्मक पूर्णांक m और n के लिए, np<mq, np=mq, या np>mq क्रमशः nr<ms, nr=ms, या nr>ms के अनुसार।[20] इस परिभाषा में डेडेकाइंड काटता है के साथ समानताएं हैं, जैसे कि n और q दोनों सकारात्मक हैं, np का मतलब mq as है p/q तर्कसंगत संख्या के लिए खड़ा है m/n (दोनों शब्दों को nq से विभाजित करना)।[21] परिभाषा 6 कहती है कि समान अनुपात वाली मात्राएँ आनुपातिक या समानुपातिक होती हैं। यूक्लिड ग्रीक ἀναλόγον (एनालॉगन) का उपयोग करता है, इसकी जड़ λόγος के समान है और अंग्रेजी शब्द एनालॉग से संबंधित है।
परिभाषा 7 परिभाषित करती है कि एक अनुपात का दूसरे से कम या अधिक होने का क्या अर्थ है और यह परिभाषा 5 में मौजूद विचारों पर आधारित है। आधुनिक संकेतन में यह कहा गया है कि दी गई मात्राएँ p, q, r और s, p:q>r: s यदि सकारात्मक पूर्णांक m और n हैं तो np>mq और nr≤ms.
जैसा कि परिभाषा 3 के साथ है, परिभाषा 8 को यूक्लिड के संपादकों द्वारा बाद की प्रविष्टि के रूप में माना जाता है। यह p:q∷q:r होने पर तीन पदों p, q और r को समानुपात में परिभाषित करता है। इसे 4 पदों p, q, r और s तक p:q∷q:r∷r:s, और इसी तरह आगे बढ़ाया जाता है। जिन अनुक्रमों में यह गुण होता है कि लगातार पदों के अनुपात समान होते हैं, उन्हें ज्यामितीय प्रगति कहा जाता है। परिभाषाएँ 9 और 10 इसे लागू करते हैं, यह कहते हुए कि यदि p, q और r अनुपात में हैं तो p: r p: q का डुप्लिकेट अनुपात है और यदि p, q, r और s समानुपात में हैं तो p: s ट्रिपलेट अनुपात है पी का: क्यू।
शब्दों की संख्या और अंशों का उपयोग
सामान्य तौर पर, दो-इकाई अनुपात की मात्राओं की तुलना अनुपात से प्राप्त अंश (गणित) के रूप में व्यक्त की जा सकती है। उदाहरण के लिए, 2:3 के अनुपात में, पहली इकाई की मात्रा, आकार, आयतन या मात्रा है दूसरी इकाई का।
यदि 2 संतरे और 3 सेब हैं, तो संतरे से सेब का अनुपात 2:3 है, और संतरे का फल के टुकड़ों की कुल संख्या से अनुपात 2:5 है। इन अनुपातों को अंश के रूप में भी व्यक्त किया जा सकता है: सेब के रूप में 2/3 संतरे हैं, और फलों के 2/5 टुकड़े संतरे हैं। यदि संतरे के रस के सांद्रण को 1:4 के अनुपात में पानी से पतला करना है, तो सांद्र के एक भाग को पानी के चार भागों के साथ मिलाया जाता है, जिससे कुल पाँच भाग मिलते हैं; संतरे के रस की मात्रा पानी की मात्रा का 1/4 है, जबकि संतरे के रस की मात्रा कुल तरल का 1/5 है। दोनों अनुपातों और अंशों में, यह स्पष्ट होना महत्वपूर्ण है कि किसकी तुलना किससे की जा रही है, और शुरुआती लोग प्रायः इस कारण से गलतियाँ करते हैं।
भिन्नों को दो से अधिक इकाइयों वाले अनुपातों से भी अनुमान लगाया जा सकता है; हालाँकि, दो से अधिक संस्थाओं वाले अनुपात को पूरी तरह से एक अंश में परिवर्तित नहीं किया जा सकता है, क्योंकि एक अंश केवल दो मात्राओं की तुलना कर सकता है। अनुपात द्वारा कवर की गई किन्हीं दो संस्थाओं की मात्राओं की तुलना करने के लिए एक अलग अंश का उपयोग किया जा सकता है: उदाहरण के लिए, 2:3:7 के अनुपात से हम यह अनुमान लगा सकते हैं कि दूसरी इकाई की मात्रा है तीसरी इकाई का।
अनुपात और [[प्रतिशत]] अनुपात
यदि हम अनुपात में सम्मिलित सभी राशियों को समान संख्या से गुणा करते हैं, तो अनुपात वैध रहता है। उदाहरण के लिए, 3:2 का अनुपात 12:8 के समान है। यह सामान्य है कि या तो शब्दों को सबसे कम सामान्य भाजक तक कम किया जाए, या उन्हें प्रति सौ (प्रतिशत) भागों में व्यक्त किया जाए।
यदि किसी मिश्रण में पदार्थ A, B, C और D 5:9:4:2 के अनुपात में हैं तो B के प्रत्येक 9 भागों के लिए A के 5 भाग, C के 4 भाग और D के 2 भाग हैं। 5+9 के रूप में +4+2=20, कुल मिश्रण में A का 5/20 (20 में से 5 भाग), B का 9/20, C का 4/20 और D का 2/20 होता है। कुल और 100 से गुणा करें, हमने प्रतिशत में परिवर्तित किया है: 25% ए, 45% बी, 20% सी, और 10% डी (25:45:20:10 के रूप में अनुपात लिखने के बराबर)।
यदि किसी विशेष स्थिति में दो या अधिक अनुपात मात्राएँ सभी मात्राओं को सम्मिलित करती हैं, तो यह कहा जाता है कि संपूर्ण में भागों का योग होता है: उदाहरण के लिए, एक फल की टोकरी जिसमें दो सेब और तीन संतरे होते हैं और कोई अन्य फल नहीं बनता है दो भाग सेब और तीन भाग संतरे। इस मामले में, , या पूरे का 40% सेब और है , या पूरे का 60% संतरे हैं। किसी विशिष्ट मात्रा की संपूर्ण से तुलना को अनुपात कहा जाता है।
यदि अनुपात में केवल दो मान होते हैं, तो इसे एक अंश के रूप में दर्शाया जा सकता है, विशेष रूप से दशमलव अंश के रूप में। उदाहरण के लिए, पुराने टेलीविजन में 4:3 पहलू अनुपात प्रदर्शित करें होता है, जिसका अर्थ है कि चौड़ाई ऊंचाई की 4/3 है (इसे 1.33:1 के रूप में भी व्यक्त किया जा सकता है या केवल 1.33 को दो दशमलव स्थानों तक गोल किया जा सकता है)। हाल ही के वाइडस्क्रीन टीवी में 16:9 का पक्षानुपात है, या 1.78 को दो दशमलव स्थानों तक गोल किया गया है। लोकप्रिय वाइडस्क्रीन मूवी प्रारूपों में से एक 2.35:1 या केवल 2.35 है। अनुपातों को दशमलव भिन्न के रूप में प्रदर्शित करने से उनकी तुलना सरल हो जाती है। 1.33, 1.78 और 2.35 की तुलना करते समय, यह स्पष्ट है कि कौन सा प्रारूप व्यापक छवि प्रदान करता है। इस तरह की तुलना केवल तभी काम करती है जब तुलना की जा रही वैल्यू सुसंगत होती है, जैसे ऊंचाई के संबंध में हमेशा चौड़ाई व्यक्त करना।
कमी
सभी मात्राओं के सामान्य कारकों द्वारा प्रत्येक मात्रा को विभाजित करके अनुपात न्यूनीकरण (गणित) (अंशों के रूप में) हो सकते हैं। अंशों के लिए, सबसे सरल रूप माना जाता है जिसमें अनुपात में संख्याएँ सबसे छोटी संभव पूर्णांक होती हैं।
इस प्रकार, अनुपात 40:60 अर्थ के अर्थ में 2:3 के बराबर है, बाद वाले को दोनों मात्राओं को 20 से विभाजित करके पूर्व से प्राप्त किया जा रहा है। गणितीय रूप से, हम 40:60 = 2:3, या समकक्ष 40:60∷ लिखते हैं। 2:3. मौखिक समकक्ष 40 से 60 है क्योंकि 2 से 3 है।
एक अनुपात जिसमें दोनों मात्राओं के लिए पूर्णांक होते हैं और जिसे आगे (पूर्णांकों का उपयोग करके) कम नहीं किया जा सकता है, अलघुकरणीय अंश या निम्नतम शब्दों में कहा जाता है।
कभी-कभी अनुपात को 1:x या x:1 के रूप में लिखना उपयोगी होता है, जहां x आवश्यक रूप से एक पूर्णांक नहीं है, ताकि विभिन्न अनुपातों की तुलना की जा सके। उदाहरण के लिए, अनुपात 4:5 को 1:1.25 के रूप में लिखा जा सकता है (दोनों पक्षों को 4 से विभाजित करके) वैकल्पिक रूप से, इसे 0.8:1 (दोनों पक्षों को 5 से विभाजित करके) लिखा जा सकता है।
जहां संदर्भ अर्थ स्पष्ट करता है, इस रूप में एक अनुपात कभी-कभी 1 और अनुपात प्रतीक (:) के बिना लिखा जाता है, हालांकि, गणितीय रूप से, यह इसे भाजक या गुणन बनाता है।
अपरिमेय अनुपात
आनुपातिकता (गणित) मात्राओं के बीच अनुपात भी स्थापित किया जा सकता है (मात्रा जिसका अनुपात, अंश के मान के रूप में, एक अपरिमेय संख्या के बराबर होता है)। पाइथोगोरस द्वारा खोजा गया सबसे पहला उदाहरण, विकर्ण की लंबाई का अनुपात है d एक तरफ की लंबाई तक s एक वर्ग का, जो औपचारिक रूप से 2 का वर्गमूल है एक अन्य उदाहरण एक वृत्त की परिधि का उसके व्यास से अनुपात है, जिसे पाई कहा जाता हैπ, और केवल एक अपरिमेय संख्या नहीं है, बल्कि एक पारलौकिक संख्या है।
दो (ज्यादातर) लंबाई का सुनहरा अनुपात भी जाना जाता है a तथा b, जो अनुपात द्वारा परिभाषित किया गया है
- या, समकक्ष
अनुपातों को भिन्नों के रूप में लेना और मूल्य होने के रूप में x, समीकरण देता है
- या
जिसका सकारात्मक, तर्कहीन समाधान है इस प्रकार ए और बी में से कम से कम एक को सुनहरे अनुपात में होने के लिए अपरिमेय होना चाहिए। गणित में सुनहरे अनुपात की घटना का एक उदाहरण दो लगातार फाइबोनैचि संख्याओं के अनुपात के सीमित मूल्य के रूप में है: भले ही ये सभी अनुपात दो पूर्णांकों के अनुपात हैं और इसलिए तर्कसंगत हैं, इन तर्कसंगत अनुपातों के अनुक्रम की सीमा है तर्कहीन सुनहरा अनुपात।
इसी तरह, चांदी का अनुपात a तथा b अनुपात द्वारा परिभाषित किया गया है
- तदनुसार इस समीकरण का धनात्मक, अपरिमेय हल है तो फिर से चांदी के अनुपात में दो मात्राओं a और b में से कम से कम एक अपरिमेय होना चाहिए।
ऑड्स
ऑड्स (जुआ के रूप में) एक अनुपात के रूप में व्यक्त किए जाते हैं। उदाहरण के लिए, (7:3) के विरुद्ध 7 से 3 के ऑड्स का मतलब है कि सात संभावनाएँ हैं कि घटना हर तीन मौकों पर नहीं होगी कि वह घटित होगी। सफलता की संभावना 30% है। हर दस ट्रायल में तीन जीत और सात हार होने की उम्मीद है।
इकाइयां
अनुपात आयाम रहित मात्रा हो सकते हैं, जैसा कि वे समान आयामी विश्लेषण की इकाइयों में मात्राओं से संबंधित होते हैं, भले ही उनकी माप की इकाइयाँ प्रारंभ में भिन्न हों। उदाहरण के लिए, अनुपात 1 minute : 40 seconds प्रथम मान को 60 सेकंड में बदलकर कम किया जा सकता है, इसलिए अनुपात बन जाता है 60 seconds : 40 seconds. एक बार इकाइयाँ समान होने पर, उन्हें छोड़ा जा सकता है, और अनुपात को घटाकर 3:2 किया जा सकता है।
दूसरी ओर, गैर-आयाम रहित अनुपात होते हैं, जिन्हें दर (गणित) के रूप में भी जाना जाता है।[22][23] रसायन विज्ञान में, द्रव्यमान सांद्रता (रसायन विज्ञान) अनुपात को आमतौर पर वजन/मात्रा अंशों के रूप में व्यक्त किया जाता है। उदाहरण के लिए, 3% w/v की सांद्रता का अर्थ आमतौर पर प्रत्येक 100 एमएल विलयन में 3 ग्राम पदार्थ होता है। इसे वजन/वजन या मात्रा/मात्रा अंशों के रूप में एक आयाम रहित अनुपात में परिवर्तित नहीं किया जा सकता है।
त्रिकोणीय निर्देशांक
शीर्ष (ज्यामिति) A, B, और C और भुजाओं AB, BC, और CA के साथ त्रिभुज के सापेक्ष बिंदुओं के स्थान प्रायः त्रिकोणीय निर्देशांक के रूप में विस्तारित अनुपात रूप में व्यक्त किए जाते हैं।
बैरीसेंट्रिक निर्देशांक (गणित) में, निर्देशांक α, β, γ के साथ एक बिंदु वह बिंदु है जिस पर त्रिकोण के आकार और आकार में धातु की एक भारहीन शीट बिल्कुल संतुलित होती है, यदि वज़न को कोने पर रखा जाता है, के अनुपात के साथ A और B पर भार α: β है, B और C पर भार का अनुपात β: γ है, और इसलिए A और C पर भार का अनुपात α: γ है।
ट्रिलिनियर निर्देशांक में, निर्देशांक x वाला एक बिंदु :वाई :z की भुजा BC (शीर्ष A से आर-पार) और भुजा CA (शीर्ष B से आर-पार) के बीच x के अनुपात में लम्बवत् दूरी है। :y, y के अनुपात में भुजा CA और भुजा AB (C के आर-पार) की दूरियाँ :z, और इसलिए भुजा BC और AB की दूरी x के अनुपात में है : जेड।
चूंकि सभी जानकारी अनुपात के संदर्भ में व्यक्त की जाती है (α, β, γ, x, y, और z द्वारा निरूपित अलग-अलग संख्याओं का अपने आप में कोई अर्थ नहीं है), त्रिभुज के आकार की परवाह किए बिना बैरीसेंट्रिक या ट्रिलिनियर निर्देशांक का उपयोग करते हुए एक त्रिकोण विश्लेषण लागू होता है। .
यह भी देखें
- कमजोर पड़ने का अनुपात
- विस्थापन-लंबाई अनुपात
- आयाम रहित मात्रा
- वित्तीय अनुपात
- फोल्ड चेंज
- अंतराल (संगीत)
- विषम अनुपात
- भाग-प्रति अंकन
- मूल्य-प्रदर्शन अनुपात
- आनुपातिकता (गणित)
- अनुपात वितरण
- अनुपात अनुमानक
- दर (गणित)
- ट्विटर उपयोग#अनुपात|अनुपात (ट्विटर)
- दर अनुपात
- सापेक्ष जोखिम
- तीन का नियम (गणित)
- पैमाना (नक्शा)नक्शा)
- स्केल (अनुपात)
- लिंग अनुपात
- सुपरस्पर्टिकल अनुपात
- ढलान
संदर्भ
- ↑ New International Encyclopedia
- ↑ "अनुपात". www.mathsisfun.com. Retrieved 2020-08-22.
- ↑ Stapel, Elizabeth. "अनुपात". Purplemath. Retrieved 2020-08-22.
- ↑ "The quotient of two numbers (or quantities); the relative sizes of two numbers (or quantities)", "The Mathematics Dictionary" [1]
- ↑ New International Encyclopedia
- ↑ Decimal fractions are frequently used in technological areas where ratio comparisons are important, such as aspect ratios (imaging), compression ratios (engines or data storage), etc.
- ↑ Weisstein, Eric W. (2022-11-04). "पेट". MathWorld. Retrieved 2022-11-26.
- ↑ "ASCII विराम चिह्न" (PDF). The Unicode Standard, Version 15.0. Unicode, Inc. 2022. Retrieved 2022-11-26.
[003A is] का उपयोग विभाजन या पैमाने को दर्शाने के लिए भी किया जाता है; उस गणितीय उपयोग के लिए 2236 Template:टाइपो नहीं is preferred
- ↑ from the Encyclopædia Britannica
- ↑ Heath, p. 126
- ↑ New International Encyclopedia
- ↑ Belle Group concrete mixing hints
- ↑ Penny Cyclopædia, p. 307
- ↑ Smith, p. 478
- ↑ Heath, p. 112
- ↑ Heath, p. 113
- ↑ Smith, p. 480
- ↑ Heath, reference for section
- ↑ "Geometry, Euclidean" Encyclopædia Britannica Eleventh Edition p682.
- ↑ Heath p.114
- ↑ Heath p. 125
- ↑ David Ben-Chaim; Yaffa Keret; Bat-Sheva Ilany (2012). अनुपात और समानुपात: गणित शिक्षकों में अनुसंधान और शिक्षण. Springer Science & Business Media. ISBN 9789460917844.
"वेग" को अनुपात के रूप में परिभाषित किया जा सकता है ... "जनसंख्या घनत्व" अनुपात है ... "गैसोलीन खपत" अनुपात के रूप में माप है ...
- ↑ "Ratio as a Rate. The first type [of ratio] defined by Freudenthal, above, is known as rate, and illustrates a comparison between two variables with difference units. (...) A ratio of this sort produces a unique, new concept with its own entity, and this new concept is usually not considered a ratio, per se, but a rate or density.", "Ratio and Proportion: Research and Teaching in Mathematics Teachers" [2]
अग्रिम पठन
- "Ratio" The Penny Cyclopædia vol. 19, The Society for the Diffusion of Useful Knowledge (1841) Charles Knight and Co., London pp. 307ff
- "Proportion" New International Encyclopedia, Vol. 19 2nd ed. (1916) Dodd Mead & Co. pp270-271
- "Ratio and Proportion" Fundamentals of practical mathematics, George Wentworth, David Eugene Smith, Herbert Druery Harper (1922) Ginn and Co. pp. 55ff
- The thirteen books of Euclid's Elements, vol 2. trans. Sir Thomas Little Heath (1908). Cambridge Univ. Press. 1908. pp. 112ff.
{{cite book}}: CS1 maint: others (link) - D.E. Smith, History of Mathematics, vol 2 Ginn and Company (1925) pp. 477ff. Reprinted 1958 by Dover Publications.
इस पेज में लापता आंतरिक लिंक की सूची
- लब्धि
- सकारात्मक पूर्णांक
- अंक शास्त्र
- आयाम रहित संख्या
- फलस्वरूप
- कनिडस का यूडोक्सस
- ज्यामितीय अनुक्रम
- न्यूनतम सार्व भाजक
- कमी (गणित)
- गुणा
- समानता (गणित)
- घेरा
- माप की इकाइयां
- मास एकाग्रता (रसायन विज्ञान)
- शिखर (ज्यामिति)
- सीधा