संतुलन (ज्यामिति): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 16: Line 16:
:<math>AB  \bumpeq CD .</math>
:<math>AB  \bumpeq CD .</math>
माइकल जे.क्रो द्वारा अनुवादित निम्नलिखित अंश, इस अनुमान को दिखाते हैं कि बेलावाइटिस में [[ यूक्लिडियन वेक्टर | यूक्लिडियन सदिश]] अवधारणाएं थीं :
माइकल जे.क्रो द्वारा अनुवादित निम्नलिखित अंश, इस अनुमान को दिखाते हैं कि बेलावाइटिस में [[ यूक्लिडियन वेक्टर | यूक्लिडियन सदिश]] अवधारणाएं थीं :
: जब कोई उनमें रेखाओं को स्थानापन्न करता है, तो अन्य रेखाएँ जो क्रमशः उनके लिए अनुकूल होती हैं, फिर भी वे अंतरिक्ष में स्थित हो सकती हैं। इससे यह समझा जा सकता है कि किसी भी संख्या और किसी भी प्रकार की रेखाओं का योग कैसे किया जा सकता है, और इन पंक्तियों को जिस क्रम में लिया जाता है, वही समविभव-योग प्राप्त होता है...
: समतुल्यता तब भी बनी रहती हैं जब कोई उनमें रेखाओं के लिए स्थानापन्न करता है, अन्य रेखाएँ जो क्रमशः उनसे समतुल्य होती हैं, वे अंतरिक्ष में स्थित हो सकती हैं। इससे यह समझा जा सकता है कि किसी भी संख्या और किसी भी प्रकार की रेखाओं का योग कैसे किया जा सकता है, और इन पंक्तियों को जिस क्रम में लिया जाता है, उसी क्रम में समविभव-योग भी प्राप्त होता है।
:साम्यावस्था में, जैसा कि समीकरणों में होता है, एक रेखा को एक तरफ से दूसरी तरफ स्थानांतरित किया जा सकता है, शर्ते यह है कि चिन्ह बदल गया हो।
इस प्रकार विपरीत दिशा वाले रेखाखंड एक दूसरे के ऋणात्मक हैं :


:समकणों में, जैसा कि समीकरणों में होता है, एक रेखा को एक तरफ से दूसरी तरफ स्थानांतरित किया जा सकता है, बशर्ते कि चिन्ह बदल गया हो...
<math>AB + BA \bumpeq 0 .</math>
इस प्रकार विपरीत दिशा वाले खंड एक दूसरे के ऋणात्मक हैं: <math>AB + BA \bumpeq 0 .</math>
:समरूपता <math>AB \bumpeq n.CD ,</math> जहाँ n एक धनात्मक संख्या के लिए होता है। यह इंगित करता है कि AB दोनों के समानांतर है और CD के समान दिशा है, और यह कि उनकी लंबाई में AB = n.CD द्वारा व्यक्त संबंध है।<ref>Michael J. Crowe (1967) [[A History of Vector Analysis]], "Giusto Bellavitis and His Calculus of Equipollences", pp 52–4, [[University of Notre Dame Press]]</ref>
:द इक्विपॉलेंस <math>AB \bumpeq n.CD ,</math> जहां n एक सकारात्मक संख्या के लिए खड़ा है, इंगित करता है कि AB दोनों समानांतर है और सीडी के समान दिशा है, और यह कि उनकी लंबाई में AB = n.CD द्वारा व्यक्त संबंध है।<ref>Michael J. Crowe (1967) [[A History of Vector Analysis]], "Giusto Bellavitis and His Calculus of Equipollences", pp 52–4, [[University of Notre Dame Press]]</ref>
यूक्लिडियन सदिश की भाषा में, A से B तक का रेखाखंड एक बाध्य सदिश है, जबकि इसके समतुल्य रेखाखंडों का वर्ग एक [[ मुक्त वेक्टर |मुक्त सदिश]] है।
यूक्लिडियन सदिश की भाषा में, A से B तक का खंड एक बाध्य सदिश है, जबकि इसके समतुल्य खंडों का वर्ग एक [[ मुक्त वेक्टर | मुक्त सदिश]] है।


== एक्सटेंशन ==
== विस्तार ==
गोले पर ज्यामितीय समतुल्यता का भी उपयोग किया जाता है:
गोले पर ज्यामितीय समतुल्यता का भी उपयोग किया जाता है :
: डब्ल्यू. आर. हैमिल्टन|हैमिल्टन की विधि की सराहना करने के लिए, आइए हम पहले यूक्लिडियन त्रि-आयामी अंतरिक्ष में अनुवाद के एबेलियन समूह के बहुत सरल मामले को याद करें। प्रत्येक अनुवाद अंतरिक्ष में एक सदिश के रूप में प्रतिनिधित्व योग्य है, केवल दिशा और परिमाण महत्वपूर्ण है, और स्थान अप्रासंगिक है। दो अनुवादों की संरचना सदिश योग के सिर से पूंछ के समांतर चतुर्भुज नियम द्वारा दी गई है; और व्युत्क्रम मात्राओं को उलटने की दिशा में ले जाना। हैमिल्टन के मोड़ के सिद्धांत में, हमारे पास एबेलियन अनुवाद समूह से गैर-एबेलियन एसयू (2) तक ऐसी तस्वीर का सामान्यीकरण है। अंतरिक्ष में सदिशों के बजाय, हम एक इकाई गोले S पर लंबाई < π के निर्देशित बड़े वृत्त चापों से निपटते हैं<sup>2</sup> एक यूक्लिडियन त्रि-आयामी अंतरिक्ष में। इस तरह के दो चापों को समतुल्य माना जाता है यदि एक को इसके बड़े वृत्त के साथ खिसका कर इसे दूसरे के साथ मिलाने के लिए बनाया जा सकता है।<ref>[[N. Mukunda]], [[Rajiah Simon]] and [[George Sudarshan]] (1989) "The theory of screws: a new geometric representation for the group SU(1,1), [[Journal of Mathematical Physics]] 30(5): 1000–1006 {{mr|id=0992568}}</ref>
: हैमिल्टन की विधि की सराहना करने के लिए, आइए हम पहले यूक्लिडियन त्रि-आयामी अंतरिक्ष में अनुवाद के एबेलियन समूह के बहुत सरल मामले को याद करें। प्रत्येक अनुवाद अंतरिक्ष में एक सदिश के रूप में प्रतिनिधित्व योग्य है, केवल दिशा और परिमाण महत्वपूर्ण है, और स्थान अप्रासंगिक है। दो अनुवादों की संरचना सदिश योग के सिर से पूंछ के समांतर चतुर्भुज नियम द्वारा दी गई है; और व्युत्क्रम मात्राओं को उलटने की दिशा में ले जाना। हैमिल्टन के मोड़ के सिद्धांत में, हमारे पास एबेलियन अनुवाद समूह से गैर-एबेलियन एसयू (2) तक ऐसी तस्वीर का सामान्यीकरण है। अंतरिक्ष में सदिशों के बजाय, हम एक इकाई गोले S पर लंबाई < π के निर्देशित बड़े वृत्त चापों से निपटते हैं<sup>2</sup> एक यूक्लिडियन त्रि-आयामी अंतरिक्ष में। इस तरह के दो चापों को समतुल्य माना जाता है यदि एक को इसके बड़े वृत्त के साथ खिसका कर इसे दूसरे के साथ मिलाने के लिए बनाया जा सकता है।<ref>[[N. Mukunda]], [[Rajiah Simon]] and [[George Sudarshan]] (1989) "The theory of screws: a new geometric representation for the group SU(1,1), [[Journal of Mathematical Physics]] 30(5): 1000–1006 {{mr|id=0992568}}</ref>
एक गोले के एक बड़े वृत्त पर, दो निर्देशित वृत्ताकार चाप समान होते हैं जब वे दिशा और चाप की लंबाई में सहमत होते हैं। ऐसे चापों का एक तुल्यता वर्ग एक चतुष्कोण छंद से जुड़ा होता है
एक गोले के एक बड़े वृत्त पर, दो निर्देशित वृत्ताकार चाप समान होते हैं जब वे दिशा और चाप की लंबाई में सहमत होते हैं। ऐसे चापों का एक तुल्यता वर्ग एक चतुष्कोण छंद से जुड़ा होता है
:<math>\exp(a r) = \cos a + r \sin a ,</math> जहाँ a चाप की लंबाई है और r लंबवतता द्वारा बड़े वृत्त के तल को निर्धारित करता है।
:<math>\exp(a r) = \cos a + r \sin a ,</math> जहाँ a चाप की लंबाई है और r लंबवतता द्वारा बड़े वृत्त के तल को निर्धारित करता है।

Revision as of 20:10, 2 December 2022

तुल्यता (समता) के लिए प्रतीक

यूक्लिडियन ज्यामिति में, निर्देशित रेखा-खंडो के बीच तुल्यता एक द्विआधारी संबंध है। बिंदु 'A' से बिंदु 'B' तक एक रेखा-खंड AB की दिशा, रेखा-खंड BA के विपरीत है। जब दो समानांतर रेखा-खंडो की लंबाई और दिशा समान होती है, तो वे समानांतर रेखाखंड समतुल्य होते हैं ।

समानांतर चतुर्भुज का गुण

यदि रेखाखण्ड AB और CD समतुल्य हैं, तो AC और BD भी समतुल्य हैं।

यूक्लिडियन त्रिविम क्षेत्र की एक निश्चित विशेषता, सदिशो का समांतर चतुर्भुज गुण है।

यदि दो रेखा-खंड समतुल्य हैं, तो वे समांतर चतुर्भुज के दो भुजाएँ बनाते हैं ।

यदि कोई दिया गया सदिश a और b, c और d के बीच है, तो a और c के बीच होने वाला सदिश वही है जो b और d के बीच है।

If a given vector holds between a and b, c and d, then the vector which holds between a and c is the same as that which holds between b and d.


इतिहास

समतुल्य रेखा-खंडो की अवधारणा को 1835 में जिउस्तो बेलावाइटिस द्वारा दिया गया था। इसके बाद सदिश शब्द को समतुल्य रेखा-खंडो के एक वर्ग के लिए अपनाया गया था। बेलावाइटिस द्वारा विभिन्न लेकिन एक जैसी दिखने वाली वस्तुओं की तुलना करने का विचार, विशेष रूप से तुल्यता संबंधों के उपयोग में, एक सामान्य गणितीय तकनीक बन गया है। बेलावाइटिस ने AB और CD रेखाखंडों की समरूपता के लिए एक विशेष संकेतन का उपयोग किया:

माइकल जे.क्रो द्वारा अनुवादित निम्नलिखित अंश, इस अनुमान को दिखाते हैं कि बेलावाइटिस में यूक्लिडियन सदिश अवधारणाएं थीं :

समतुल्यता तब भी बनी रहती हैं जब कोई उनमें रेखाओं के लिए स्थानापन्न करता है, अन्य रेखाएँ जो क्रमशः उनसे समतुल्य होती हैं, वे अंतरिक्ष में स्थित हो सकती हैं। इससे यह समझा जा सकता है कि किसी भी संख्या और किसी भी प्रकार की रेखाओं का योग कैसे किया जा सकता है, और इन पंक्तियों को जिस क्रम में लिया जाता है, उसी क्रम में समविभव-योग भी प्राप्त होता है।
साम्यावस्था में, जैसा कि समीकरणों में होता है, एक रेखा को एक तरफ से दूसरी तरफ स्थानांतरित किया जा सकता है, शर्ते यह है कि चिन्ह बदल गया हो।

इस प्रकार विपरीत दिशा वाले रेखाखंड एक दूसरे के ऋणात्मक हैं :

समरूपता जहाँ n एक धनात्मक संख्या के लिए होता है। यह इंगित करता है कि AB दोनों के समानांतर है और CD के समान दिशा है, और यह कि उनकी लंबाई में AB = n.CD द्वारा व्यक्त संबंध है।[1]

यूक्लिडियन सदिश की भाषा में, A से B तक का रेखाखंड एक बाध्य सदिश है, जबकि इसके समतुल्य रेखाखंडों का वर्ग एक मुक्त सदिश है।

विस्तार

गोले पर ज्यामितीय समतुल्यता का भी उपयोग किया जाता है :

हैमिल्टन की विधि की सराहना करने के लिए, आइए हम पहले यूक्लिडियन त्रि-आयामी अंतरिक्ष में अनुवाद के एबेलियन समूह के बहुत सरल मामले को याद करें। प्रत्येक अनुवाद अंतरिक्ष में एक सदिश के रूप में प्रतिनिधित्व योग्य है, केवल दिशा और परिमाण महत्वपूर्ण है, और स्थान अप्रासंगिक है। दो अनुवादों की संरचना सदिश योग के सिर से पूंछ के समांतर चतुर्भुज नियम द्वारा दी गई है; और व्युत्क्रम मात्राओं को उलटने की दिशा में ले जाना। हैमिल्टन के मोड़ के सिद्धांत में, हमारे पास एबेलियन अनुवाद समूह से गैर-एबेलियन एसयू (2) तक ऐसी तस्वीर का सामान्यीकरण है। अंतरिक्ष में सदिशों के बजाय, हम एक इकाई गोले S पर लंबाई < π के निर्देशित बड़े वृत्त चापों से निपटते हैं2 एक यूक्लिडियन त्रि-आयामी अंतरिक्ष में। इस तरह के दो चापों को समतुल्य माना जाता है यदि एक को इसके बड़े वृत्त के साथ खिसका कर इसे दूसरे के साथ मिलाने के लिए बनाया जा सकता है।[2]

एक गोले के एक बड़े वृत्त पर, दो निर्देशित वृत्ताकार चाप समान होते हैं जब वे दिशा और चाप की लंबाई में सहमत होते हैं। ऐसे चापों का एक तुल्यता वर्ग एक चतुष्कोण छंद से जुड़ा होता है

जहाँ a चाप की लंबाई है और r लंबवतता द्वारा बड़े वृत्त के तल को निर्धारित करता है।

संदर्भ

  1. Michael J. Crowe (1967) A History of Vector Analysis, "Giusto Bellavitis and His Calculus of Equipollences", pp 52–4, University of Notre Dame Press
  2. N. Mukunda, Rajiah Simon and George Sudarshan (1989) "The theory of screws: a new geometric representation for the group SU(1,1), Journal of Mathematical Physics 30(5): 1000–1006 MR0992568


इस पेज में लापता आंतरिक लिंक की सूची

  • समानांतर चतुर्भुज
  • एसयू(2)
  • महान घेरा
  • चार का समुदाय
  • गोलाकार चाप
  • मैं मुड़ा

बाहरी संबंध