हाइड्राइड: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 67: Line 67:


===सहसंयोजक हाइड्राइड ===
===सहसंयोजक हाइड्राइड ===
कुछ परिभाषाओं के अनुसार, सहसंयोजक हाइड्राइड हाइड्रोजन युक्त अन्य सभी यौगिकों को कवर करते हैं। कुछ परिभाषाएँ हाइड्राइड को हाइड्रोजन केंद्रों तक सीमित करती हैं जो औपचारिक रूप से हाइड्राइड के रूप में प्रतिक्रिया करते हैं, अर्थात न्यूक्लियोफिलिक, और हाइड्रोजन परमाणु धातु केंद्रों से बंधे होते हैं। ये हाइड्राइड सभी वास्तविक अधातुओं (शून्य समूह तत्वों को छोड़कर) और Al, Ga, Sn, Pb, Bi, Po, आदि जैसे तत्वों से बनते हैं, जो सामान्य रूप से धात्विक प्रकृति के होते हैं, अर्थात, इस वर्ग में हाइड्राइड शामिल हैं पी-ब्लॉक तत्वों की। इन पदार्थों में हाइड्राइड बंधन औपचारिक रूप से एक सहसंयोजक बंधन होता है जो एक कमजोर एसिड में एक प्रोटॉन द्वारा बनाए गए बंधन की तरह होता है। इस श्रेणी में हाइड्राइड्स शामिल हैं जो असतत अणुओं, पॉलिमर या ओलिगोमर्स के रूप में मौजूद हैं, और हाइड्रोजन जो एक सतह पर रसायन-अवशोषित किया गया है। सहसंयोजक हाइड्राइड का एक विशेष रूप से महत्वपूर्ण खंड [[ जटिल धातु हाइड्राइड ]] हैं, शक्तिशाली घुलनशील हाइड्राइड आमतौर पर सिंथेटिक प्रक्रियाओं में उपयोग किए जाते हैं।  
कुछ परिभाषाओं के अनुसार सहसंयोजक हाइड्राइड्स हाइड्रोजन युक्त अन्य सभी यौगिकों को कवर करते हैं। कुछ परिभाषाएँ हाइड्रोजन केंद्रों पर हाइड्राइड्स को सीमित करती हैं जो औपचारिक रूप से हाइड्राइड के रूप में प्रतिक्रिया करते हैं, अर्थात् न्यूक्लियोफिलिक, और हाइड्रोजन परमाणु धातु केंद्रों से बंधे हैं। ये हाइड्राइड्स सभी सही गैर धातुओं (शून्य समूह तत्वों को छोड़कर) द्वारा बनाई जाती हैं और जैसे तत्वों Al, Ga, Sn, Pb, Bi, Po, जो सामान्यतः धातुई प्रकृति के होते हैं, अर्थात् इस वर्ग में पी-ब्लॉक तत्वों के हाइड्राइड शामिल हैं। इन पदार्थों में हाइड्राइड बंध औपचारिक रूप से एक सहसंयोजक बंधन होता है जो एक कमजोर अम्ल में प्रोटोन द्वारा बनाया गया बंधन होता है। इस श्रेणी में हायड्रिड्स होते हैं जो असतत अणु के पॉलिमर या ओलिगोमर के रूप में पाये जाते हैं, और हाइड्रोजन जो सतह पर रसायन से भरे होते हैं। सहसंयोजक हाइड्राइड्स का एक विशेष महत्वपूर्ण खंड [[जटिल धातु हाइड्राइड]], शक्तिशाली घुलनशील हाइड्राइड्स होते हैं जो सामान्यतया सिंथेटिक प्रक्रियाओं में इस्तेमाल होते हैं।


कुछ परिभाषाओं के अनुसार सहसंयोजक हाइड्राइड्स हाइड्रोजन युक्त अन्य सभी यौगिकों को कवर करते हैं। कुछ परिभाषाएँ हाइड्रोजन केंद्रों पर हाइड्राइड्स को सीमित करती हैं जो औपचारिक रूप से हाइड्राइड के रूप में प्रतिक्रिया करते हैं,
आणविक हाइड्राइड में अक्सर अतिरिक्त लिगेंड शामिल होते हैं; उदाहरण के लिए, डायसोब्यूटाइल एल्युमिनियम हाइड्राइड (DIBAL) हाइड्राइड लिगैंड्स के दो एल्युमीनम केंद्र हैं। सामान्य सॉल्वैंट्स में घुलनशील हाइड्राइड्स का कार्बनिक संश्लेषण में व्यापक रूप से उपयोग किया जाता हैं। सोडियम बोरोहाइड्राइड विशेष रूप से आम हैं ({{chem2|NaBH4}}) और लिथियम एल्यूमीनियम हाइड्राइड और डीआईबीएएल जैसे बाधा अभिकर्मकों को बाधित किया।


आण्विक हाइड्राइड में अक्सर अतिरिक्त लिगैंड शामिल होते हैं; उदाहरण के लिए, डायसोब्यूटाइललुमिनियम हाइड्राइड (DIBAL) में हाइड्राइड लिगैंड्स द्वारा ब्रिज किए गए दो एल्यूमीनियम केंद्र होते हैं। सामान्य सॉल्वैंट्स में घुलनशील हाइड्राइड कार्बनिक संश्लेषण में व्यापक रूप से उपयोग किए जाते हैं। विशेष रूप से आम हैं सोडियम बोरोहाइड्राइड ({{chem2|NaBH4}}) और लिथियम एल्यूमीनियम हाइड्राइड और DIBAL जैसे अभिकर्मकों को बाधित किया।
=== अंतरालीय हाइड्राइड या धात्विक हाइड्राइड ===
[[File:Metal Hydride for Hydrogen Storage-Ovonic.jpg|thumb|हाइड्रोजन भंडारण अनुप्रयोगों के लिए धातु हाइड्राइड]]इंटरस्टीशियल हाइड्राइड्स आमतौर पर धातुओं या मिश्र धातुओं में मौजूद होते हैं। उन्हें पारंपरिक रूप से यौगिक कहा जाता है, भले ही वे एक यौगिक की परिभाषा के अनुरूप नहीं होते हैं, स्टील जैसे सामान्य मिश्र धातुओं से अधिक मिलते-जुलते हैं। ऐसे हाइड्राइडों में हाइड्रोजन परमाणु या द्विपरमाणुक संस्थाओं के रूप में मौजूद हो सकता है। यांत्रिक या थर्मल प्रसंस्करण, जैसे झुकने, हड़ताली, या एनीलिंग, हाइड्रोजन को विघटित करके समाधान से बाहर निकलने का कारण बन सकता है। उनकी बॉन्डिंग को आमतौर पर धात्विक बॉन्डिंग माना जाता है। इस तरह के थोक संक्रमण धातु हाइड्रोजन के संपर्क में आने पर अंतरालीय बाइनरी हाइड्राइड बनाते हैं। ये सिस्टम आमतौर पर [[ गैर-स्टोइकोमेट्रिक यौगिक ]] | नॉन-स्टोइकोमेट्रिक होते हैं, जाली में हाइड्रोजन परमाणुओं की चर मात्रा के साथ। सामग्री इंजीनियरिंग में, हाइड्रोजन उत्सर्जन की घटना अंतरालीय हाइड्राइड के गठन के परिणामस्वरूप होती है। इस प्रकार के हाइड्राइड दो मुख्य तंत्रों में से किसी एक के अनुसार बनते हैं। पहले तंत्र में डाइहाइड्रोजन का सोखना शामिल है, जो एच-एच बांड की सफाई, हाइड्रोजन के इलेक्ट्रॉनों के निरूपण और अंत में प्रोटॉन के धातु जाली में प्रसार द्वारा सफल होता है। अन्य मुख्य तंत्र में धातु जाली की सतह पर आयनित हाइड्रोजन की इलेक्ट्रोलाइटिक कमी शामिल है, इसके बाद प्रोटॉन के जाली में प्रसार भी होता है। दूसरा तंत्र इलेक्ट्रोलाइटिक प्रयोगों में उपयोग किए जाने वाले कुछ इलेक्ट्रोड के अस्थायी मात्रा में विस्तार के लिए जिम्मेदार है।


=== अंतरालीय हाइड्राइड या धात्विक हाइड्राइड ===
मध्यवर्ती हाइड्राइड्स आमतौर पर धातुओं या मिश्र धातुओं के भीतर मौजूद होते हैं। इन्हें परम्परागत रूप से "यौगिक" कहा जाता है यद्यपि ये किसी यौगिक की परिभाषा के पूरी तरह अनुरूप नहीं भी होते हैं जो कि स्टील जैसे सामान्य मिश्रधातुओं के समान होते हैं। इस प्रकार के हाइड्राइड्स में हाइड्रोजन या तो परमाणु या डायटोमिक संस्थाओं के रूप में मौजूद हो सकते हैं।  
[[File:Metal Hydride for Hydrogen Storage-Ovonic.jpg|thumb|हाइड्रोजन भंडारण अनुप्रयोगों के लिए धातु हाइड्राइड]]इंटरस्टीशियल हाइड्राइड्स आमतौर पर धातुओं या मिश्र धातुओं में मौजूद होते हैं। उन्हें पारंपरिक रूप से यौगिक कहा जाता है, भले ही वे एक यौगिक की परिभाषा के अनुरूप नहीं होते हैं, स्टील जैसे सामान्य मिश्र धातुओं से अधिक मिलते-जुलते हैं। ऐसे हाइड्राइडों में हाइड्रोजन परमाणु या द्विपरमाणुक संस्थाओं के रूप में मौजूद हो सकता है। यांत्रिक या थर्मल प्रसंस्करण, जैसे झुकने, हड़ताली, या एनीलिंग, हाइड्रोजन को विघटित करके समाधान से बाहर निकलने का कारण बन सकता है। उनकी बॉन्डिंग को आमतौर पर धात्विक बॉन्डिंग माना जाता है। इस तरह के थोक संक्रमण धातु हाइड्रोजन के संपर्क में आने पर अंतरालीय बाइनरी हाइड्राइड बनाते हैं। ये सिस्टम आमतौर पर [[ गैर-स्टोइकोमेट्रिक यौगिक ]] | नॉन-स्टोइकोमेट्रिक होते हैं, जाली में हाइड्रोजन परमाणुओं की चर मात्रा के साथ। सामग्री इंजीनियरिंग में, हाइड्रोजन उत्सर्जन की घटना अंतरालीय हाइड्राइड के गठन के परिणामस्वरूप होती है। इस प्रकार के हाइड्राइड दो मुख्य तंत्रों में से किसी एक के अनुसार बनते हैं। पहले तंत्र में डाइहाइड्रोजन का सोखना शामिल है, जो एच-एच बांड की सफाई, हाइड्रोजन के इलेक्ट्रॉनों के निरूपण और अंत में प्रोटॉन के धातु जाली में प्रसार द्वारा सफल होता है। अन्य मुख्य तंत्र में धातु जाली की सतह पर आयनित हाइड्रोजन की इलेक्ट्रोलाइटिक कमी शामिल है, इसके बाद प्रोटॉन के जाली में प्रसार भी होता है। दूसरा तंत्र इलेक्ट्रोलाइटिक प्रयोगों में उपयोग किए जाने वाले कुछ इलेक्ट्रोड के अस्थायी मात्रा में विस्तार के लिए जिम्मेदार है।


[[ दुर्ग ]] कमरे के तापमान पर हाइड्रोजन की अपनी मात्रा का 900 गुना तक अवशोषित करता है, जिससे [[ पैलेडियम हाइड्राइड ]] बनता है। इस सामग्री पर वाहनों के ईंधन कोशिकाओं के लिए हाइड्रोजन ले जाने के साधन के रूप में चर्चा की गई है। इंटरस्टीशियल हाइड्राइड सुरक्षित [[ हाइड्रोजन भंडारण ]] के लिए एक निश्चित वादा दिखाते हैं। न्यूट्रॉन विवर्तन अध्ययनों से पता चला है कि हाइड्रोजन परमाणु धातु की जाली में अष्टफलकीय अंतरालों पर बेतरतीब ढंग से कब्जा कर लेते हैं (एक fcc जाली में प्रति धातु परमाणु में एक अष्टफलकीय छिद्र होता है)। सामान्य दबावों पर अवशोषण की सीमा PdH0.7 है, यह दर्शाता है कि लगभग 70% अष्टफलकीय छिद्रों पर कब्जा है।<ref>[[Palladium hydride]]</ref>
[[ दुर्ग ]] कमरे के तापमान पर हाइड्रोजन की अपनी मात्रा का 900 गुना तक अवशोषित करता है, जिससे [[ पैलेडियम हाइड्राइड ]] बनता है। इस सामग्री पर वाहनों के ईंधन कोशिकाओं के लिए हाइड्रोजन ले जाने के साधन के रूप में चर्चा की गई है। इंटरस्टीशियल हाइड्राइड सुरक्षित [[ हाइड्रोजन भंडारण ]] के लिए एक निश्चित वादा दिखाते हैं। न्यूट्रॉन विवर्तन अध्ययनों से पता चला है कि हाइड्रोजन परमाणु धातु की जाली में अष्टफलकीय अंतरालों पर बेतरतीब ढंग से कब्जा कर लेते हैं (एक fcc जाली में प्रति धातु परमाणु में एक अष्टफलकीय छिद्र होता है)। सामान्य दबावों पर अवशोषण की सीमा PdH0.7 है, यह दर्शाता है कि लगभग 70% अष्टफलकीय छिद्रों पर कब्जा है।<ref>[[Palladium hydride]]</ref>
Line 82: Line 82:
=== संक्रमण धातु हाइड्राइड परिसरों ===
=== संक्रमण धातु हाइड्राइड परिसरों ===
{{Main|Transition metal hydride}}
{{Main|Transition metal hydride}}
संक्रमण धातु हाइड्राइड में ऐसे यौगिक शामिल होते हैं जिन्हें सहसंयोजक हाइड्राइड के रूप में वर्गीकृत किया जा सकता है। कुछ को अंतरालीय हाइड्राइड के रूप में भी वर्गीकृत किया जाता है{{citation needed|date=October 2013}} और अन्य ब्रिजिंग हाइड्राइड्स। क्लासिक संक्रमण धातु हाइड्राइड में हाइड्रोजन केंद्र और संक्रमण धातु के बीच एक एकल बंधन होता है। कुछ संक्रमण धातु हाइड्राइड अम्लीय होते हैं, जैसे, {{chem2|HCo(CO)4}} तथा {{chem2|H2Fe(CO)4}}. आयनों पोटेशियम nonahydridorhenate {{chem2|[ReH9](2-)}} तथा {{chem2|[FeH6](4-)}} बढ़ते संग्रह के उदाहरण हैं<!--an example of an old refence bing used to support the changed statemnt it originally saqid rare --> ज्ञात आणविक [[ होमोलेप्टिक ]] धातु हाइड्राइड।<ref>A. Dedieu (Editor) Transition Metal Hydrides 1991, Wiley-VCH, Weinheim. {{ISBN|0-471-18768-2}}</ref> स्यूडोहैलाइड्स के रूप में, हाइड्राइड लिगैंड सकारात्मक रूप से ध्रुवीकृत हाइड्रोजन केंद्रों के साथ संबंध बनाने में सक्षम हैं। <!-- obscure, over technical language --> यह अंतःक्रिया, जिसे डाय[[ हाइड्रोजन बंध ]]न कहा जाता है, हाइड्रोजन बंधन के समान है, जो सकारात्मक ध्रुवीकृत प्रोटॉन और खुले अकेले जोड़े वाले इलेक्ट्रोनगेटिव परमाणुओं के बीच मौजू
संक्रमण धातु हाइड्राइड में ऐसे यौगिक शामिल होते हैं जिन्हें सहसंयोजक हाइड्राइड के रूप में वर्गीकृत किया जा सकता है। कुछ को अंतरालीय हाइड्राइड के रूप में भी वर्गीकृत किया जाता है{{citation needed|date=October 2013}} और अन्य ब्रिजिंग हाइड्राइड्स। क्लासिक संक्रमण धातु हाइड्राइड में हाइड्रोजन केंद्र और संक्रमण धातु के बीच एक एकल बंधन होता है। कुछ संक्रमण धातु हाइड्राइड अम्लीय होते हैं, जैसे, {{chem2|HCo(CO)4}} तथा {{chem2|H2Fe(CO)4}}. आयनों पोटेशियम nonahydridorhenate {{chem2|[ReH9](2-)}} तथा {{chem2|[FeH6](4-)}} बढ़ते संग्रह के उदाहरण हैं ज्ञात आणविक [[ होमोलेप्टिक ]] धातु हाइड्राइड।<ref>A. Dedieu (Editor) Transition Metal Hydrides 1991, Wiley-VCH, Weinheim. {{ISBN|0-471-18768-2}}</ref> स्यूडोहैलाइड्स के रूप में, हाइड्राइड लिगैंड सकारात्मक रूप से ध्रुवीकृत हाइड्रोजन केंद्रों के साथ संबंध बनाने में सक्षम हैं।  यह अंतःक्रिया, जिसे डाय[[ हाइड्रोजन बंध ]]न कहा जाता है, हाइड्रोजन बंधन के समान है, जो सकारात्मक ध्रुवीकृत प्रोटॉन और खुले अकेले जोड़े वाले इलेक्ट्रोनगेटिव परमाणुओं के बीच मौजू


हाइड्रोजन के समस्थानिक युक्त हाइड्राइड#हाइड्रोजन-1 (प्रोटियम) प्रोटाइड के रूप में जाने जाते हैं।
हाइड्रोजन के समस्थानिक युक्त हाइड्राइड#हाइड्रोजन-1 (प्रोटियम) प्रोटाइड के रूप में जाने जाते हैं।

Revision as of 18:29, 5 December 2022

रसायन विज्ञान में, एक हाइड्राइड औपचारिक रूप से हाइड्रोजन ( H) का आयन होता है।[1] शब्द का प्रयोग शिथिल रूप से किया जाता है। एक चरम पर, सहसंयोजक बंध H परमाणु वाले सभी रासायनिक यौगिक को हाइड्राइड्स कहा जाता है: पानी (H2O) ऑक्सीजन का हाइड्राइड है, अमोनिया नाइट्रोजन का हाइड्राइड है, आदि। अकार्बनिक रसायनज्ञों के लिए, हाइड्राइड यौगिकों और आयनों को प्रदर्शित करता है जिसमें हाइड्रोजन एक कम विद्युतीय रासायनिक तत्व से सहसंयोजक रूप से जुड़ा होता है। ऐसी स्थिति  में, H केंद्र में न्यूक्लियोफ़िलिक चरित्र होता है, जो एसिड के प्रोटीक चरित्र के साथ विरोधाभासी है। हाइड्राइड आयनों को बहुत कम ही देखा जाता है।

लगभग सभी तत्व हाइड्रोजन के द्विआधारी यौगिक बनाते हैं, अपवाद हीलियम है,[2] नीयन ,[3] आर्गन ,[4] क्रीप्टोण ,[5] पक्का वादा , आज़मियम , इरिडियम , रेडॉन, फ्रैनशियम और रेडियम [6][7][8][9]विदेशी परमाणु#विदेशी अणु जैसे पॉज़िट्रोनियम हाइड्राइड भी बनाए गए हैं।

बांड

हाइड्रोजन और अन्य तत्वों के बीच के बंधन अत्यधिक से लेकर कुछ हद तक सहसंयोजक तक होते हैं. कुछ हाइड्राइड, उदा. बोरानेस , शास्त्रीय इलेक्ट्रॉन-गणना नियमों के अनुरूप नहीं हैं और बंधन को बहु-केंद्रित बंधनों के संदर्भ में वर्णित किया गया है, जबकि अंतरालीय हाइड्राइड में अक्सर धातु बंधन शामिल होता है। हाइड्राइड्स असतत अणु , ओलिगोमेर ्स या पॉलीमर , आयनिक ठोस , रासायनिक अधिशोषण मोनोलयर्स हो सकते हैं,[citation needed] थोक धातु (मध्यवर्ती), या अन्य सामग्री। जबकि हाइड्राइड परंपरागत रूप से लुईस बेस या कम करने वाले एजेंटों के रूप में प्रतिक्रिया करते हैं, कुछ धातु हाइड्राइड हाइड्रोजन-परमाणु दाताओं के रूप में व्यवहार करते हैं और एसिड के रूप में कार्य करते हैं।

हाइड्रोजन तथा अन्य तत्वों के मध्य बंध अत्यधिक से कुछ सहसंयोजक तक विस्तृत होते हैं. कुछ हाइड्राइड्स जैसे बोरान हाइड्राइड्स, इलेक्ट्रानिकी के नियमों के अनुरूप नहीं होते हैं और इस संबंध का वर्णन अनेक केन्द्रित बंधनों के संदर्भ में किया गया है, जबकि अंतराकाशी हाइड्राइड्स में अक्सर धातु बंधन शामिल होते हैं। हाइड्राइड्स असतत अणुओं, ओलिगोमर या पॉलिमर, आयनिक ठोस, रसायनयुक्त मोनोलेटर्स हो सकते हैं,[citation needed] थोक धातुओं (मध्यवर्ती), या अन्य सामग्री। हाइड्रिड्स परंपरागत रूप से एलविस बेस या घटने वाले एजेंट के रूप में प्रतिक्रिया करते हैं लेकिन कुछ हाइड्राइड्स हाइड्रोजन-परमाणु के दाताओं के रूप में काम करते हैं और एसिड के रूप में काम करते हैं।

आवेदन

[[image:TTMSS.png|thumb|right|200px|Tris(trimethylsilyl)silane H के साथ कमजोर बंधन वाले हाइड्राइड का एक उदाहरण है। इसका उपयोग हाइड्रोजन परमाणुओं के स्रोत के रूप में किया जाता है।[10]

धातु हाइड्राइड (जैसे H2आरएचसीएल (पीपीएच3)2 विल्किंसन के उत्प्रेरक से प्राप्त) हाइड्रोजनीकरण कटैलिसीस में मध्यवर्ती हैं।

*सोडियम बोरोहाइड्राइड , लिथियम एल्यूमीनियम हाइड्राइड , डायसोब्यूटाइललुमिनियम हाइड्राइड (DIBAL) और सुपर हाइड्राइड जैसे हाइड्राइड, आमतौर पर रासायनिक संश्लेषण में एजेंटों को कम करने के रूप में उपयोग किए जाते हैं। हाइड्राइड एक इलेक्ट्रोफिलिक केंद्र में जोड़ता है, आमतौर पर असंतृप्त कार्बन।

हाइड्राइड आयन

मुक्त हाइड्राइड ऐनियन केवल चरम स्थितियों में ही विद्यमान होते हैं और सजातीय समाधान के लिए इनका प्रयोग नहीं किया जाता है। इसकी बजाय बहुत से यौगिकों में हायड्रोडिक विशेषताओं वाले हाइड्रोजन केंद्र होते हैं।

इलेक्ट्राइड के अलावा, हाइड्राइड आयन सबसे सरल संभव आयन है, जिसमें दो इलेक्ट्रॉन और एक प्रोटॉन होता है। हाइड्रोजन में अपेक्षाकृत कम इलेक्ट्रॉन बंधुता होती है, 72.77 kJ/mol और प्रोटॉन के साथ एक शक्तिशाली लेविस बेस के रूप में ऊष्माक्षेपी प्रतिक्रिया करता है।

<केम>एच- + एच+ -> एच2</केम> ΔH = −1676 kJ/mol

हाइड्रोजन की कम इलेक्ट्रॉन बंधुता और एच-एच बंधन की ताकत (ΔHBE = 436 kJ/mol) का अर्थ है कि हाइड्राइड आयन भी एक प्रबल अपचायक होगा

<केम>एच2 + 2ई- <=> 2एच-</केम> E o = −2.25 V


हाइड्राइड के प्रकार

सामान्य परिभाषा के अनुसार प्रत्येक धातु, वर्त सारणी (कुछ महान गैसों को छोड़कर) के तत्व एक या अधिक हाइड्राइड्स का निर्माण करते हैं। इन पदार्थों को उनके बंधन की प्रकृति के अनुसार तीन मुख्य प्रकारों में वर्गीकृत किया गया है:[6]

आयनिक हाइड्राइड्स, जिनमें महत्वपूर्ण आयनिक बंधन गुण होते हैं

  • सहसंयोजक हाइड्राइड्स में हाइड्रोकार्बन और अन्य यौगिकों को शामिल किया गया है जो सहसंयोजक परमाणुओं से संयोजित होते हैं।
  • अंतराकाशी हाइड्राइड्स, जिन्हें धातु बंधन कहा जाता है।

हालांकि इन विभाजनों का उपयोग सार्वभौमिक रूप से नहीं किया गया है, फिर भी वे हाइड्राइड्स में अंतर समझने में उपयोगी हैं।

आयनिक हाइड्राइड्स

ये हाइड्रोजन के स्टोइकोमीट्रिक यौगिक हैं। आयनिक या खारा हाइड्राइड एक इलेक्ट्रोपोसिटिव धातु से बंधे हाइड्राइड से बने होते हैं, आमतौर पर एक क्षार धातु या क्षारीय पृथ्वी धातु। युरोपियम और येटरबियम जैसे द्विसंयोजक लैंथेनाइड ्स भारी क्षारीय पृथ्वी धातुओं के समान यौगिक बनाते हैं। इन सामग्रियों में हाइड्राइड को स्यूडोहैलाइड के रूप में देखा जाता है। खारा हाइड्राइड पारंपरिक सॉल्वैंट्स में अघुलनशील होते हैं, जो उनकी गैर-आणविक संरचनाओं को दर्शाते हैं। आयनिक हाइड्राइड का उपयोग क्षार के रूप में और कभी-कभी कार्बनिक संश्लेषण में अभिकर्मक ों को कम करने के रूप में किया जाता है।[12]

ये हाइड्रोजन के रससमीकरणमितीय यौगिक हैं। आयनिक या खारा हाइड्राइड एक विद्युत सकारात्मक धातु से बंधे हाइड्राइड से बने होते हैं, आमतौर पर एक क्षार धातु या क्षारीय पृथ्वी धातु। डाइसंयोजक लैंथेनाइड ्स जैसे योरोपियम और यटर्बियम फार्म के यौगिक भारी क्षारीय पृथ्वी धातुओं के समान होते हैं। इन सामग्रियों में हाइड्राइड को स्यूडोहैलाइड के रूप में देखा जाता है। लवण हाइड्राइड्स पारंपरिक सॉल्वेंट्स में अघुलनशील होते हैं, जो उनकी अआणविक संरचनाओं को दर्शाते हैं। आयनिक हाइड्राइड्स का उपयोग क्षारों के रूप में और कभी-कभी कार्बनिक संश्लेषण में अभिकर्मक ों को कम करने के रूप में किया जाता है।[12]

<केम>\overset{acetophenone}{C6H5C(O)CH3}{} + \overset{पोटेशियम\\हाइड्राइड}{KH} -> C6H5C(O)CH2K{} + H2</केम>

ऐसी प्रतिक्रियाओं के लिए विशिष्ट सॉल्वैंट्स ईथर हैं। पानी और अन्य प्रोटिक विलायक आयनिक हाइड्राइड के लिए एक माध्यम के रूप में काम नहीं कर सकते हैं क्योंकि हाइड्राइड आयन हाइड्रॉक्साइड और अधिकांश हाइड्रॉकसिल आयनों की तुलना में एक मजबूत आधार (रसायन विज्ञान) है। एक विशिष्ट अम्ल-क्षार अभिक्रिया में हाइड्रोजन गैस मुक्त होती है।

इन प्रतिक्रियाओं के लिए ठेठ विलायक एथरर्स हैं। पानी और अन्य प्रोटिक विलायक आयोनिक हाइड्राइड्स के लिए एक माध्यम के रूप में काम नहीं कर सकते क्योंकि हाइड्राइड आयन हाइड्रॉक्साइड और अधिकांश हाइड्रॉक्सिल आयनों की तुलना में एक मजबूत आधार है। हाइड्रोजन गैस एक विशिष्ट एसिड आधार प्रतिक्रिया में मुक्त है।

<केम>NaH + H2O -> H2_{(g)}{} + NaOH</केम>
ΔH = −83.6 kJ/mol, गिब्स मुक्त ऊर्जा|ΔG = −109.0 kJ/mol

अक्सर क्षार धातु हाइड्राइड्स धातु हेलिड्स के साथ प्रतिक्रिया करते हैं। लिथियम एल्यूमीनियम हाइड्राइड (अक्सर LAH के रूप में संक्षिप्त) एल्युमिनियम क्लोराइड के साथ लिथियम हाइड्राइड की प्रतिक्रियाओं से उत्पन्न होता है।

<केम>\ओवरसेट{लिथियम\\ हाइड्राइड}{4 LiH} + AlCl3 -> LiAlH4{} + 3 LiCl</केम>

सहसंयोजक हाइड्राइड

कुछ परिभाषाओं के अनुसार सहसंयोजक हाइड्राइड्स हाइड्रोजन युक्त अन्य सभी यौगिकों को कवर करते हैं। कुछ परिभाषाएँ हाइड्रोजन केंद्रों पर हाइड्राइड्स को सीमित करती हैं जो औपचारिक रूप से हाइड्राइड के रूप में प्रतिक्रिया करते हैं, अर्थात् न्यूक्लियोफिलिक, और हाइड्रोजन परमाणु धातु केंद्रों से बंधे हैं। ये हाइड्राइड्स सभी सही गैर धातुओं (शून्य समूह तत्वों को छोड़कर) द्वारा बनाई जाती हैं और जैसे तत्वों Al, Ga, Sn, Pb, Bi, Po, जो सामान्यतः धातुई प्रकृति के होते हैं, अर्थात् इस वर्ग में पी-ब्लॉक तत्वों के हाइड्राइड शामिल हैं। इन पदार्थों में हाइड्राइड बंध औपचारिक रूप से एक सहसंयोजक बंधन होता है जो एक कमजोर अम्ल में प्रोटोन द्वारा बनाया गया बंधन होता है। इस श्रेणी में हायड्रिड्स होते हैं जो असतत अणु के पॉलिमर या ओलिगोमर के रूप में पाये जाते हैं, और हाइड्रोजन जो सतह पर रसायन से भरे होते हैं। सहसंयोजक हाइड्राइड्स का एक विशेष महत्वपूर्ण खंड जटिल धातु हाइड्राइड, शक्तिशाली घुलनशील हाइड्राइड्स होते हैं जो सामान्यतया सिंथेटिक प्रक्रियाओं में इस्तेमाल होते हैं।

आणविक हाइड्राइड में अक्सर अतिरिक्त लिगेंड शामिल होते हैं; उदाहरण के लिए, डायसोब्यूटाइल एल्युमिनियम हाइड्राइड (DIBAL) हाइड्राइड लिगैंड्स के दो एल्युमीनम केंद्र हैं। सामान्य सॉल्वैंट्स में घुलनशील हाइड्राइड्स का कार्बनिक संश्लेषण में व्यापक रूप से उपयोग किया जाता हैं। सोडियम बोरोहाइड्राइड विशेष रूप से आम हैं (NaBH4) और लिथियम एल्यूमीनियम हाइड्राइड और डीआईबीएएल जैसे बाधा अभिकर्मकों को बाधित किया।

अंतरालीय हाइड्राइड या धात्विक हाइड्राइड

हाइड्रोजन भंडारण अनुप्रयोगों के लिए धातु हाइड्राइड

इंटरस्टीशियल हाइड्राइड्स आमतौर पर धातुओं या मिश्र धातुओं में मौजूद होते हैं। उन्हें पारंपरिक रूप से यौगिक कहा जाता है, भले ही वे एक यौगिक की परिभाषा के अनुरूप नहीं होते हैं, स्टील जैसे सामान्य मिश्र धातुओं से अधिक मिलते-जुलते हैं। ऐसे हाइड्राइडों में हाइड्रोजन परमाणु या द्विपरमाणुक संस्थाओं के रूप में मौजूद हो सकता है। यांत्रिक या थर्मल प्रसंस्करण, जैसे झुकने, हड़ताली, या एनीलिंग, हाइड्रोजन को विघटित करके समाधान से बाहर निकलने का कारण बन सकता है। उनकी बॉन्डिंग को आमतौर पर धात्विक बॉन्डिंग माना जाता है। इस तरह के थोक संक्रमण धातु हाइड्रोजन के संपर्क में आने पर अंतरालीय बाइनरी हाइड्राइड बनाते हैं। ये सिस्टम आमतौर पर गैर-स्टोइकोमेट्रिक यौगिक | नॉन-स्टोइकोमेट्रिक होते हैं, जाली में हाइड्रोजन परमाणुओं की चर मात्रा के साथ। सामग्री इंजीनियरिंग में, हाइड्रोजन उत्सर्जन की घटना अंतरालीय हाइड्राइड के गठन के परिणामस्वरूप होती है। इस प्रकार के हाइड्राइड दो मुख्य तंत्रों में से किसी एक के अनुसार बनते हैं। पहले तंत्र में डाइहाइड्रोजन का सोखना शामिल है, जो एच-एच बांड की सफाई, हाइड्रोजन के इलेक्ट्रॉनों के निरूपण और अंत में प्रोटॉन के धातु जाली में प्रसार द्वारा सफल होता है। अन्य मुख्य तंत्र में धातु जाली की सतह पर आयनित हाइड्रोजन की इलेक्ट्रोलाइटिक कमी शामिल है, इसके बाद प्रोटॉन के जाली में प्रसार भी होता है। दूसरा तंत्र इलेक्ट्रोलाइटिक प्रयोगों में उपयोग किए जाने वाले कुछ इलेक्ट्रोड के अस्थायी मात्रा में विस्तार के लिए जिम्मेदार है।

मध्यवर्ती हाइड्राइड्स आमतौर पर धातुओं या मिश्र धातुओं के भीतर मौजूद होते हैं। इन्हें परम्परागत रूप से "यौगिक" कहा जाता है यद्यपि ये किसी यौगिक की परिभाषा के पूरी तरह अनुरूप नहीं भी होते हैं जो कि स्टील जैसे सामान्य मिश्रधातुओं के समान होते हैं। इस प्रकार के हाइड्राइड्स में हाइड्रोजन या तो परमाणु या डायटोमिक संस्थाओं के रूप में मौजूद हो सकते हैं।

दुर्ग कमरे के तापमान पर हाइड्रोजन की अपनी मात्रा का 900 गुना तक अवशोषित करता है, जिससे पैलेडियम हाइड्राइड बनता है। इस सामग्री पर वाहनों के ईंधन कोशिकाओं के लिए हाइड्रोजन ले जाने के साधन के रूप में चर्चा की गई है। इंटरस्टीशियल हाइड्राइड सुरक्षित हाइड्रोजन भंडारण के लिए एक निश्चित वादा दिखाते हैं। न्यूट्रॉन विवर्तन अध्ययनों से पता चला है कि हाइड्रोजन परमाणु धातु की जाली में अष्टफलकीय अंतरालों पर बेतरतीब ढंग से कब्जा कर लेते हैं (एक fcc जाली में प्रति धातु परमाणु में एक अष्टफलकीय छिद्र होता है)। सामान्य दबावों पर अवशोषण की सीमा PdH0.7 है, यह दर्शाता है कि लगभग 70% अष्टफलकीय छिद्रों पर कब्जा है।[13] कई अंतरालीय हाइड्राइड विकसित किए गए हैं जो कमरे के तापमान और वायुमंडलीय दबाव पर हाइड्रोजन को आसानी से अवशोषित और निर्वहन करते हैं। वे आम तौर पर इंटरमेटेलिक यौगिकों और ठोस-समाधान मिश्र धातुओं पर आधारित होते हैं। हालांकि, उनका आवेदन अभी भी सीमित है, क्योंकि वे केवल 2 भार प्रतिशत हाइड्रोजन का भंडारण करने में सक्षम हैं, जो ऑटोमोटिव अनुप्रयोगों के लिए अपर्याप्त है।[14]

की संरचना [HRu6(CO)18], एक इंटरस्टीशियल हाइड्राइड लिगैंड के साथ एक धातु क्लस्टर (केंद्र में छोटा फ़िरोज़ा क्षेत्र)।[15]

संक्रमण धातु हाइड्राइड परिसरों

संक्रमण धातु हाइड्राइड में ऐसे यौगिक शामिल होते हैं जिन्हें सहसंयोजक हाइड्राइड के रूप में वर्गीकृत किया जा सकता है। कुछ को अंतरालीय हाइड्राइड के रूप में भी वर्गीकृत किया जाता है[citation needed] और अन्य ब्रिजिंग हाइड्राइड्स। क्लासिक संक्रमण धातु हाइड्राइड में हाइड्रोजन केंद्र और संक्रमण धातु के बीच एक एकल बंधन होता है। कुछ संक्रमण धातु हाइड्राइड अम्लीय होते हैं, जैसे, HCo(CO)4 तथा H2Fe(CO)4. आयनों पोटेशियम nonahydridorhenate [ReH9]2− तथा [FeH6]4− बढ़ते संग्रह के उदाहरण हैं ज्ञात आणविक होमोलेप्टिक धातु हाइड्राइड।[16] स्यूडोहैलाइड्स के रूप में, हाइड्राइड लिगैंड सकारात्मक रूप से ध्रुवीकृत हाइड्रोजन केंद्रों के साथ संबंध बनाने में सक्षम हैं। यह अंतःक्रिया, जिसे डायहाइड्रोजन बंध न कहा जाता है, हाइड्रोजन बंधन के समान है, जो सकारात्मक ध्रुवीकृत प्रोटॉन और खुले अकेले जोड़े वाले इलेक्ट्रोनगेटिव परमाणुओं के बीच मौजू

हाइड्रोजन के समस्थानिक युक्त हाइड्राइड#हाइड्रोजन-1 (प्रोटियम) प्रोटाइड के रूप में जाने जाते हैं।

ड्यूटेराइड्स

ड्यूटेरियम युक्त हाइड्राइड्स को ड्यूटेराइड्स के रूप में जाना जाता है। कुछ ड्यूटेराइड, जैसे लिथियम ड्यूटेराइड , थर्मोन्यूक्लियर हथियार ों में महत्वपूर्ण संलयन ईंधन और परमाणु रिएक्टरों में उपयोगी मॉडरेटर हैं।

ट्राइटाइड्स

ट्रिटियम युक्त हाइड्राइड्स को ट्राइटाइड्स के रूप में जाना जाता है।

मिश्रित आयन यौगिक

मिश्रित आयन यौगिक मौजूद होते हैं जिनमें अन्य आयनों के साथ हाइड्राइड होता है। इनमें बोराइड हाइड्राइड्स, कार्बोहाइड्रेट , हाइड्रोडोनाइट्राइड्स , ऑक्सीहाइड्राइड्स और अन्य शामिल हैं।

नामकरण पर परिशिष्ट

प्रोटाइड, ड्यूटेराइड और ट्राइटाइड का उपयोग आयनों या यौगिकों का वर्णन करने के लिए किया जाता है जिनमें क्रमशः समस्थानिक संवर्धन हाइड्रोजन-1 -1, ड्यूटेरियम या ट्रिटियम होता है।

क्लासिक अर्थ में, हाइड्राइड अन्य तत्वों के साथ किसी भी रासायनिक यौगिक हाइड्रोजन रूपों को संदर्भित करता है, जो आवर्त सारणी समूह 1-16 (हाइड्रोजन के द्विआधारी यौगिक) से अधिक है। इस परिभाषा के अनुसार मुख्य समूह यौगिकों के हाइड्राइड डेरिवेटिव के नामकरण की सूची निम्नलिखित है:[9]

उपरोक्त सम्मेलन के अनुसार, निम्नलिखित हाइड्रोजन यौगिक हैं, हाइड्राइड नहीं:[citation needed]

उदाहरण:

  • निकल हाइड्राइड : NiMH बैटरी में उपयोग किया जाता है
  • पैलेडियम हाइड्राइड: शीत संलयन प्रयोगों में इलेक्ट्रोड
  • लिथियम एल्युमिनियम हाइड्राइड: कार्बनिक रसायन विज्ञान में उपयोग किया जाने वाला एक शक्तिशाली कम करने वाला एजेंट
  • सोडियम बोरोहाइड्राइड: चयनात्मक विशेषता कम करने वाला एजेंट, प्रत्यक्ष बोरोहाइड्राइड ईंधन सेल में हाइड्रोजन भंडारण
  • सोडियम हाइड्राइड: कार्बनिक रसायन विज्ञान में प्रयुक्त एक शक्तिशाली आधार
  • डिबोरेन: कार्बनिक संश्लेषण में प्रयुक्त एजेंट, रॉकेट ईंधन, अर्धचालक डोपेंट, उत्प्रेरक; बोरेन, पेंटबोराने और सिर काटना भी
  • आर्सिन: डोपिंग (अर्धचालक) अर्धचालकों के लिए उपयोग किया जाता है
  • स्टिबाइन: सेमीकंडक्टर उद्योग में उपयोग किया जाता है
  • फॉस्फीन: धूमन के लिए प्रयोग किया जाता है
  • सिलाने: कई औद्योगिक उपयोग, उदा. मिश्रित सामग्री और जल विकर्षक का निर्माण
  • अमोनिया: शीतलक , ईंधन, उर्वरक , कई अन्य औद्योगिक उपयोग
  • हाइड्रोजन सल्फाइड: प्राकृतिक गैस का घटक, सल्फर का महत्वपूर्ण स्रोत
  • रासायनिक रूप से, यहां तक ​​कि पानी और हाइड्रोकार्बन को भी हाइड्राइड माना जा सकता है।

सभी मेटलॉइड हाइड्राइड अत्यधिक ज्वलनशील होते हैं। बर्फ को छोड़कर सभी ठोस अधात्विक हाइड्राइड अत्यधिक ज्वलनशील होते हैं। लेकिन जब हाइड्रोजन हैलोजन के साथ जुड़ता है तो यह हाइड्राइड के बजाय एसिड पैदा करता है, और वे ज्वलनशील नहीं होते हैं।

वरीयता सम्मेलन

IUPAC अकार्बनिक नामकरण के अनुसार, पूर्वता (शैलीबद्ध वैद्युतीयऋणात्मकता) से, हाइड्रोजन नाइट्रोजन समूह और काल्कोजन तत्वों के बीच आता है। इसलिए, हमारे पास NH . है3, नाइट्रोजन हाइड्राइड (अमोनिया), बनाम H2हे, हाइड्रोजन ऑक्साइड (पानी)। कभी-कभी पोलोनियम के लिए इस सम्मेलन को तोड़ा जाता है, जिसे पोलोनियम की धातु के आधार पर अक्सर अपेक्षित हाइड्रोजन पोलोनाइड के बजाय पोलोनियम हाइड्राइड के रूप में जाना जाता है।

यह भी देखें

संदर्भ

  1. "हाइड्रोन (H02904)". IUPAC. 24 February 2014. Retrieved 11 May 2021.
  2. Helium hydride exists as an ion.
  3. Neonium is an ion, and the HNe excimer exists also.
  4. Argonium exists as an ion.
  5. Kryptonium ion exist as a cation.
  6. 6.0 6.1 Greenwood, N. N.; Earnshaw, A. (1997). तत्वों का रसायन (2nd ed.). Boston, Mass: Butterworth-Heinemann. ISBN 0-7506-3365-4. OCLC 48138330.
  7. Lee, J.D. (2008). संक्षिप्त अकार्बनिक रसायन विज्ञान (5th ed.). Wiley. ISBN 978-81-265-1554-7.
  8. Massey, A.G. (2000). मुख्य समूह रसायन विज्ञान. Inorganic Chemistry. Wiley. ISBN 978-0-471-49039-5.
  9. 9.0 9.1 अकार्बनिक रसायन विज्ञान का नामकरण ("द रेड बुक") (PDF). IUPAC Recommendations. 2005. Par. IR-6.
  10. Chatgilialoglu, Chryssostomos; Ferreri, Carla; Landais, Yannick; Timokhin, Vitaliy I. (2018). "तीस साल (TMS)3SiH: रेडिकल-आधारित सिंथेटिक रसायन विज्ञान में एक मील का पत्थर". Chemical Reviews. 118 (14): 6516–6572. doi:10.1021/acs.chemrev.8b00109. PMID 29938502.
  11. Grochala, Wojciech; Edwards, Peter P. (2004-03-01). "हाइड्रोजन के भंडारण और उत्पादन के लिए गैर-मध्यवर्ती हाइड्राइड का थर्मल अपघटन". Chemical Reviews. 104 (3): 1283–1316. doi:10.1021/cr030691s. PMID 15008624.
  12. 12.0 12.1 Brown, H. C. (1975). बोरानेस के माध्यम से कार्बनिक संश्लेषण. New York: John Wiley & Sons. ISBN 0-471-11280-1.
  13. Palladium hydride
  14. Züttel, Andreas (2003). "हाइड्रोजन भंडारण के लिए सामग्री". Materials Today. 6 (9): 24–33. doi:10.1016/s1369-7021(03)00922-2.
  15. Jackson, Peter F.; Johnson, Brian F. G.; Lewis, Jack; Raithby, Paul R.; McPartlin, Mary; Nelson, William J. H.; Rouse, Keith D.; Allibon, John; Mason, Sax A. (1980). "[HRU6(CO)18] में इंटरस्टीशियल हाइड्राइड लिगैंड का प्रत्यक्ष स्थान - [Ph4As][HRu6(CO)18] के एक्स-रे और न्यूट्रॉन दोनों विश्लेषणों द्वारा [Ph4As][HRu6( का एक्स-रे और न्यूट्रॉन विश्लेषण दोनों द्वारा विश्लेषण किया जाता है। सीओ)18]". Journal of the Chemical Society, Chemical Communications (7): 295. doi:10.1039/c39800000295.
  16. A. Dedieu (Editor) Transition Metal Hydrides 1991, Wiley-VCH, Weinheim. ISBN 0-471-18768-2

ग्रन्थसूची

W. M. Mueller, J. P. Blackledge, G. G. Libowitz, Metal Hydrides, Academic Press, N.Y. and London, (1968)


बाहरी संबंध

  • Media related to Hydrides at Wikimedia Commons