मध्यवर्ती मान प्रमेय: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
Line 1: Line 1:
{{short description|Continuous function on an interval takes on every value between its values at the ends}}
[[File:Illustration for the intermediate value theorem.svg|thumb|मध्यवर्ती मूल्य प्रमेय: चलो <math>f</math> पर परिभाषित एक सतत कार्य हो <math>[a,b]</math> और जाने <math>s</math> के साथ एक संख्या हो <math>f(a) < s < f(b)</math>. फिर कुछ उपस्थित है <math>x</math> के बीच <math>a</math> तथा <math>b</math> ऐसा कि <math>f(x) = s</math>.]][[गणितीय विश्लेषण]] में, मध्यवर्ती मूल्य प्रमेय बताती है कि यदि <math>f</math> एक सतत फलन (गणित) है जिसके फलन के क्षेत्र में [[अंतराल (गणित)]] होता है {{closed-closed|''a'', ''b''}}, तो यह किसी भी दिए गए मान <math>f(a)</math> तथा <math>f(b)</math> के बीच अंतराल के भीतर किसी बिंदु पर लेता है ।
[[File:Illustration for the intermediate value theorem.svg|thumb|मध्यवर्ती मूल्य प्रमेय: चलो <math>f</math> पर परिभाषित एक सतत कार्य हो <math>[a,b]</math> और जाने <math>s</math> के साथ एक संख्या हो <math>f(a) < s < f(b)</math>. फिर कुछ उपस्थित है <math>x</math> के बीच <math>a</math> तथा <math>b</math> ऐसा कि <math>f(x) = s</math>.]][[गणितीय विश्लेषण]] में, मध्यवर्ती मूल्य प्रमेय बताती है कि यदि <math>f</math> एक सतत फलन(गणित) है जिसके फलन के क्षेत्र में [[अंतराल (गणित)|अंतराल(गणित)]] होता है {{closed-closed|''a'', ''b''}}, तो यह किसी भी दिए गए मान <math>f(a)</math> तथा <math>f(b)</math> के बीच अंतराल के भीतर किसी बिंदु पर लेता है ।


इसके दो महत्वपूर्ण [[परिणाम]] हैं:
इसके दो महत्वपूर्ण [[परिणाम]] हैं:
Line 25: Line 24:


== प्रमाण ==
== प्रमाण ==
<!-- This section is linked from [[Continuity property]] -->
प्रमेय को वास्तविक संख्याओं की [[पूर्णता (आदेश सिद्धांत)|पूर्णता(आदेश सिद्धांत)]] गुण के परिणाम के रूप में सिद्ध किया जा सकता है:<ref>Essentially follows {{cite book |title=Foundations of Analysis|first=Douglas A.|last=Clarke|publisher=Appleton-Century-Crofts | year=1971|page=284}}</ref>
प्रमेय को वास्तविक संख्याओं की [[पूर्णता (आदेश सिद्धांत)|पूर्णता(आदेश सिद्धांत)]] गुण के परिणाम के रूप में सिद्ध किया जा सकता है:<ref>Essentially follows {{cite book |title=Foundations of Analysis|first=Douglas A.|last=Clarke|publisher=Appleton-Century-Crofts | year=1971|page=284}}</ref>
हम पहली वस्तुस्थिति प्रमाणित करेंगे, <math>f(a) < u < f(b)</math>. दूसरी वस्तुस्थिति भी समान ही है।
हम पहली वस्तुस्थिति प्रमाणित करेंगे, <math>f(a) < u < f(b)</math>. दूसरी वस्तुस्थिति भी समान ही है।
Line 42: Line 40:


टिप्पणी: मध्यवर्ती मूल्य प्रमेय को गैर-मानक विश्लेषण के तरीकों का उपयोग करके भी सिद्ध किया जा सकता है, जो एक कठोर आधार पर अन्तर्ज्ञानी तर्कों को सम्मिलित करता है।<ref>{{cite arXiv |last=Sanders|first=Sam | eprint=1704.00281 | title=अमानक विश्लेषण और रचनावाद!|date=2017|class=math.LO}}</ref>
टिप्पणी: मध्यवर्ती मूल्य प्रमेय को गैर-मानक विश्लेषण के तरीकों का उपयोग करके भी सिद्ध किया जा सकता है, जो एक कठोर आधार पर अन्तर्ज्ञानी तर्कों को सम्मिलित करता है।<ref>{{cite arXiv |last=Sanders|first=Sam | eprint=1704.00281 | title=अमानक विश्लेषण और रचनावाद!|date=2017|class=math.LO}}</ref>
== इतिहास ==
== इतिहास ==
प्रमेय का एक रूप 5 वीं शताब्दी ईसा पूर्व के रूप में पोस्ट किया गया था, [[ब्रायसन ऑफ हेराक्लिआ|ब्रायसन का हेराक्लिआ]] के काम में वृत्त को वर्ग करने पर ब्रायसन ने तर्क दिया कि, चूंकि दिए गए वर्ग से बड़े और छोटे दोनों वृत्त उपस्थित हैं, इसलिए बराबर क्षेत्रफल का एक वृत्त उपस्थित होना चाहिए।<ref>{{cite book
प्रमेय का एक रूप 5 वीं शताब्दी ईसा पूर्व के रूप में पोस्ट किया गया था, [[ब्रायसन ऑफ हेराक्लिआ|ब्रायसन का हेराक्लिआ]] के काम में वृत्त को वर्ग करने पर ब्रायसन ने तर्क दिया कि, चूंकि दिए गए वर्ग से बड़े और छोटे दोनों वृत्त उपस्थित हैं, इसलिए बराबर क्षेत्रफल का एक वृत्त उपस्थित होना चाहिए।<ref>{{cite book
Line 55: Line 51:
  | title = पुनर्परिभाषित ज्यामितीय सटीकता: डेसकार्टेस का निर्माण की प्रारंभिक आधुनिक अवधारणा का परिवर्तन| year = 2001}}</ref> प्रमेय को पहली बार 1817 में [[बर्नार्ड बोलजानो]] द्वारा सिद्ध किया गया था। बोलजानो ने प्रमेय के निम्नलिखित सूत्रीकरण का उपयोग किया:<ref>{{Cite journal| title=मध्यवर्ती मूल्य प्रमेय पर बोलजानो के पेपर का अनुवाद| first=S.B.| last=Russ| journal=Historia Mathematica| date=1980| volume=7| issue=2| pages=156–185| doi=10.1016/0315-0860(80)90036-1| doi-access=free}}</ref>मान लीजिए <math>f, \phi</math> बीच के अंतराल पर निरंतर कार्य करें <math>\alpha</math> तथा <math>\beta</math> ऐसा है कि <math>f(\alpha) < \phi(\alpha)</math> तथा <math>f(\beta) > \phi(\beta)</math>. फिर <math>\alpha</math> तथा <math>\beta</math> के बीच एक x है इस तरह कि <math>f(x)={\displaystyle \phi }(x)</math>
  | title = पुनर्परिभाषित ज्यामितीय सटीकता: डेसकार्टेस का निर्माण की प्रारंभिक आधुनिक अवधारणा का परिवर्तन| year = 2001}}</ref> प्रमेय को पहली बार 1817 में [[बर्नार्ड बोलजानो]] द्वारा सिद्ध किया गया था। बोलजानो ने प्रमेय के निम्नलिखित सूत्रीकरण का उपयोग किया:<ref>{{Cite journal| title=मध्यवर्ती मूल्य प्रमेय पर बोलजानो के पेपर का अनुवाद| first=S.B.| last=Russ| journal=Historia Mathematica| date=1980| volume=7| issue=2| pages=156–185| doi=10.1016/0315-0860(80)90036-1| doi-access=free}}</ref>मान लीजिए <math>f, \phi</math> बीच के अंतराल पर निरंतर कार्य करें <math>\alpha</math> तथा <math>\beta</math> ऐसा है कि <math>f(\alpha) < \phi(\alpha)</math> तथा <math>f(\beta) > \phi(\beta)</math>. फिर <math>\alpha</math> तथा <math>\beta</math> के बीच एक x है इस तरह कि <math>f(x)={\displaystyle \phi }(x)</math>


इस निरूपण और आधुनिक निरूपण के बीच समानता को समुच्चयन द्वारा उचित निरंतर प्रकार्य के लिए <math>\phi</math> दिखाया जा सकता है। [[ऑगस्टिन-लुई कॉची]] ने 1821 में आधुनिक सूत्रीकरण और एक प्रमाण प्रदान किया।<ref name="grabiner">{{Cite journal| title=आपको एप्सिलॉन किसने दिया? कॉची एंड द ऑरिजिन्स ऑफ रिजोरस कैलकुलस| first=Judith V.| last=Grabiner| journal=The American Mathematical Monthly| date=March 1983| volume=90| pages=185–194| url=http://www.maa.org/sites/default/files/pdf/upload_library/22/Ford/Grabiner185-194.pdf| doi=10.2307/2975545| issue=3| jstor=2975545}}</ref> दोनों कार्यों के विश्लेषण को औपचारिक रूप देने के लक्ष्य और [[जोसेफ-लुई लाग्रेंज]] के काम से प्रेरित थे। यह विचार कि निरंतर कार्यों में मध्यवर्ती मूल्य गुण, पहले की उत्पत्ति होती है। [[साइमन स्टीवन]] ने समाधान के दशमलव विस्तार के निर्माण के लिए कलन विधि प्रदान करके [[बहुपद|बहुपदों]] के लिए मध्यवर्ती मूल्य प्रमेय(उदाहरण के रूप में एक घन प्रकार्य का उपयोग करके) प्रमाणित कर दिया। कलन विधि पुनरावृत्ति के प्रत्येक चरण पर एक अतिरिक्त दशमलव अंक का निर्माण करते हुए, अंतराल को 10 भागों में उप-विभाजित करता है।<ref>Karin Usadi Katz and [[Mikhail Katz|Mikhail G. Katz]] (2011) A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography. [[Foundations of Science]]. {{doi|10.1007/s10699-011-9223-1}} See [https://doi.org/10.1007%2Fs10699-011-9223-1 link]</ref> निरंतरता की औपचारिक परिभाषा दिए जाने से पहले, एक सतत कार्य की परिभाषा के हिस्से के रूप में मध्यवर्ती मूल्य गुण दिया गया था। प्रस्तावक में लुई आर्बोगैस्ट अंगीभूत हैं, जिन्होंने माना कि कार्यों में कोई छलांग नहीं है, मध्यवर्ती मूल्य गुण को संतुष्ट करते हैं और वेतन वृद्धि करते हैं जिनके आकार चर के वेतन वृद्धि के आकार के अनुरूप होते हैं।<ref>{{MacTutor Biography|id=Arbogast}}</ref>
इस निरूपण और आधुनिक निरूपण के बीच समानता को समुच्चयन द्वारा उचित निरंतर प्रकार्य के लिए <math>\phi</math> दिखाया जा सकता है। [[ऑगस्टिन-लुई कॉची]] ने 1821 में आधुनिक सूत्रीकरण और एक प्रमाण प्रदान किया।<ref name="grabiner">{{Cite journal| title=आपको एप्सिलॉन किसने दिया? कॉची एंड द ऑरिजिन्स ऑफ रिजोरस कैलकुलस| first=Judith V.| last=Grabiner| journal=The American Mathematical Monthly| date=March 1983| volume=90| pages=185–194| url=http://www.maa.org/sites/default/files/pdf/upload_library/22/Ford/Grabiner185-194.pdf| doi=10.2307/2975545| issue=3| jstor=2975545}}</ref> दोनों कार्यों के विश्लेषण को औपचारिक रूप देने के लक्ष्य और [[जोसेफ-लुई लाग्रेंज]] के काम से प्रेरित थे। यह विचार कि निरंतर कार्यों में मध्यवर्ती मूल्य गुण, पहले की उत्पत्ति होती है। [[साइमन स्टीवन]] ने समाधान के दशमलव विस्तार के निर्माण के लिए कलन विधि प्रदान करके [[बहुपद|बहुपदों]] के लिए मध्यवर्ती मूल्य प्रमेय (उदाहरण के रूप में एक घन प्रकार्य का उपयोग करके) प्रमाणित कर दिया। कलन विधि पुनरावृत्ति के प्रत्येक चरण पर एक अतिरिक्त दशमलव अंक का निर्माण करते हुए, अंतराल को 10 भागों में उप-विभाजित करता है।<ref>Karin Usadi Katz and [[Mikhail Katz|Mikhail G. Katz]] (2011) A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography. [[Foundations of Science]]. {{doi|10.1007/s10699-011-9223-1}} See [https://doi.org/10.1007%2Fs10699-011-9223-1 link]</ref> निरंतरता की औपचारिक परिभाषा दिए जाने से पहले, एक सतत कार्य की परिभाषा के हिस्से के रूप में मध्यवर्ती मूल्य गुण दिया गया था। प्रस्तावक में लुई आर्बोगैस्ट अंगीभूत हैं, जिन्होंने माना कि कार्यों में कोई छलांग नहीं है, मध्यवर्ती मूल्य गुण को संतुष्ट करते हैं और वेतन वृद्धि करते हैं जिनके आकार चर के वेतन वृद्धि के आकार के अनुरूप होते हैं।<ref>{{MacTutor Biography|id=Arbogast}}</ref>
पहले के लेखकों ने परिणाम को सहज रूप से स्पष्ट माना और किसी प्रमाण की आवश्यकता नहीं थी। बोलजानो और कॉची की अंतर्दृष्टि निरंतरता की एक सामान्य धारणा को परिभाषित करना था(कॉची के मामले में [[बहुत छोता|अति सूक्ष्म]] के संदर्भ में और बोलजानो के मामले में वास्तविक असमानताओं का उपयोग करना), और ऐसी परिभाषाओं के आधार पर एक प्रमाण प्रदान करना था।
 
पहले के लेखकों ने परिणाम को सहज रूप से स्पष्ट माना और किसी प्रमाण की आवश्यकता नहीं थी। बोलजानो और कॉची की अंतर्दृष्टि निरंतरता की एक सामान्य धारणा को परिभाषित करना था (कॉची के स्थिति में [[बहुत छोता|अति सूक्ष्म]] के संदर्भ में और बोलजानो के स्थिति में वास्तविक असमानताओं का उपयोग करना), और ऐसी परिभाषाओं के आधार पर एक प्रमाण प्रदान करना था।


== सामान्यीकरण ==
== सामान्यीकरण ==
Line 92: Line 89:


* मान लीजिए <math>a</math> तथा <math>b</math> वास्तविक संख्या हो और <math>f:[a,b] \to R</math> [[बंद अंतराल]] <math>[a,b]</math> से बिंदुवार वास्तविक रेखा के लिए निरंतर कार्य करें, और मान लीजिए कि <math>f(a) < 0</math> तथा <math>0 < f(b)</math>. फिर हर सकारात्मक संख्या <math>\varepsilon > 0</math> के लिए इकाई अंतराल में एक बिन्दु <math>x</math> ऐसे होता है कि <math>\vert f(x) \vert < \varepsilon</math>.<ref>{{cite journal|title=अनुमानित इंटरमीडिएट वैल्यू प्रमेय के लिए विकल्पों के बीच इंटरपोलिंग| author=Matthew Frank|journal=Logical Methods in Computer Science|volume=16|issue=3|date=July 14, 2020| doi=10.23638/LMCS-16(3:5)2020|arxiv=1701.02227}}</ref>
* मान लीजिए <math>a</math> तथा <math>b</math> वास्तविक संख्या हो और <math>f:[a,b] \to R</math> [[बंद अंतराल]] <math>[a,b]</math> से बिंदुवार वास्तविक रेखा के लिए निरंतर कार्य करें, और मान लीजिए कि <math>f(a) < 0</math> तथा <math>0 < f(b)</math>. फिर हर सकारात्मक संख्या <math>\varepsilon > 0</math> के लिए इकाई अंतराल में एक बिन्दु <math>x</math> ऐसे होता है कि <math>\vert f(x) \vert < \varepsilon</math>.<ref>{{cite journal|title=अनुमानित इंटरमीडिएट वैल्यू प्रमेय के लिए विकल्पों के बीच इंटरपोलिंग| author=Matthew Frank|journal=Logical Methods in Computer Science|volume=16|issue=3|date=July 14, 2020| doi=10.23638/LMCS-16(3:5)2020|arxiv=1701.02227}}</ref>
== व्यावहारिक अनुप्रयोग ==
== व्यावहारिक अनुप्रयोग ==
इसी तरह का परिणाम बोरसुक-उलम प्रमेय है, जो कहता है कि <math>n</math>-क्षेत्र से यूक्लिडीय <math>n</math>-स्थल तक एक सतत मानचित्र हमेशा एक ही स्थान पर प्रतिमुख बिंदुओं की कुछ जोड़ी को मानचित्र देगा।
इसी तरह का परिणाम बोरसुक-उलम प्रमेय है, जो कहता है कि <math>n</math>-क्षेत्र से यूक्लिडीय <math>n</math>-स्थल तक एक सतत मानचित्र हमेशा एक ही स्थान पर प्रतिमुख बिंदुओं की कुछ जोड़ी को मानचित्र देगा।
Line 102: Line 97:


प्रमेय इस स्पष्टीकरण को भी रेखांकित करता है कि क्यों एक लड़खड़ाती तालिका को घुमाने से यह स्थिरता में आ जाएगी(कुछ आसानी से मिलने वाली बाधाओं के अधीन)।<ref>[[Keith Devlin]] (2007) [http://www.maa.org/external_archive/devlin/devlin_02_07.html How to stabilize a wobbly table]</ref>
प्रमेय इस स्पष्टीकरण को भी रेखांकित करता है कि क्यों एक लड़खड़ाती तालिका को घुमाने से यह स्थिरता में आ जाएगी(कुछ आसानी से मिलने वाली बाधाओं के अधीन)।<ref>[[Keith Devlin]] (2007) [http://www.maa.org/external_archive/devlin/devlin_02_07.html How to stabilize a wobbly table]</ref>
== यह भी देखें ==
== यह भी देखें ==


Line 110: Line 103:
* {{annotated link|गैर-परमाणु उपाय}}
* {{annotated link|गैर-परमाणु उपाय}}
* {{annotated link|बालों वाली गेंद प्रमेय}}
* {{annotated link|बालों वाली गेंद प्रमेय}}
==संदर्भ==
==संदर्भ==
{{Reflist}}
{{Reflist}}
==इस पेज में लापता आंतरिक लिंक की सूची==
*निरंतर कार्य
*प्रकार्य(गणित)
*किसी प्रकार्य का कार्यक्षेत्र
*वास्तविक संख्या की पूर्णता
*तर्कहीन संख्या
*अंतिम
*गैर मानक विश्लेषण
*वृत्त को चौकोर करना
*क्यूबिक प्रकार्य
*लुइस आर्बोगैस्ट
*मापीय स्थान
*टोपोलॉजिकल स्पेस
*टोपोलॉजिकल गुण
*कुल आदेश
*ब्रोवर फिक्स्ड-पॉइंट प्रमेय
*यौगिक
==बाहरी संबंध==
==बाहरी संबंध==
{{ProofWiki|id=Intermediate_Value_Theorem|title=Intermediate value Theorem}}
{{ProofWiki|id=Intermediate_Value_Theorem|title=Intermediate value Theorem}}

Latest revision as of 13:16, 1 November 2023

मध्यवर्ती मूल्य प्रमेय: चलो पर परिभाषित एक सतत कार्य हो और जाने के साथ एक संख्या हो . फिर कुछ उपस्थित है के बीच तथा ऐसा कि .

गणितीय विश्लेषण में, मध्यवर्ती मूल्य प्रमेय बताती है कि यदि एक सतत फलन (गणित) है जिसके फलन के क्षेत्र में अंतराल (गणित) होता है [a, b], तो यह किसी भी दिए गए मान तथा के बीच अंतराल के भीतर किसी बिंदु पर लेता है ।

इसके दो महत्वपूर्ण परिणाम हैं:

  1. यदि एक निरंतर कार्य में अंतराल के अंदर विपरीत चिह्न के मान होते हैं, तो उस अंतराल(बोल्जानो के प्रमेय) में एक प्रकार्य का शून्य होता है।[1] [2]
  2. एक अंतराल पर एक सतत कार्य की छवि(गणित) स्वयं एक अंतराल है।

प्रेरणा

मध्यवर्ती मूल्य प्रमेय

यह वास्तविक संख्याओं पर निरंतर कार्यों की सहज गुण को दर्शाता है: दिया गया है कि में निरंतर ज्ञात मूल्यों तथा के साथ कार्यभार लेता है, तत्पश्चात लेखाचित्र क्षैतिज रेखा से गुजरना चाहिए यद्यपि से की ओर चलता है। यह इस विचार का प्रतिनिधित्व करता है कि एक बंद अंतराल पर एक निरंतर कार्य का लेखाचित्र कागज से अंकनी उठाए बिना खींचा जा सकता है।

प्रमेय

मध्यवर्ती मूल्य प्रमेय निम्नलिखित बताती है:

एक अंतराल पर विचार करें, वास्तविक संख्याओं का और एक सतत कार्य . फिर

  • संस्करण I. यदि तथा के बीच की संख्या है, वह है,
    तो वहाँ एक है ऐसा है कि .
  • संस्करण द्वितीय, एक प्रकार्य की छवि एक अंतराल भी है, और इसमें अंतर्ग्रस्त है ,

टिप्पणी: संस्करण II बताती है कि प्रकार्य मानों के समुच्चय(गणित) में कोई अंतर नहीं है। किसी भी दो प्रकार्य मानों के लिए , भले ही वे बीच के अंतराल तथा से बाहर हों , अंतराल में सभी बिंदु कार्य मान भी हैं,

बिना किसी आंतरिक अंतराल वाली वास्तविक संख्याओं का उपसमुच्चय एक अंतराल है। संस्करण I स्वाभाविक रूप से संस्करण II में निहित है।

पूर्णता से संबंध

प्रमेय निर्भर करता है, और वास्तविक संख्याओं की पूर्णता के बराबर है। मध्यवर्ती मूल्य प्रमेय परिमेय संख्या Q पर लागू नहीं होता है क्योंकि परिमेय संख्याओं के बीच अंतराल उपस्थित होता है; अपरिमेय संख्याएँ उन अंतरालों को भरती हैं। उदाहरण के लिए, प्रकार्य के लिये संतुष्ट तथा । यद्यपि, कोई परिमेय संख्या नहीं है, ऐसा है कि , इसलिये एक अपरिमेय संख्या है।

प्रमाण

प्रमेय को वास्तविक संख्याओं की पूर्णता(आदेश सिद्धांत) गुण के परिणाम के रूप में सिद्ध किया जा सकता है:[3] हम पहली वस्तुस्थिति प्रमाणित करेंगे, . दूसरी वस्तुस्थिति भी समान ही है।

मान लीजिए सभी का समुच्चय है। ऐसा कि . फिर से रिक्त नहीं है का एक तत्व है . तब से रिक्त नहीं है और ऊपर से घिरा हुआ है, पूर्णता से, सर्वोच्चता उपस्थित । वह है, सबसे छोटी संख्या है जो प्रत्येक सदस्य से अधिक या उसके बराबर है . हम यह दावा करते हैं .

कुछ ठीक करो . तब से निरंतर है, एक है ऐसा कि जब भी . इस का तात्पर्य है कि

सभी के लिए . सर्वोच्च के गुणों के अनुसार, कुछ उपस्थित हैं जिसमें निहित है, इसलिए
,का चयन कीजिए हम जानते हैं कि इसलिये की सर्वोच्चता है . इस का तात्पर्य है कि
दोनों असमानताएँ
सभी के लिए मान्य हैं , जिससे हम निष्कर्ष निकालते हैं एकमात्र संभावित मूल्य के रूप में जैसा कि कहा गया है।

टिप्पणी: मध्यवर्ती मूल्य प्रमेय को गैर-मानक विश्लेषण के तरीकों का उपयोग करके भी सिद्ध किया जा सकता है, जो एक कठोर आधार पर अन्तर्ज्ञानी तर्कों को सम्मिलित करता है।[4]

इतिहास

प्रमेय का एक रूप 5 वीं शताब्दी ईसा पूर्व के रूप में पोस्ट किया गया था, ब्रायसन का हेराक्लिआ के काम में वृत्त को वर्ग करने पर ब्रायसन ने तर्क दिया कि, चूंकि दिए गए वर्ग से बड़े और छोटे दोनों वृत्त उपस्थित हैं, इसलिए बराबर क्षेत्रफल का एक वृत्त उपस्थित होना चाहिए।[5] प्रमेय को पहली बार 1817 में बर्नार्ड बोलजानो द्वारा सिद्ध किया गया था। बोलजानो ने प्रमेय के निम्नलिखित सूत्रीकरण का उपयोग किया:[6]मान लीजिए बीच के अंतराल पर निरंतर कार्य करें तथा ऐसा है कि तथा . फिर तथा के बीच एक x है इस तरह कि

इस निरूपण और आधुनिक निरूपण के बीच समानता को समुच्चयन द्वारा उचित निरंतर प्रकार्य के लिए दिखाया जा सकता है। ऑगस्टिन-लुई कॉची ने 1821 में आधुनिक सूत्रीकरण और एक प्रमाण प्रदान किया।[7] दोनों कार्यों के विश्लेषण को औपचारिक रूप देने के लक्ष्य और जोसेफ-लुई लाग्रेंज के काम से प्रेरित थे। यह विचार कि निरंतर कार्यों में मध्यवर्ती मूल्य गुण, पहले की उत्पत्ति होती है। साइमन स्टीवन ने समाधान के दशमलव विस्तार के निर्माण के लिए कलन विधि प्रदान करके बहुपदों के लिए मध्यवर्ती मूल्य प्रमेय (उदाहरण के रूप में एक घन प्रकार्य का उपयोग करके) प्रमाणित कर दिया। कलन विधि पुनरावृत्ति के प्रत्येक चरण पर एक अतिरिक्त दशमलव अंक का निर्माण करते हुए, अंतराल को 10 भागों में उप-विभाजित करता है।[8] निरंतरता की औपचारिक परिभाषा दिए जाने से पहले, एक सतत कार्य की परिभाषा के हिस्से के रूप में मध्यवर्ती मूल्य गुण दिया गया था। प्रस्तावक में लुई आर्बोगैस्ट अंगीभूत हैं, जिन्होंने माना कि कार्यों में कोई छलांग नहीं है, मध्यवर्ती मूल्य गुण को संतुष्ट करते हैं और वेतन वृद्धि करते हैं जिनके आकार चर के वेतन वृद्धि के आकार के अनुरूप होते हैं।[9]

पहले के लेखकों ने परिणाम को सहज रूप से स्पष्ट माना और किसी प्रमाण की आवश्यकता नहीं थी। बोलजानो और कॉची की अंतर्दृष्टि निरंतरता की एक सामान्य धारणा को परिभाषित करना था (कॉची के स्थिति में अति सूक्ष्म के संदर्भ में और बोलजानो के स्थिति में वास्तविक असमानताओं का उपयोग करना), और ऐसी परिभाषाओं के आधार पर एक प्रमाण प्रदान करना था।

सामान्यीकरण

अन्तःस्थायी महत्त्व प्रमेय जुड़ाव की सांस्थिति धारणा से निकटता से जुड़ा हुआ है और मापीय रिक्त स्थान में जुड़े समुच्चय के मूल गुणों और विशेष रूप से R के जुड़े उपसमुच्चय से निम्नानुसार है:

  • यदि तथा मापीय अन्तरक हैं, एक सतत मानचित्र है, और एक आनुषंगिक उपसमुच्चय है, तत्पश्चात जुड़ा हुआ है।(*)
  • उपसमुच्चय जुड़ा हुआ है यदि और केवल यदि यह निम्नलिखित गुण को संतुष्ट करता है: .(**)

वस्तुत:, जुड़ाव एक सांस्थितिक गुण है और(*) स्थलाकृतिक स्थानों के लिए सामान्यीकरण करता है: यदि तथा सांस्थितिक समष्टि हैं, एक सतत मानचित्र है, और एक जुड़ा हुआ स्थान है, फिर जुड़ा हुआ है। निरंतर मानचित्रों के तहत जुड़ाव के संरक्षण को मध्यवर्ती मूल्य प्रमेय के सामान्यीकरण के रूप में माना जा सकता है, वास्तविक चर के वास्तविक मूल्यवान कार्यों की गुण, सामान्य रिक्त स्थान में निरंतर कार्यों के लिए।

पहले बताए गए मध्यवर्ती मूल्य प्रमेय के पहले संस्करण को याद करें:

अन्तःस्थायी मूल्य प्रमेय ( वृतान्त I) — एक बंद अंतराल I=[a,b] पर विचार करें Failed to parse (⧼math_empty_tex⧽): {\displaystyle } वास्तविक संख्या में और सतत प्रकार्य में. फिर, यदि वास्तविक संख्या है ऐसा कि , वहाँ उपस्थित है ऐसा कि .

मध्यवर्ती मूल्य प्रमेय जुड़ाव के इन दो गुणों का एक तत्काल परिणाम है:[10]

Proof

By (**), is a connected set. It follows from (*) that the image, , is also connected. For convenience, assume that . Then once more invoking (**), implies that , or for some . Since , must actually hold, and the desired conclusion follows. The same argument applies if , so we are done. Q.E.D.

मध्यवर्ती मूल्य प्रमेय प्राकृतिक तरीके से सामान्यीकरण करता है: मान लीजिए कि X एक संसक्त सांस्थितिक समष्टि है और (Y, <) आदेश सांस्थिति से सुसज्जित कुल अनुक्रम समुच्चय है, और f : XY एक सतत मानचित्र बनने दें। यदि X में दो बिन्दु a तथा b हैं तथा Y में एक बिंदु u f(a) तथा f(b) के बीच < की प्रतिष्ठा से पड़ा हुआ है, तो वहाँ c में X ऐसे उपस्थित है कि f(c) = u. मूल प्रमेय को यह देखते हुए पुनर्प्राप्त किया जाता है कि R जुड़ा हुआ है और इसकी प्राकृतिक सांस्थिति अनुक्रम सांस्थिति है।

ब्रौवर निश्चित-बिंदु प्रमेय एक संबंधित प्रमेय है, जो एक दिशा में, मध्यवर्ती मान प्रमेय का एक विशेष आवेष्टन देता है।

असत्य प्रतिलोम

एक डार्बौक्स प्रकार्य एक वास्तविक-मूल्यवान प्रकार्य है जिसमें f मध्यवर्ती मूल्य गुण है, अर्थात, जो मध्यवर्ती मूल्य प्रमेय के निष्कर्ष को संतुष्ट करता है: किसी भी दो मूल्यों a तथा b के लिए f के अधिकार क्षेत्र में, और कोई भी y के बीच f(a) तथा f(b) में, a तथा b के बीच वहां कुछ c है f(c) = y के साथ। मध्यवर्ती मूल्य प्रमेय कहता है कि प्रत्येक निरंतर कार्य एक डार्बौक्स प्रकार्य है। यद्यपि, प्रत्येक डार्बौक्स प्रकार्य निरंतर नहीं है; अर्थात्, मध्यवर्ती मान प्रमेय का विलोम असत्य है।

उदाहरण के लिए प्रकार्य f : [0, ∞) → [−1, 1] को लें f(x) = sin(1/x) द्वारा परिभाषित x > 0 तथा f(0) = 0 के लिये। x = 0 में यह कार्य निरंतर नहीं है क्योंकि जैसे x 0 की ओर जाता है एक प्रकार्य की सीमा f(x) उपस्थित नहीं है; अभी भी प्रकार्य में मध्यवर्ती मूल्य गुण है। कॉनवे आधार 13 प्रकार्य द्वारा एक और अधिक जटिल उदाहरण दिया गया है।

परिनिष्पन्न में, डार्बौक्स प्रमेय(विश्लेषण) कहता है कि कुछ अंतराल पर किसी अन्य प्रकार्य के व्युत्पन्न से उत्पन्न होने वाले सभी कार्यों में मध्यवर्ती मूल्य गुण होती है(भले ही उन्हें निरंतर होने की आवश्यकता न हो)।

ऐतिहासिक रूप से, इस मध्यवर्ती मूल्य गुण को वास्तविक-मूल्यवान कार्यों की निरंतरता की परिभाषा के रूप में सुझाया गया है;[11] इस परिभाषा को स्वीकृत नहीं किया गया था।

रचनात्मक गणित में

रचनात्मक गणित में, मध्यवर्ती मान प्रमेय सत्य नहीं है। उसके स्थान पर, निष्कर्ष को कमजोर करना है:

  • मान लीजिए तथा वास्तविक संख्या हो और बंद अंतराल से बिंदुवार वास्तविक रेखा के लिए निरंतर कार्य करें, और मान लीजिए कि तथा . फिर हर सकारात्मक संख्या के लिए इकाई अंतराल में एक बिन्दु ऐसे होता है कि .[12]

व्यावहारिक अनुप्रयोग

इसी तरह का परिणाम बोरसुक-उलम प्रमेय है, जो कहता है कि -क्षेत्र से यूक्लिडीय -स्थल तक एक सतत मानचित्र हमेशा एक ही स्थान पर प्रतिमुख बिंदुओं की कुछ जोड़ी को मानचित्र देगा।

Proof for 1-dimensional case

Take to be any continuous function on a circle. Draw a line through the center of the circle, intersecting it at two opposite points and . Define to be . If the line is rotated 180 degrees, the value d will be obtained instead. Due to the intermediate value theorem there must be some intermediate rotation angle for which d = 0, and as a consequence f(A) = f(B) at this angle.

साधारणतः, किसी भी निरंतर कार्य के लिए जिसका कार्यक्षेत्र कुछ बंद उत्तल - विमीय है और आकार के अंदर कोई बिंदु(आवश्यक नहीं कि इसका केंद्र) है, दिए गए बिंदु के संबंध में दो प्रतिव्यासांत बिंदु उपस्थित हैं जिनका कार्यात्मक मूल्य समान है।

प्रमेय इस स्पष्टीकरण को भी रेखांकित करता है कि क्यों एक लड़खड़ाती तालिका को घुमाने से यह स्थिरता में आ जाएगी(कुछ आसानी से मिलने वाली बाधाओं के अधीन)।[13]

यह भी देखें

संदर्भ

  1. Weisstein, Eric W. "Bolzano's Theorem". MathWorld.
  2. Cates, Dennis M. (2019). कॉची का इनफिनिटिमल कैलकुलस. p. 249. doi:10.1007/978-3-030-11036-9. ISBN 978-3-030-11035-2. S2CID 132587955.
  3. Essentially follows Clarke, Douglas A. (1971). Foundations of Analysis. Appleton-Century-Crofts. p. 284.
  4. Sanders, Sam (2017). "अमानक विश्लेषण और रचनावाद!". arXiv:1704.00281 [math.LO].
  5. Bos, Henk J. M. (2001). "The legitimation of geometrical procedures before 1590". पुनर्परिभाषित ज्यामितीय सटीकता: डेसकार्टेस का निर्माण की प्रारंभिक आधुनिक अवधारणा का परिवर्तन. Sources and Studies in the History of Mathematics and Physical Sciences. New York: Springer. pp. 23–36. doi:10.1007/978-1-4613-0087-8_2. MR 1800805.
  6. Russ, S.B. (1980). "मध्यवर्ती मूल्य प्रमेय पर बोलजानो के पेपर का अनुवाद". Historia Mathematica. 7 (2): 156–185. doi:10.1016/0315-0860(80)90036-1.
  7. Grabiner, Judith V. (March 1983). "आपको एप्सिलॉन किसने दिया? कॉची एंड द ऑरिजिन्स ऑफ रिजोरस कैलकुलस" (PDF). The American Mathematical Monthly. 90 (3): 185–194. doi:10.2307/2975545. JSTOR 2975545.
  8. Karin Usadi Katz and Mikhail G. Katz (2011) A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography. Foundations of Science. doi:10.1007/s10699-011-9223-1 See link
  9. O'Connor, John J.; Robertson, Edmund F., "मध्यवर्ती मान प्रमेय", MacTutor History of Mathematics archive, University of St Andrews
  10. Rudin, Walter (1976). गणितीय विश्लेषण के सिद्धांत. New York: McGraw-Hill. pp. 42, 93. ISBN 978-0-07-054235-8.
  11. Smorynski, Craig (2017-04-07). एमवीटी: एक सबसे मूल्यवान प्रमेय (in English). Springer. ISBN 9783319529561.
  12. Matthew Frank (July 14, 2020). "अनुमानित इंटरमीडिएट वैल्यू प्रमेय के लिए विकल्पों के बीच इंटरपोलिंग". Logical Methods in Computer Science. 16 (3). arXiv:1701.02227. doi:10.23638/LMCS-16(3:5)2020.
  13. Keith Devlin (2007) How to stabilize a wobbly table

बाहरी संबंध