विकर्ण: Difference between revisions
No edit summary |
No edit summary |
||
| Line 171: | Line 171: | ||
सामान्यतः एक नियमित एन-गॉन होता है <math>\lfloor\frac {n-2}{2}\rfloor</math> लंबाई में अलग-अलग विकर्ण, जो एक वर्ग से शुरू होकर पैटर्न 1,1,2,2,3,3... का अनुसरण करता है। | सामान्यतः एक नियमित एन-गॉन होता है <math>\lfloor\frac {n-2}{2}\rfloor</math> लंबाई में अलग-अलग विकर्ण, जो एक वर्ग से शुरू होकर पैटर्न 1,1,2,2,3,3... का अनुसरण करता है। | ||
== | == बहुतल == | ||
एक पॉलीहेड्रॉन (त्रि-आयामी अंतरिक्ष में एक [[ठोस वस्तु]], द्वि-आयामी अंतरिक्ष से घिरा हुआ है| द्वि-आयामी [[चेहरा (ज्यामिति)]]) में दो अलग-अलग प्रकार के विकर्ण हो सकते हैं: विभिन्न चेहरों पर चेहरे के विकर्ण, एक ही पर गैर-आसन्न कोने को जोड़ते हुए चेहरा; और अंतरिक्ष विकर्ण, पूरी तरह से पॉलीहेड्रॉन के आंतरिक भाग में (कोने पर अंत बिंदुओं को छोड़कर)। | एक पॉलीहेड्रॉन (त्रि-आयामी अंतरिक्ष में एक [[ठोस वस्तु]], द्वि-आयामी अंतरिक्ष से घिरा हुआ है| द्वि-आयामी [[चेहरा (ज्यामिति)]]) में दो अलग-अलग प्रकार के विकर्ण हो सकते हैं: विभिन्न चेहरों पर चेहरे के विकर्ण, एक ही पर गैर-आसन्न कोने को जोड़ते हुए चेहरा; और अंतरिक्ष विकर्ण, पूरी तरह से पॉलीहेड्रॉन के आंतरिक भाग में (कोने पर अंत बिंदुओं को छोड़कर)। | ||
| Line 209: | Line 209: | ||
==टिप्पणियाँ== | ==टिप्पणियाँ== | ||
{{reflist}} | {{reflist}} | ||
==संदर्भ== | ==संदर्भ== | ||
| Line 216: | Line 215: | ||
* {{ citation | first1 = I. N. | last1 = Herstein | year = 1964 | isbn = 978-1114541016 | title = Topics In Algebra | publisher = [[Blaisdell Publishing Company]] | location = Waltham }} | * {{ citation | first1 = I. N. | last1 = Herstein | year = 1964 | isbn = 978-1114541016 | title = Topics In Algebra | publisher = [[Blaisdell Publishing Company]] | location = Waltham }} | ||
* {{ citation | first1 = Evar D. | last1 = Nering | year = 1970 | title = Linear Algebra and Matrix Theory | edition = 2nd | publisher = [[John Wiley & Sons|Wiley]] | location = New York | lccn = 76091646 }} | * {{ citation | first1 = Evar D. | last1 = Nering | year = 1970 | title = Linear Algebra and Matrix Theory | edition = 2nd | publisher = [[John Wiley & Sons|Wiley]] | location = New York | lccn = 76091646 }} | ||
==बाहरी संबंध== | ==बाहरी संबंध== | ||
{{Wiktionary|diagonal}} | {{Wiktionary|diagonal}} | ||
Revision as of 16:02, 10 December 2022
ज्यामिति में, एक विकर्ण एक बहुभुज या बहुतल के दो शीर्षों को जोड़ने वाला एक रेखा-खंड होता है, जब वे शीर्ष एक ही किनारे पर नहीं होते हैं। अनौपचारिक रूप से, किसी भी झुकी हुई रेखा को विकर्ण कहा जाता है। विकर्ण शब्द प्राचीन यूनानी διαγώνιος डायगोनियोस से लिया गया है,[1] कोण से कोण तक (διά- दीया-, के माध्यम से, पार और γωνία गोनिया, कोण, गोनी घुटने से संबंधित); इसका उपयोग स्ट्रैबो और यूक्लिड दोनों के द्वारा समचतुर्भुज या घनाभ के दो शीर्षों को जोड़ने वाली रेखा को संदर्भित करने के लिए किया गया था।[2] [3] [4] और बाद में इसे लैटिन में डायगोनस (तिरछी रेखा) के रूप में अपनाया गया।
आव्यूह बीजगणित में, एक वर्ग आव्यूह के विकर्ण में ऊपरी बाएँ कोने से निचले दाएं कोने तक की रेखा पर प्रविष्टियाँ होती हैं।
इसके कुछ अन्य गैर-गणितीय उपयोग भी हैं।
गैर-गणितीय उपयोग
अभियांत्रिकी में, एक विकर्ण ब्रेस एक बीम है जिसका उपयोग एक आयताकार संरचना (जैसे मचान) को मजबूती से धकेलने के लिए किया जाता है; सामान्यता इसे एक विकर्ण कहा जाता है, व्यावहारिक विचारों के कारण विकर्ण ब्रेसिज़ प्रायः आयत के कोनों से जुड़े नहीं होते हैं।
विकर्ण सरौता तार काटने वाले सरौता हैं जो जबड़े के काटने वाले किनारों द्वारा परिभाषित होते हैं जो संयुक्त कीलक को एक कोण पर या एक विकर्ण पर काटते हैं, इसलिए इसका यह नाम है।
विकर्ण दंड एक प्रकार का लैशिंग है जिसका उपयोग स्पार्स या डंडे को एक साथ बांधने के लिए किया जाता है ताकि लैशिंग एक कोण पर डंडे के ऊपर से पार हो जाए।
फ़ुटबॉल संघ में, विकर्ण नियंत्रण प्रणाली वह विधि है जो निर्णायक और सहायक निर्णायक पिच के चार चतुर्भुजों में से एक में खुद को स्थापित करने के लिए उपयोग करते हैं।
बहुभुज
जैसा कि एक बहुभुज पर लागू होता है, एक विकर्ण किसी भी दो शीर्षों, जो लगातार नहीं है, को जोड़ने वाला रेखा-खंड होता है। इसलिए, एक चतुर्भुज के दो विकर्ण होते हैं, जो शीर्षों के विपरीत युग्मों को मिलाते हैं। किसी भी उत्तल बहुभुज के लिए, सभी विकर्ण बहुभुज के अंदर होते हैं, लेकिन पुन: प्रवेशी बहुभुज के लिए, कुछ विकर्ण बहुभुज के बाहर होते हैं।
कोई भी n-भुजा वाले बहुभुज (n ≥ 3), उत्तल बहुभुज या अवतल बहुभुज, में विकर्ण होते है, क्योंकि प्रत्येक शीर्ष में स्वयं और दो आसन्न शीर्षों को छोड़कर अन्य सभी शीर्षों के विकर्ण ,या n − 3 विकर्ण, होते हैं, और प्रत्येक विकर्ण को दो शीर्षों द्वारा साझा किया जाता है।
|
|
|
|
|
विकर्णों द्वारा गठित क्षेत्र
एक उत्तल बहुभुज में, यदि आंतरिक में किसी एक बिंदु पर कोई भी तीन विकर्ण समवर्ती रेखाएँ नहीं हैं, तो विकर्ण आंतरिक भाग को विभाजित करने वाले क्षेत्रों की संख्या निम्न द्वारा दी जाती है
n-भुजो के लिए जहाँ n = 3, 4, ... है, वहाँ क्षेत्रों की संख्या क्रमशः निम्न प्रकार होगी [5]
- 1, 4, 11, 25, 50, 91, 154, 246...
यह OEIS अनुक्रम A006522 है।[6]
विकर्णों के प्रतिच्छेदन
यदि एक उत्तल बहुभुज के कोई भी तीन विकर्ण अंतः में किसी बिंदु पर संगामी नहीं हैं, तो विकर्णों के आंतरिक चौराहों की संख्या इस प्रकार दी गई है .[7][8] यह, उदाहरण के लिए, विषम संख्या में भुजाओं वाले किसी भी नियमित बहुभुज के लिए लागू होता है। सूत्र इस तथ्य से अनुसरण करता है कि प्रत्येक चौराहा विशिष्ट रूप से दो अन्तर्विभाजक विकर्णों के चार समापन बिंदुओं द्वारा निर्धारित किया जाता है: चौराहों की संख्या इस प्रकार एक समय में चार n कोने के संयोजन की संख्या है।
नियमित बहुभुज
भुजाओं की सम या विषम संख्या वाले नियमित बहुभुजों में सबसे लंबे विकर्ण की लंबाई की गणना करने के लिए अलग-अलग सूत्र मौजूद हैं।
n भुजाओं और पार्श्व लंबाई a के साथ सम-पक्षीय नियमित बहुभुज में, सबसे लंबे विकर्ण की लंबाई इसके परिवृत्त के व्यास के बराबर होती है क्योंकि लंबे विकर्ण सभी बहुभुज के केंद्र में एक-दूसरे को काटते हैं। यह निम्नलिखित सूत्र द्वारा दिया गया है।
भुजा की लंबाई a के साथ किसी विषम-भुजा वाले नियमित n-भुजा वाले बहुभुज (n ≥ 5) के सबसे लंबे विकर्ण की लंबाई निम्नलिखित सूत्र द्वारा दी गई है।[9]
बहुभुज के सबसे छोटे विकर्ण की लंबाई की गणना निम्नलिखित सूत्र के साथ सभी बहुभुजों (n ≥ 4) के लिए भी की जा सकती है।[10] जैसे-जैसे भुजाओं की संख्या अनंत तक पहुँचती है, सबसे छोटा विकर्ण 2a तक पहुँचता है।
ये उस त्रिभुज के लिए लागू नहीं होते हैं जिसका कोई विकर्ण नहीं है।
विशेष मामलों में सम्मलित हैं:
एक वर्ग में समान लंबाई के दो विकर्ण होते हैं, जो वर्ग के केंद्र पर प्रतिच्छेद करते हैं। एक विकर्ण का एक भुजा से अनुपात होता है एक नियमित पेंटागन में समान लंबाई के पाँच विकर्ण होते हैं। एक भुजा के विकर्ण का अनुपात सुनहरा अनुपात है, एक नियमित षट्भुज में नौ विकर्ण होते हैं: छह छोटे विकर्ण लंबाई में एक दूसरे के बराबर होते हैं; तीन लंबे वाले लंबाई में एक दूसरे के बराबर हैं और षट्भुज के केंद्र में एक दूसरे को काटते हैं। एक लंबे विकर्ण का एक भुजा से अनुपात 2 है, और एक छोटे विकर्ण का एक भुजा से अनुपात है .
एक सम सप्तभुज में 14 विकर्ण होते हैं। सात छोटे एक दूसरे के बराबर हैं, और सात बड़े एक दूसरे के बराबर हैं। पक्ष का व्युत्क्रम एक छोटे और एक लंबे विकर्ण के व्युत्क्रम के योग के बराबर होता है।
सामान्यतः एक नियमित एन-गॉन होता है लंबाई में अलग-अलग विकर्ण, जो एक वर्ग से शुरू होकर पैटर्न 1,1,2,2,3,3... का अनुसरण करता है।
बहुतल
एक पॉलीहेड्रॉन (त्रि-आयामी अंतरिक्ष में एक ठोस वस्तु, द्वि-आयामी अंतरिक्ष से घिरा हुआ है| द्वि-आयामी चेहरा (ज्यामिति)) में दो अलग-अलग प्रकार के विकर्ण हो सकते हैं: विभिन्न चेहरों पर चेहरे के विकर्ण, एक ही पर गैर-आसन्न कोने को जोड़ते हुए चेहरा; और अंतरिक्ष विकर्ण, पूरी तरह से पॉलीहेड्रॉन के आंतरिक भाग में (कोने पर अंत बिंदुओं को छोड़कर)।
जिस प्रकार एक त्रिभुज का कोई विकर्ण नहीं होता है, उसी प्रकार एक चतुष्फलक (चार त्रिभुजाकार फलकों के साथ) का कोई फलक विकर्ण नहीं होता है और कोई स्थान विकर्ण नहीं होता है।
एक घनाभ के छह फलकों और चार अंतरिक्ष विकर्णों में से प्रत्येक पर दो विकर्ण होते हैं।
आव्यूह
एक वर्ग आव्यूह के लिए, विकर्ण ( या मुख्य विकर्ण ) शीर्ष-बाएँ कोने से नीचे-दाएँ कोने तक चलने वाली प्रविष्टियों की विकर्ण रेखा है।[11][12][13] एक आव्यूह के लिए, यदि पंक्ति सूचकांक और कॉलम सूचकांक द्वारा निर्दिष्ट है, तो प्रविष्टियां होंगी। वर्ग आव्यूह के विकर्ण के लिए होता है। उदाहरण के लिए, तत्समक आव्यूह को मुख्य विकर्ण पर 1 की प्रविष्टियां और कहीं और शून्य के रूप में परिभाषित किया जा सकता है:
शीर्ष-दाएं से नीचे-बाएं विकर्ण को कभी-कभी साधारण विकर्ण या एंटीडायगोनल के रूप में वर्णित किया जाता है।
ऑफ-विकर्ण प्रविष्टियां वे हैं जो मुख्य विकर्ण पर नहीं हैं। एक विकर्ण आव्यूह वह है जिसकी ऑफ-विकर्ण प्रविष्टियाँ सभी शून्य हैं।[14][15]
एक सुपरडायगोनल प्रविष्टि वह है जो सीधे ऊपर और मुख्य विकर्ण के दाईं ओर है।[16][17] जैसे विकर्ण प्रविष्टियाँ के साथ हैं, वैसे ही सुपरडाइगोनल प्रविष्टियाँ वे हैं जिनके साथ . उदाहरण के लिए, निम्नलिखित आव्यूह की गैर-शून्य प्रविष्टियां सुपरडाइगोनल में स्थित हैं:
इसी तरह, एक सबडायगोनल प्रविष्टि वह है जो सीधे नीचे और मुख्य विकर्ण के बाईं ओर है, जो कि एक प्रविष्टि के साथ है। [18] सामान्य आव्यूह विकर्णों को एक सूचकांक द्वारा निर्दिष्ट किया जा सकता है जो मुख्य विकर्ण के सापेक्ष मापा जाता है: मुख्य विकर्ण में होता है ; सुपरडायगोनल ; और सबडायगोनल होता है; सामान्यतः, -विकर्ण में प्रविष्टियाँ के साथ होती हैं ।
ज्यामिति
समानता से, किसी भी समुच्चय X के कार्तीय गुणन X × X का उपसमुच्चय, जिसमें सभी (X, X) युग्म सम्मलित हैं, को विकर्ण कहा जाता है, और यह X पर समानता संबंध आलेख है ) या समकक्ष रूप से X से X तक तत्समक फलन के फलन का आलेख। यह ज्यामिति में एक महत्वपूर्ण भूमिका निभाता है; उदाहरण के लिए, F का X से स्वयं प्रतिचित्रण के किसी नियत बिंदु को F और विकर्ण के आलेख प्रतिच्छेद से प्राप्त किया जा सकता है।
ज्यामितीय अध्ययनों में, विकर्ण को स्वयं से प्रतिच्छेद करने का विचार सामान्य है, लेकिन प्रत्यक्ष रूप से नहीं, बल्कि एक तुल्यता वर्ग के भीतर इसे परेशान करके। यह उच्च स्तर पर यूलर विशेषता और सदिश क्षेत्रों के शून्य से संबंधित है। उदाहरण के लिए, घेरा S1 में बेट्टी नंबर 1, 1, 0, 0, 0, है और इसलिए यूलर विशेषता 0 है। इसे व्यक्त करने का एक ज्यामितीय तरीका दो-टोरस्र्स S1xS1 पर विकर्ण को देखना है और निरीक्षण करना है कि यह छोटी गति (θ, θ) से (θ, θ + ε) तक स्वयं से दूर जा सकता है। सामान्यतः, विकर्ण के साथ किसी फलन के आलेख की प्रतिच्छेदन संख्या की गणना Lefschetz निश्चित-बिंदु प्रमेय के माध्यम से होमोलॉजी का उपयोग करके की जा सकती है; विकर्ण का स्व-प्रतिच्छेदन तत्समक फलन का एक विशेष विषय है।
यह भी देखें
- जॉर्डन का सामान्य रूप
- मुख्य विकर्ण
- विकर्ण फ़ैक्टर
टिप्पणियाँ
- ↑ Online Etymology Dictionary
- ↑ Strabo, Geography 2.1.36–37
- ↑ Euclid, Elements book 11, proposition 28
- ↑ Euclid, Elements book 11, proposition 38
- ↑ Weisstein, Eric W. "Polygon Diagonal." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/PolygonDiagonal.html
- ↑ Sloane, N. J. A. (ed.). "Sequence A006522". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ↑ Poonen, Bjorn; Rubinstein, Michael. "The number of intersection points made by the diagonals of a regular polygon". SIAM J. Discrete Math. 11 (1998), no. 1, 135–156; link to a version on Poonen's website
- ↑ [1], beginning at 2:10
- ↑ "मर्डरस मैथ्स: दी लॉन्गेस्ट डायगोनल फॉर्मूला!".
- ↑ "n-भुजा वाले नियमित बहुभुज के विकर्ण की लंबाई". 2 January 2019.
- ↑ Bronson (1970, p. 2)
- ↑ Herstein (1964, p. 239)
- ↑ Nering (1970, p. 38)
- ↑ Herstein (1964, p. 239)
- ↑ Nering (1970, p. 38)
- ↑ Bronson (1970, pp. 203, 205)
- ↑ Herstein (1964, p. 239)
- ↑ Cullen (1966, p. 114)
संदर्भ
- Bronson, Richard (1970), Matrix Methods: An Introduction, New York: Academic Press, LCCN 70097490
- Cullen, Charles G. (1966), Matrices and Linear Transformations, Reading: Addison-Wesley, LCCN 66021267
- Herstein, I. N. (1964), Topics In Algebra, Waltham: Blaisdell Publishing Company, ISBN 978-1114541016
- Nering, Evar D. (1970), Linear Algebra and Matrix Theory (2nd ed.), New York: Wiley, LCCN 76091646
बाहरी संबंध
- Diagonals of a polygon with interactive animation
- Polygon diagonal from MathWorld.
- Diagonal of a matrix from MathWorld.