समतल वक्र: Difference between revisions
(Created page with "{{Short description|Mathematical concept}} {{no footnotes|date=October 2018}} गणित में, एक समतल वक्र एक समतल (ज्या...") |
|||
| Line 80: | Line 80: | ||
== बाहरी संबंध == | == बाहरी संबंध == | ||
* {{MathWorld |id=PlaneCurve |title=Plane Curve}} | * {{MathWorld |id=PlaneCurve |title=Plane Curve}} | ||
Revision as of 12:14, 14 November 2022
This article includes a list of references, related reading or external links, but its sources remain unclear because it lacks inline citations. (October 2018) (Learn how and when to remove this template message) |
गणित में, एक समतल वक्र एक समतल (ज्यामिति) में एक वक्र होता है जो या तो एक समतल (गणित), एक परिबद्ध समतल या एक प्रक्षेपी तल हो सकता है। सबसे अधिक अध्ययन किए जाने वाले मामले चिकने समतल वक्र (टुकड़ों में चिकने समतल वक्रों सहित), और बीजीय समतल वक्र हैं। प्लेन कर्व्स में जॉर्डन वक्र ्स (वक्र जो प्लेन के एक क्षेत्र को घेरते हैं लेकिन चिकने होने की जरूरत नहीं है) और एक फंक्शन का ग्राफ भी शामिल है।
प्रतीकात्मक प्रतिनिधित्व
एक समतल वक्र को अक्सर कार्तीय निर्देशांक में रूप के एक निहित समीकरण द्वारा दर्शाया जा सकता है किसी विशिष्ट कार्य के लिए f. यदि इस समीकरण को y या x के लिए स्पष्ट रूप से हल किया जा सकता है - अर्थात, फिर से लिखा गया है या विशिष्ट फ़ंक्शन g या h के लिए - तो यह प्रतिनिधित्व का एक वैकल्पिक, स्पष्ट, रूप प्रदान करता है। एक समतल वक्र को अक्सर कार्तीय निर्देशांक में प्रपत्र के पैरामीट्रिक समीकरण द्वारा दर्शाया जा सकता है विशिष्ट कार्यों के लिए तथा समतल वक्रों को कभी-कभी वैकल्पिक समन्वय प्रणालियों में भी प्रदर्शित किया जा सकता है, जैसे ध्रुवीय निर्देशांक जो प्रत्येक बिंदु के स्थान को कोण और मूल से दूरी के रूप में व्यक्त करते हैं।
चिकनी समतल वक्र
एक चिकनी समतल वक्र एक वास्तविक संख्या यूक्लिडियन विमान R . में एक वक्र है2 और एक आयामी चिकनी मैनिफोल्ड है। इसका मतलब यह है कि एक चिकनी समतल वक्र एक समतल वक्र है जो स्थानीय रूप से एक रेखा (ज्यामिति) की तरह दिखता है, इस अर्थ में कि हर बिंदु के पास, इसे एक चिकनी फ़ंक्शन द्वारा एक रेखा पर मैप किया जा सकता है। समान रूप से, एक समतल समतल वक्र स्थानीय रूप से एक समीकरण द्वारा दिया जा सकता है f(x, y) = 0, कहाँ पे f : R2 → R एक सुचारू कार्य है, और आंशिक व्युत्पन्न है ∂f/∂x तथा ∂f/∂y वक्र के एक बिंदु पर दोनों 0 कभी नहीं होते हैं।
बीजीय समतल वक्र
एक बीजीय तल वक्र एक बहुपद समीकरण द्वारा दिए गए एक एफ़िन विमान या प्रक्षेपी विमान में एक वक्र है f(x, y) = 0 (या F(x, y, z) = 0, जहाँ F एक समांगी बहुपद है, प्रक्षेप्य स्थिति में।)
अठारहवीं शताब्दी से बीजगणितीय वक्रों का व्यापक अध्ययन किया गया है।
प्रत्येक बीजीय समतल वक्र में एक डिग्री होती है, परिभाषित समीकरण के एक बहुपद की डिग्री , जो बीजगणितीय रूप से बंद क्षेत्र के मामले में, सामान्य स्थिति में एक रेखा के साथ वक्र के चौराहों की संख्या के बराबर होती है। उदाहरण के लिए, समीकरण द्वारा दिया गया वृत्त x2 + y2 = 1 2 डिग्री है।
डिग्री 2 के गैर-एकवचन विमान बीजगणितीय वक्रों को शंकु वर्ग कहा जाता है, और उनके प्रक्षेप्य पूर्णता वृत्त के प्रक्षेपी समापन के लिए सभी समरूप हैं x2 + y2 = 1 (वह समीकरण का प्रक्षेपी वक्र है x2 + y2 – z2= 0) डिग्री 3 के समतल वक्रों को घन समतल वक्र ्स कहा जाता है और, यदि वे गैर-एकवचन, अण्डाकार वक्र हैं। डिग्री 4 वाले को चतुर्थक समतल वक्र ्स कहा जाता है।
उदाहरण
समतल वक्रों के कई उदाहरण वक्रों की गैलरी में दिखाए गए हैं और वक्रों की सूची में सूचीबद्ध हैं। डिग्री 1 या 2 के बीजीय वक्र यहां दिखाए गए हैं (3 से कम डिग्री का बीजीय वक्र हमेशा एक विमान में समाहित होता है):
| Name | Implicit equation | Parametric equation | As a function | graph |
|---|---|---|---|---|
| Straight line | ||||
| Circle | framless | |||
| Parabola | File:Parabola.svg | |||
| Ellipse | framless | |||
| Hyperbola | File:Hyperbola.svg |
यह भी देखें
- बीजीय ज्यामिति
- उत्तल वक्र
- डिफरेंशियल ज्योमेट्री
- ऑसगूड वक्र
- प्लेन कर्व फिटिंग
- प्रोजेक्टिव किस्में
- तिरछा वक्र
संदर्भ
- Coolidge, J. L. (April 28, 2004), A Treatise on Algebraic Plane Curves, Dover Publications, ISBN 0-486-49576-0.
- Yates, R. C. (1952), A handbook on curves and their properties, J.W. Edwards, ASIN B0007EKXV0.
- Lawrence, J. Dennis (1972), A catalog of special plane curves, Dover, ISBN 0-486-60288-5.