समतल वक्र: Difference between revisions
m (7 revisions imported from alpha:समतल_वक्र) |
No edit summary |
||
| Line 81: | Line 81: | ||
{{Algebraic curves navbox}} | {{Algebraic curves navbox}} | ||
{{Authority control}} | {{Authority control}} | ||
[[es: कर्वा प्लाना]] | [[es: कर्वा प्लाना]] | ||
[[Category:Articles with short description]] | |||
[[Category: | [[Category:CS1 français-language sources (fr)]] | ||
[[Category:CS1 maint]] | |||
[[Category:CS1 Ελληνικά-language sources (el)]] | |||
[[Category:Citation Style 1 templates|W]] | |||
[[Category:Collapse templates]] | |||
[[Category:Created On 10/11/2022]] | [[Category:Created On 10/11/2022]] | ||
[[Category:Vigyan Ready]] | [[Category:Machine Translated Page]] | ||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates based on the Citation/CS1 Lua module]] | |||
[[Category:Templates generating COinS|Cite web]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates used by AutoWikiBrowser|Cite web]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia fully protected templates|Cite web]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:प्लेन कर्व्स| ]] | |||
[[Category:यूक्लिडियन ज्यामिति]] | |||
Latest revision as of 10:12, 30 December 2022
गणित में, समतल वक्र एक समतल (ज्यामिति) में एक वक्र होता है, जो या तो समतल (गणित), परिबद्ध समतल या एक प्रक्षेपी तल हो सकता है। सबसे अधिक अध्ययन किए जाने वाली स्थिति मे समतल वक्र (टुकड़ों में समतल वक्रों सहित), और बीजीय समतल वक्र हैं। तथा समतल वक्र में जॉर्डन वक्र (वक्र जो समतल के क्षेत्र को घेरते हैं लेकिन समतल होने की जरूरत नहीं होती है।) और एक कार्यों का ग्राफ भी सम्मिलित होता है।
प्रतीकात्मक प्रतिनिधित्व
एक समतल वक्र को प्रायः कार्तीय(Cartesian) निर्देशांक में कुछ विशिष्ट कार्य f के लिए एक निहित समीकरण द्वारा दर्शाया जा सकता है। यदि इस समीकरण को y या x के लिए स्पष्ट रूप से हल किया जा सकता है - अर्थात, या विशिष्ट कार्य g या h के लिए - तो यह प्रतिनिधित्व का एक वैकल्पिक, स्पष्ट, रूप प्रदान करता है। एक समतल वक्र को प्रायः कार्तीय निर्देशांक में प्रपत्र के पैरामीट्रिक समीकरण द्वारा दर्शाया जा सकता है विशिष्ट कार्यों के लिए तथा समतल वक्रों को कभी-कभी वैकल्पिक समन्वय प्रणालियों में भी प्रदर्शित किया जा सकता है, जैसे ध्रुवीय निर्देशांक जो प्रत्येक बिंदु के स्थान को एक कोण और मूल से दूरी के संदर्भ में व्यक्त करते हैं।
निष्कोण(Smooth) समतल वक्र
समतल वक्र एक वास्तविक संख्या परिबद्ध समतल में एक वक्र है और एक आयामी समतल बहुआयामी है। इसका अर्थ यह है कि समतल वक्र एक समतल वक्र है, जो स्थानीय रूप से एक रेखा (ज्यामिति) की तरह दिखता है, इस अर्थ में कि हर बिंदु के पास, इसे एक निष्कोण फलन द्वारा एक रेखा पर छायाचित्र किया जा सकता है। समान रूप से, एक निष्कोण समतल वक्र को स्थानीय रूप से एक समीकरण f(x, y) = 0, द्वारा दिया जा सकता है, जहाँ f : R2 → R एक सहज कार्य है, और आंशिक व्युत्पन्न ∂f/∂x तथा ∂f/∂y वक्र के एक बिंदु पर दोनों कभी भी 0 नहीं होते हैं।
बीजीय समतल वक्र
एक बीजगणितीय समतल वक्र एक बहुपद समीकरण f(x, y) = 0 या F(x, y, z) = 0, जहां प्रक्षेपी स्थिति में F एक सजातीय बहुपद है।
अठारहवीं शताब्दी से बीजगणितीय वक्रों का व्यापक अध्ययन किया गया है।
प्रत्येक बीजीय समतल वक्र में एक अंश(डिग्री) होती है, परिभाषित समीकरण के एक बहुपद की अंश, जो बीजगणितीय रूप से बंद क्षेत्र की स्थिति में, सामान्य स्थिति में एक रेखा के साथ वक्र के प्रतिच्छेदन की संख्या के बराबर होती है। उदाहरण के लिए, समीकरण द्वारा दिया गया वृत्त x2 + y2 = 12 अंश है।
अंश 2 के व्युत्क्रमणीय समतल बीजगणितीय वक्रों को शंकु वर्ग कहा जाता है, और उनकी प्रक्षेप्य पूर्णता वृत्त के प्रक्षेप्य पूर्णता के लिए सभी समरूप होते हैं x2 + y2 = 1 (यह समीकरण का प्रक्षेपी वक्र है x2 + y2 – z2= 0 अंश 3 के समतल वक्रों को घनीय समतल वक्र कहा जाता है और, यदि वे व्युत्क्रमणीय, दीर्घवृत्त हैं। तब अंश 4 वाले चतुर्थक समतल वक्र कहलाते हैं।
उदाहरण
समतल वक्रों के कई उदाहरण वक्रों की तालिका में दिखाए गए हैं और वक्रों की सूची में सूचीबद्ध हैं। अंश 1 या 2 के बीजीय वक्र यहां दिखाए गए हैं (3 से कम अंश का बीजीय वक्र सदैव एक समतल में समाहित होता है)
| नाम | निहित समीकरण | पैरामीट्रिक समीकरण | कार्य के रूप मे | ग्राफ |
|---|---|---|---|---|
| सीधी रेखा | ||||
| वृत्त | framless | |||
| परवलय | File:Parabola.svg | |||
| दीर्घवृत्त | framless | |||
| अतिपरवलय |
यह भी देखें
संदर्भ
- Coolidge, J. L. (April 28, 2004), A Treatise on Algebraic Plane Curves, Dover Publications, ISBN 0-486-49576-0.
- Yates, R. C. (1952), A handbook on curves and their properties, J.W. Edwards, ASIN B0007EKXV0.
- Lawrence, J. Dennis (1972), A catalog of special plane curves, Dover, ISBN 0-486-60288-5.