परिवृत्त: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
Line 1: Line 1:
{{short description|Circle that passes through all the vertices of a polygon}}
{{short description|Circle that passes through all the vertices of a polygon}}
{{About|ज्यामिति में परिबद्ध वृत्त|अन्य उपयोग|परिधि (बहुविकल्पी)}}
[[File:Circumscribed Polygon.svg|thumb|परिबद्ध घेरा, {{mvar|C}}, और परिधि, {{mvar|O}}, एक चक्रीय बहुभुज का, {{mvar|P}}]][[ज्यामिति]] में, एक [[बहुभुज]] का '''परिबद्ध वृत्त या परिवृत्त''' एक वृत्त होता है जो बहुभुज के सभी शीर्षों (ज्यामिति) से होकर गुजरता है। इस वृत्त के केंद्र को परिकेन्द्र तथा इसकी त्रिज्या को परिवृत्त कहते हैं।
[[File:Circumscribed Polygon.svg|thumb|परिबद्ध घेरा, {{mvar|C}}, और परिधि, {{mvar|O}}, एक चक्रीय बहुभुज का, {{mvar|P}}]][[ज्यामिति]] में, एक [[बहुभुज]] का '''परिबद्ध वृत्त या परिवृत्त''' एक वृत्त होता है जो बहुभुज के सभी शीर्षों (ज्यामिति) से होकर गुजरता है। इस वृत्त के केंद्र को परिकेन्द्र तथा इसकी त्रिज्या को परिवृत्त कहते हैं।


Line 15: Line 14:
परिधि इससे तीन शीर्षों में से किसी की दूरी है।
परिधि इससे तीन शीर्षों में से किसी की दूरी है।
{{clear}}
{{clear}}


=== वैकल्पिक निर्माण ===
=== वैकल्पिक निर्माण ===
[[File:Triangle circumcenter alternate construction.svg|right|thumb|upright=1.2|परिधि का वैकल्पिक निर्माण (टूटी हुई रेखाओं का चौराहा)]]परिकेन्द्र निर्धारित करने का एक वैकल्पिक प्रकार यह है कि कोई भी दो रेखाएँ खींची जाएँ जिनमें से प्रत्येक किसी एक शीर्ष से उभयनिष्ठ भुजा के साथ एक कोण पर जाए, प्रस्थान का उभयनिष्ठ कोण 90° घटा विपरीत शीर्ष का कोण हो। (विपरीत कोण के अधिक कोण होने की स्थिति में ऋणात्मक कोण पर एक रेखा खींचने का अर्थ है त्रिभुज के बाहर जाना।)
[[File:Triangle circumcenter alternate construction.svg|right|thumb|upright=1.2|परिधि का वैकल्पिक निर्माण (टूटी हुई रेखाओं का चौराहा)]]परिकेन्द्र निर्धारित करने का एक वैकल्पिक प्रकार यह है कि कोई भी दो रेखाएँ खींची जाएँ जिनमें से प्रत्येक किसी एक शीर्ष से उभयनिष्ठ भुजा के साथ एक कोण पर जाए, प्रसमष्टि का उभयनिष्ठ कोण 90° घटा विपरीत शीर्ष का कोण हो। (विपरीत कोण के अधिक कोण होने की स्थिति में ऋणात्मक कोण पर एक रेखा खींचने का अर्थ है त्रिभुज के बाहर जाना।)


मार्गदर्शन में, एक त्रिभुज के परिवृत्त का उपयोग कभी-कभी किसी परकार के उपलब्ध न होने पर [[षष्ठक]] का उपयोग करके [[स्थिति रेखा]] प्राप्त करने के प्रकार के रूप में किया जाता है। दो स्थलों के बीच का क्षैतिज कोण उस परिवृत्त को परिभाषित करता है जिस पर पर्यवेक्षक स्थित होता है।
मार्गदर्शन में, एक त्रिभुज के परिवृत्त का उपयोग कभी-कभी किसी परकार के उपलब्ध न होने पर [[षष्ठक]] का उपयोग करके [[स्थिति रेखा]] प्राप्त करने के प्रकार के रूप में किया जाता है। दो स्थलों के बीच का क्षैतिज कोण उस परिवृत्त को परिभाषित करता है जिस पर पर्यवेक्षक स्थित होता है।
Line 24: Line 22:
=== परिवृत्त समीकरण ===
=== परिवृत्त समीकरण ===


==== [[कार्तीय निर्देशांक]] ====
==== कार्तीय निर्देशांक ====
[[यूक्लिडियन विमान]] में, उत्कीर्ण त्रिभुज के शीर्षों के कार्टेशियन निर्देशांक के संदर्भ में स्पष्ट रूप से परिवृत्त का एक समीकरण देना संभव है। माना कि
यूक्लिडियन समष्टि में, उत्कीर्ण त्रिभुज के शीर्षों के कार्टेशियन निर्देशांक के संदर्भ में स्पष्ट रूप से परिवृत्त का एक समीकरण देना संभव है। माना कि
:<math>\begin{align}
:<math>\begin{align}
   \mathbf{A} &= (A_x, A_y) \\
   \mathbf{A} &= (A_x, A_y) \\
Line 31: Line 29:
   \mathbf{C} &= (C_x, C_y)
   \mathbf{C} &= (C_x, C_y)
\end{align}</math>
\end{align}</math>
बिंदुओं {{mvar|A, B, C}} के निर्देशांक हैं. परिवृत्त तब बिंदुओं का स्थान है <math>\mathbf v = (v_x,v_y)</math> कार्तीय तल में समीकरणों को संतुष्ट करता है
बिंदुओं {{mvar|A, B, C}} के निर्देशांक हैं. परिवृत्त तब बिंदुओं का समष्टि है <math>\mathbf v = (v_x,v_y)</math> कार्तीय तल में समीकरणों को संतुष्ट करता है
:<math>\begin{align}
:<math>\begin{align}
   |\mathbf{v} - \mathbf{u}|^2 &= r^2 \\
   |\mathbf{v} - \mathbf{u}|^2 &= r^2 \\
Line 45: Line 43:
   |\mathbf{C}|^2 & -2C_x & -2C_y & -1
   |\mathbf{C}|^2 & -2C_x & -2C_y & -1
\end{bmatrix}</math>
\end{bmatrix}</math>
एक अशून्य कर्नेल (रैखिक बीजगणित) है। इस प्रकार परिधि को वैकल्पिक रूप से इसआव्यूह के निर्धारक को शून्य के स्थान (गणित) के रूप में वर्णित किया जा सकता है:
एक अशून्य कर्नेल (रैखिक बीजगणित) है। इस प्रकार परिधि को वैकल्पिक रूप से इसआव्यूह के निर्धारक को शून्य के समष्टि (गणित) के रूप में वर्णित किया जा सकता है:
:<math>\det\begin{bmatrix}
:<math>\det\begin{bmatrix}
   |\mathbf{v}|^2 & v_x & v_y & 1 \\
   |\mathbf{v}|^2 & v_x & v_y & 1 \\
Line 52: Line 50:
   |\mathbf{C}|^2 & C_x & C_y & 1
   |\mathbf{C}|^2 & C_x & C_y & 1
\end{bmatrix}=0.</math>
\end{bmatrix}=0.</math>
[[कॉफ़ेक्टर विस्तार]] का उपयोग करते हुए, चलो
कॉफ़ेक्टर विस्तार का उपयोग करते हुए, चलो
:<math>\begin{align}
:<math>\begin{align}
   S_x &= \frac{1}{2}\det\begin{bmatrix}
   S_x &= \frac{1}{2}\det\begin{bmatrix}
Line 78: Line 76:


====पैरामीट्रिक समीकरण====
====पैरामीट्रिक समीकरण====
वृत्त वाले विमान के लंबवत एक [[इकाई वेक्टर|इकाई सदिश]] द्वारा दिया गया है
वृत्त वाले समष्टि के लंबवत एक [[इकाई वेक्टर|इकाई सदिश]] द्वारा दिया गया है
: <math>\widehat{n} = \frac{(P_2 - P_1) \times (P_3 - P_1)}{| (P_2 - P_1) \times (P_3 - P_1)|}.
: <math>\widehat{n} = \frac{(P_2 - P_1) \times (P_3 - P_1)}{| (P_2 - P_1) \times (P_3 - P_1)|}.
</math>
</math>
Line 97: Line 95:


==== उच्च आयाम ====
==== उच्च आयाम ====
इसके अतिरिक्त, {{mvar|d}}  आयामों में सन्निहित त्रिभुज का परिवृत्त एक सामान्यीकृत विधि का उपयोग करक पाया जा सकता है। मान लीजिए  {{math|'''A''', '''B''', '''C'''}}  {{mvar|d}}-विमीय बिंदु, जो त्रिभुज के शीर्ष बनाते हैं। हम प्रणाली को जगह में स्थानांतरित करके प्रारभ्म करते हैं {{math|'''C'''}} उत्पत्ति पर:
इसके अतिरिक्त, {{mvar|d}}  आयामों में सन्निहित त्रिभुज का परिवृत्त एक सामान्यीकृत विधि का उपयोग करक पाया जा सकता है। मान लीजिए  {{math|'''A''', '''B''', '''C'''}}  {{mvar|d}}-विमीय बिंदु, जो त्रिभुज के शीर्ष बनाते हैं। हम प्रणाली को जगह में समष्टिांतरित करके प्रारभ्म करते हैं {{math|'''C'''}} उत्पत्ति पर:
:<math>\begin{align}
:<math>\begin{align}
   \mathbf{a} &= \mathbf{A}-\mathbf{C}, \\
   \mathbf{a} &= \mathbf{A}-\mathbf{C}, \\
Line 185: Line 183:


==== कार्टेशियन क्रॉस- और डॉट-उत्पादों से समन्वय करता है ====
==== कार्टेशियन क्रॉस- और डॉट-उत्पादों से समन्वय करता है ====
[[यूक्लिडियन अंतरिक्ष]] में, किसी दिए गए तीन गैर-समरेख बिंदुओं {{math|''P''{{sub|1}}, ''P''{{sub|2}}, ''P''{{sub|3}}}}  से होकर गुजरने वाला एक अनूठा वृत्त है. स्थानिक सदिश के रूप में इन बिंदुओं का प्रतिनिधित्व करने के लिए कार्टेशियन निर्देशांक का उपयोग करना, सर्कल के त्रिज्या और केंद्र की गणना करने के लिए [[डॉट उत्पाद]] और क्रॉस उत्पाद का उपयोग करना संभव है। माना  
[[यूक्लिडियन अंतरिक्ष]] में, किसी दिए गए तीन गैर-समरेख बिंदुओं {{math|''P''{{sub|1}}, ''P''{{sub|2}}, ''P''{{sub|3}}}}  से होकर गुजरने वाला एक अनूठा वृत्त है. समष्टििक सदिश के रूप में इन बिंदुओं का प्रतिनिधित्व करने के लिए कार्टेशियन निर्देशांक का उपयोग करना, सर्कल के त्रिज्या और केंद्र की गणना करने के लिए [[डॉट उत्पाद]] और क्रॉस उत्पाद का उपयोग करना संभव है। माना  
:<math>
:<math>
   \mathrm{P_1} = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix},  
   \mathrm{P_1} = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix},  
Line 212: Line 210:




==== त्रिभुज के सापेक्ष स्थान ====
==== त्रिभुज के सापेक्ष समष्टि ====


परिकेन्द्र की स्थिति त्रिभुज के प्रकार पर निर्भर करती है:
परिकेन्द्र की स्थिति त्रिभुज के प्रकार पर निर्भर करती है:
Line 224: Line 222:
|image3=Triangle (Obtuse) Circumscribed.svg|caption3=The circumcenter of an obtuse triangle is outside the triangle
|image3=Triangle (Obtuse) Circumscribed.svg|caption3=The circumcenter of an obtuse triangle is outside the triangle
}}
}}
परिधि के लिए ऊपर दिए गए त्रिरेखीय या बेरिकेंट्रिक निर्देशांक पर विचार करके इन स्थानीय विशेषताओं को देखा जा सकता है: सभी तीन निर्देशांक किसी भी आंतरिक बिंदु के लिए धनात्मक होते हैं, कम से कम एक निर्देशांक किसी बाहरी बिंदु के लिए ऋणात्मक होता है, और एक निर्देशांक शून्य होता है और दो निर्देशांक के लिए धनात्मक होते हैं। त्रिभुज की एक भुजा पर एक गैर-शीर्ष बिंदु।
परिधि के लिए ऊपर दिए गए त्रिरेखीय या बेरिकेंट्रिक निर्देशांक पर विचार करके इन समष्टिीय विशेषताओं को देखा जा सकता है: सभी तीन निर्देशांक किसी भी आंतरिक बिंदु के लिए धनात्मक होते हैं, कम से कम एक निर्देशांक किसी बाहरी बिंदु के लिए ऋणात्मक होता है, और एक निर्देशांक शून्य होता है और दो निर्देशांक के लिए धनात्मक होते हैं। त्रिभुज की एक भुजा पर एक गैर-शीर्ष बिंदु।


=== कोण ===
=== कोण ===
Line 303: Line 301:
[[File:Cyclic quadrilateral.svg|thumb|right|upright=1.2|[[चक्रीय चतुर्भुज]]]]
[[File:Cyclic quadrilateral.svg|thumb|right|upright=1.2|[[चक्रीय चतुर्भुज]]]]
{{main|चक्रीय चतुर्भुज}}
{{main|चक्रीय चतुर्भुज}}
जिन चतुर्भुजों को परिचालित किया जा सकता है, उनमें विशेष गुण होते हैं, जिसमें यह तथ्य सम्मिलित है कि विपरीत कोण पूरक कोण हैं (180° या π रेडियन तक जोड़कर)।
जिन चतुर्भुजों को परिचालित किया जा सकता है, उनमें विशेष गुण होते हैं, जिसमें यह तथ्य सम्मिलित है कि विपरीत कोण पूरक कोण हैं (180° या π रेडियन तक जोड़कर)।



Latest revision as of 12:58, 27 October 2023

Error creating thumbnail:
परिबद्ध घेरा, C, और परिधि, O, एक चक्रीय बहुभुज का, P

ज्यामिति में, एक बहुभुज का परिबद्ध वृत्त या परिवृत्त एक वृत्त होता है जो बहुभुज के सभी शीर्षों (ज्यामिति) से होकर गुजरता है। इस वृत्त के केंद्र को परिकेन्द्र तथा इसकी त्रिज्या को परिवृत्त कहते हैं।

प्रत्येक बहुभुज का एक परिबद्ध वृत्त नहीं होता है। एक बहुभुज जिसमें एक होता है उसे चक्रीय बहुभुज कहा जाता है, या कभी-कभी एक चक्रीय बहुभुज कहा जाता है क्योंकि इसके शिखर चक्रीय होते हैं। सभी त्रिकोण, सभी नियमित बहुभुज सरल बहुभुज, सभी आयत, सभी समद्विबाहु समलंब, और सभी सही पतंग चक्रीय हैं।

एक संबंधित धारणा सबसे छोटी वृत्त समस्या में से एक है, जो कि सबसे छोटा वृत्त है जिसमें पूरी तरह से बहुभुज सम्मिलित है, यदि वृत्त का केंद्र बहुभुज के भीतर है। प्रत्येक बहुभुज में एक अद्वितीय न्यूनतम सीमांकन घेरा होता है, जिसे एक रेखीय समय एल्गोरिथम द्वारा निर्मित किया जा सकता है।[1] भले ही किसी बहुभुज में एक परिबद्ध वृत्त हो, यह अपने न्यूनतम बाउंडिंग वृत्त से भिन्न हो सकता है। उदाहरण के लिए, एक अधिक त्रिकोण के लिए, न्यूनतम परिबद्ध वृत्त का व्यास के रूप में सबसे लंबा पक्ष होता है और विपरीत शीर्ष से नहीं गुजरता है।

त्रिकोण

सभी त्रिभुज चक्रीय हैं; अर्थात्, प्रत्येक त्रिभुज का एक परिबद्ध वृत्त होता है।

सीधा किनारा और परकार निर्माण

File:Circumcenter Construction.svg
त्रिभुज के परिवृत्त का कम्पास-और-सीधा निर्माण ABC और परिधि Q

त्रिभुज के परिकेन्द्र को तीन लंब समद्विभाजकों में से किन्हीं दो को खींचकर बनाया जा सकता है। तीन गैर-समरेख बिंदुओं के लिए, ये दो रेखाएँ समानांतर नहीं हो सकती हैं, और परिकेन्द्र वह बिंदु है जहाँ वे पार करते हैं। समद्विभाजक पर कोई भी बिंदु उन दो बिंदुओं से समान दूरी पर होता है जिन्हें वह समद्विभाजित करता है, जिससे यह अनुसरण करता है कि यह बिंदु, दोनों द्विभाजकों पर, तीनों त्रिभुज शिखरों से समान दूरी पर है।

परिधि इससे तीन शीर्षों में से किसी की दूरी है।

वैकल्पिक निर्माण

File:Triangle circumcenter alternate construction.svg
परिधि का वैकल्पिक निर्माण (टूटी हुई रेखाओं का चौराहा)

परिकेन्द्र निर्धारित करने का एक वैकल्पिक प्रकार यह है कि कोई भी दो रेखाएँ खींची जाएँ जिनमें से प्रत्येक किसी एक शीर्ष से उभयनिष्ठ भुजा के साथ एक कोण पर जाए, प्रसमष्टि का उभयनिष्ठ कोण 90° घटा विपरीत शीर्ष का कोण हो। (विपरीत कोण के अधिक कोण होने की स्थिति में ऋणात्मक कोण पर एक रेखा खींचने का अर्थ है त्रिभुज के बाहर जाना।)

मार्गदर्शन में, एक त्रिभुज के परिवृत्त का उपयोग कभी-कभी किसी परकार के उपलब्ध न होने पर षष्ठक का उपयोग करके स्थिति रेखा प्राप्त करने के प्रकार के रूप में किया जाता है। दो स्थलों के बीच का क्षैतिज कोण उस परिवृत्त को परिभाषित करता है जिस पर पर्यवेक्षक स्थित होता है।

परिवृत्त समीकरण

कार्तीय निर्देशांक

यूक्लिडियन समष्टि में, उत्कीर्ण त्रिभुज के शीर्षों के कार्टेशियन निर्देशांक के संदर्भ में स्पष्ट रूप से परिवृत्त का एक समीकरण देना संभव है। माना कि

बिंदुओं A, B, C के निर्देशांक हैं. परिवृत्त तब बिंदुओं का समष्टि है कार्तीय तल में समीकरणों को संतुष्ट करता है

यह गारंटी देते हुए कि बिंदु A, B, C, v सभी समान दूरी हैं r आम केंद्र से u वृत्त का। ध्रुवीकरण पहचान का उपयोग करते हुए, ये समीकरण आव्यूह (गणित) की स्थिति को कम करते हैं

एक अशून्य कर्नेल (रैखिक बीजगणित) है। इस प्रकार परिधि को वैकल्पिक रूप से इसआव्यूह के निर्धारक को शून्य के समष्टि (गणित) के रूप में वर्णित किया जा सकता है:

कॉफ़ेक्टर विस्तार का उपयोग करते हुए, चलो

फिर हमारे पास है जहां और - यह मानते हुए कि तीन बिंदु एक रेखा में नहीं थे (अन्यथा परिवृत्त वह रेखा है जिसे सामान्यीकृत वृत्त के रूप में भी देखा जा सकता है S अनंत पर) – परिकेंद्र दे रहा है और परिधि इसी तरह का दृष्टिकोण किसी को चतुर्पाश्वीय के परिधि के समीकरण को निकालने की अनुमति देता है।

पैरामीट्रिक समीकरण

वृत्त वाले समष्टि के लंबवत एक इकाई सदिश द्वारा दिया गया है

इसलिए, त्रिज्या दी गई है, r, केंद्र, Pc, वृत्त पर एक बिंदु, P0 और वृत्त वाले तल का एक सामान्य इकाई, बिंदु से शुरू होने वाले वृत्त का एक पैरामीट्रिक समीकरण P0 और एक सकारात्मक रूप से उन्मुख (यानी, दाएँ हाथ का नियम | दाएँ हाथ का) अर्थ के बारे में आगे बढ़ना निम्नलखित में से कोई:


त्रिरेखीय और बेरिकेंट्रिक निर्देशांक

त्रिरेखीय निर्देशांक में परिवृत्त के लिए एक समीकरण x : y : z है[2] बेरसेंट्रिक निर्देशांक (गणित) में परिवृत्त के लिए एक समीकरण x : y : z है परिवृत्त का समकोणीय संयुग्म अनंत पर रेखा है, जिसे द्वारा त्रिरेखीय निर्देशांक में और द्वारा बैरीसेंट्रिक निर्देशांक में दिया गया है


उच्च आयाम

इसके अतिरिक्त, d आयामों में सन्निहित त्रिभुज का परिवृत्त एक सामान्यीकृत विधि का उपयोग करक पाया जा सकता है। मान लीजिए A, B, C d-विमीय बिंदु, जो त्रिभुज के शीर्ष बनाते हैं। हम प्रणाली को जगह में समष्टिांतरित करके प्रारभ्म करते हैं C उत्पत्ति पर:

परिधि r तब है

जहाँ θ a तथा b के बीच का आंतरिक कोण है. परिधि, p0, द्वारा दिया गया है

यह सूत्र केवल तीन आयामों में काम करता है क्योंकि क्रॉस उत्पाद को अन्य आयामों में परिभाषित नहीं किया गया है, लेकिन क्रॉस उत्पादों को निम्न पहचानों के साथ बदलकर इसे अन्य आयामों में सामान्यीकृत किया जा सकता है:


परिकेंद्र निर्देशांक

कार्तीय निर्देशांक

परिकेन्द्र के कार्तीय निर्देशांक हैं

साथ

व्यापकता के नुकसान के बिना शीर्ष के अनुवाद के बाद इसे सरलीकृत रूप में व्यक्त किया जा सकता है A कार्टेशियन समन्वय प्रणाली की उत्पत्ति के लिए, अर्थात,जब इस स्थिति में, शिखर के निर्देशांक तथा शीर्ष से सदिशों का प्रतिनिधित्व करते हैं A' इन शिखरों तक। ध्यान दें कि यह तुच्छ अनुवाद सभी त्रिभुजों और परिकेन्द्र के लिए संभव है त्रिकोण का A'B'C' अनुसरण जैसे

साथ

वर्टेक्स के अनुवाद के कारण A उत्पत्ति के लिए, परिधि r रूप में परिकलित किया जा सकता है

और ABC का वास्तविक परिकेन्द्र इस प्रकार है


त्रिरेखीय निर्देशांक

परिकेन्द्र में त्रिरेखीय निर्देशांक होते हैं[3]

जहाँ α, β, γ त्रिभुज के कोण हैं।

भुजाओंक की लंबाई a, b, c,के संदर्भ में त्रिरेखीय हैं[4]


बैरीसेंट्रिक निर्देशांक

परिकेन्द्र में बैरीसेंट्रिक निर्देशांक होते हैं (गणित)[5]

जहाँ a, b, c त्रिकोण के किनारे की लंबाई हैं BC, CA, AB क्रमशः) ।

त्रिभुज के कोणों के संदर्भ में α, β, γ, परिकेन्द्र के बैरीसेंट्रिक निर्देशांक हैं[4]


परिकेंद्र सदिश

चूँकि किसी भी बिंदु के कार्टेशियन निर्देशांक उन शीर्षों का भारित औसत होते हैं, जहाँ भार बिंदु के बेरिकेंट्रिक निर्देशांक होते हैं जो एकता के योग के लिए सामान्यीकृत होते हैं, परिकेन्द्र सदिश को इस प्रकार लिखा जा सकता है

यहां U परिकेन्द्र का सदिश है और A, B, C शीर्ष सदिश हैं। यहाँ विभाजक 16S 2 के बराबर है जहाँ S त्रिभुज का क्षेत्रफल है। जैसा कि पहले कहा गया है


कार्टेशियन क्रॉस- और डॉट-उत्पादों से समन्वय करता है

यूक्लिडियन अंतरिक्ष में, किसी दिए गए तीन गैर-समरेख बिंदुओं P1, P2, P3 से होकर गुजरने वाला एक अनूठा वृत्त है. समष्टििक सदिश के रूप में इन बिंदुओं का प्रतिनिधित्व करने के लिए कार्टेशियन निर्देशांक का उपयोग करना, सर्कल के त्रिज्या और केंद्र की गणना करने के लिए डॉट उत्पाद और क्रॉस उत्पाद का उपयोग करना संभव है। माना

तब वृत्त की त्रिज्या द्वारा दिया जाता है

वृत्त का केंद्र रैखिक संयोजन द्वारा दिया गया है

जहाँ


त्रिभुज के सापेक्ष समष्टि

परिकेन्द्र की स्थिति त्रिभुज के प्रकार पर निर्भर करती है:

  • एक तीव्र त्रिभुज के लिए (सभी कोण समकोण से छोटे होते हैं), परिकेंद्र हमेशा त्रिभुज के अंदर होता है।
  • एक समकोण त्रिभुज के लिए, परिकेंद्र हमेशा कर्ण के मध्य बिंदु पर स्थित होता है। यह थेल्स प्रमेय का एक रूप है।
  • अधिक कोण वाले त्रिभुज के लिए (एक त्रिभुज जिसका एक कोण समकोण से बड़ा होता है), परिकेन्द्र हमेशा त्रिभुज के बाहर स्थित होता है।
The circumcenter of an acute triangle is inside the triangle
The circumcenter of a right triangle is at the midpoint of the hypotenuse
The circumcenter of an obtuse triangle is outside the triangle

परिधि के लिए ऊपर दिए गए त्रिरेखीय या बेरिकेंट्रिक निर्देशांक पर विचार करके इन समष्टिीय विशेषताओं को देखा जा सकता है: सभी तीन निर्देशांक किसी भी आंतरिक बिंदु के लिए धनात्मक होते हैं, कम से कम एक निर्देशांक किसी बाहरी बिंदु के लिए ऋणात्मक होता है, और एक निर्देशांक शून्य होता है और दो निर्देशांक के लिए धनात्मक होते हैं। त्रिभुज की एक भुजा पर एक गैर-शीर्ष बिंदु।

कोण

त्रिभुज की भुजाओं के साथ परिचालित वृत्त जो कोण बनाता है, वे उन कोणों से मेल खाते हैं जिन पर भुजाएँ एक दूसरे से मिलती हैं। पार्श्व विपरीत कोण α वृत्त से दो बार मिलता है: प्रत्येक छोर पर एक बार; प्रत्येक स्थिति में कोण पर α (इसी तरह अन्य दो कोणों के लिए)। यह वैकल्पिक खंड प्रमेय के कारण है, जिसमें कहा गया है कि स्पर्शरेखा और जीवा के बीच का कोण वैकल्पिक खंड में कोण के बराबर है।

त्रिभुज ABC के परिवृत्त पर त्रिभुज केंद्र है

इस खंड में, शीर्ष कोणों को A, B, C के रूप में लेबल किया गया है और सभी निर्देशांक त्रिरेखीय निर्देशांक हैं:

  • स्टेनर बिंदु (त्रिकोण): स्टेनर दीर्घवृत्त के साथ परिवृत्त के प्रतिच्छेदन का अशीर्ष बिंदु।
(स्टाइनर दीर्घवृत्त, केंद्र के साथ = केन्द्रक (ABC), कम से कम क्षेत्र का दीर्घवृत्त है जो A, B, C से होकर गुजरता है. इस दीर्घवृत्त के लिए एक समीकरण है .)


अन्य गुण

परिवृत्त का व्यास, जिसे परिवृत्त कहा जाता है और परिधि के दोगुने के बराबर होता है, की गणना त्रिकोण के किसी भी भुजा की लंबाई को विपरीत कोण की ज्या से विभाजित करके की जा सकती है:

ज्या के नियम के परिणामस्वरूप, इससे कोई प्रभाव नहीं पड़ता कि कौन सा पक्ष और विपरीत कोण लिया जाता है: परिणाम समान होगा।

परिधि के व्यास को भी व्यक्त किया जा सकता है

जहाँ a, b, c त्रिभुज की भुजाओं की लंबाई हैं और अर्द्धपरिधि है। भावाभिव्यक्ति ऊपर त्रिभुज का क्षेत्रफल हैरोन के सूत्र द्वारा।[6] परिवृत्त के व्यास के लिए त्रिकोणमितीय भाव सम्मिलित हैं[7]

त्रिभुज के नौ-बिंदु वाले वृत्त का व्यास परिवृत्त का आधा होता है।

किसी दिए गए त्रिभुज में, परिकेन्द्र हमेशा केन्द्रक और लंबकेन्द्र के साथ संरेखी होता है। उन सभी से होकर गुजरने वाली रेखा को यूलर रेखा के रूप में जाना जाता है।

परिधि का समकोणीय संयुग्म लंबकेन्द्र है।

तीन बिंदुओं की उपयोगी सबसे छोटी वृत्त समस्या को या तो परिवृत्त (जहां तीन बिंदु न्यूनतम सीमांकन वृत्त पर हैं) या त्रिकोण के सबसे लंबे किनारे के दो बिंदुओं द्वारा परिभाषित किया गया है (जहां दो बिंदु वृत्त के एक व्यास को परिभाषित करते हैं)। न्यूनतम सीमांकन वृत्त को परिवृत्त के साथ भ्रमित करना आम है।

तीन समरेख बिंदुओं का परिवृत्त वह रेखा है जिस पर तीन बिंदु स्थित होते हैं, जिसे प्रायः अनंत त्रिज्या के एक वृत्त के रूप में संदर्भित किया जाता है। लगभग संरेख बिंदु प्रायः परिवृत्त की गणना में संख्यात्मक अस्थिरता का कारण बनते हैं।

त्रिभुजों के परिवृत्तों का बिंदुओं के समुच्चय (गणित) के डेलाउने त्रिकोणासन से घनिष्ठ संबंध होता है।

ज्यामिति में यूलर के प्रमेय द्वारा परिकेन्द्र के बीच की दूरी O और केंद्र I है

जहाँ r अंतःवृत्त त्रिज्या है और R परिवृत्त त्रिज्या है; इसलिए परित्रिज्या अंतःत्रिज्या से कम से कम दुगुनी है (यूलर की त्रिकोण असमानता), केवल समबाहु त्रिभुज स्थिति में समानता के साथ।[8][9] O और लंबकेन्द्र H के बीच की दूरी है[10][11]

केन्द्रक के लिए G और नौ सूत्री केंद्र N के लिए हमारे पास है

भुजाओं a, b, c वाले त्रिभुज की अंतःवृत्त त्रिज्या और परिवृत्त त्रिज्या का गुणनफल है[12]

परिधि R, पक्ष a, b, c, और माध्यिका (ज्यामिति) ma, mb, mc, के साथ हमारे पास है[13]

यदि माध्यिका m, ऊंचाई h, और आंतरिक द्विभाजक t सभी परिधि R वाले त्रिकोण के एक ही शीर्ष से निकलते हैं, तो[14]

कार्नोट का प्रमेय (से कम, सर्कमरेडियस) | कार्नोट का प्रमेय कहता है कि परिधि से तीन तरफ की दूरी का योग परिधि और अंतःत्रिज्या के योग के बराबर है।[15] यहां खंड की लंबाई ऋणात्मक मानी जाती है यदि और केवल यदि खंड पूरी तरह से त्रिभुज के बाहर स्थित हो।

यदि किसी त्रिभुज के दो विशेष वृत्त इसके परिवृत्त और अंतःवृत्त हैं, तो परिवृत्त पर एक शीर्ष के रूप में किसी भी बिंदु के साथ एक ही परिवृत्त और अंतःवृत्त के साथ अनंत संख्या में अन्य त्रिभुज सम्मिलित हैं। (यह n = 3 पोंसेलेट के पोरिज्म की स्थिति है)। ऐसे त्रिभुजों के अस्तित्व के लिए एक आवश्यक और पर्याप्त शर्त उपरोक्त समानता है [16]


चक्रीय चतुर्भुज

जिन चतुर्भुजों को परिचालित किया जा सकता है, उनमें विशेष गुण होते हैं, जिसमें यह तथ्य सम्मिलित है कि विपरीत कोण पूरक कोण हैं (180° या π रेडियन तक जोड़कर)।

चक्रीय एन-गोंन्स

File:Annuli with same area around unit regular polygons.svg
वलय (गणित) राग सूत्र के परिणाम के रूप में, हर इकाई के परिवृत्त और अंतःवृत्त से घिरा क्षेत्र नियमित n-गॉन है π/4

भुजाओं की विषम संख्या वाले चक्रीय बहुभुज के लिए, सभी कोण बराबर होते हैं यदि और केवल यदि बहुभुज नियमित हो। भुजाओं की सम संख्या वाले एक चक्रीय बहुभुज के सभी कोण बराबर होते हैं यदि और केवल यदि एकांतर भुजाएँ समान हों (अर्थात, भुजाएँ) 1, 3, 5, … बराबर हों, और भुजाएँ 2, 4, 6, … बराबर हों)।[17]

तर्कसंगत संख्या पक्षों और क्षेत्र के साथ एक चक्रीय पंचकोण को रॉबिन्स पेंटागन के रूप में जाना जाता है; सभी ज्ञात स्थितियों में, इसके विकर्णों की परिमेय लंबाई भी होती है।[18] किसी भी चक्रीय में n-सम के साथ चला गया n, एकांतर कोणों के एक समूह (पहला, तीसरा, पाँचवाँ, आदि) का योग एकांतर कोणों के दूसरे समूह के योग के बराबर होता है। यह से प्रेरण द्वारा सिद्ध किया जा सकता है n = 4 स्थिति में, प्रत्येक स्थिति में एक पक्ष को तीन और भुजाओं से बदल दिया जाता है और यह ध्यान दिया जाता है कि ये तीन नए पक्ष पुराने पक्ष के साथ मिलकर एक चतुर्भुज बनाते हैं जिसमें स्वयं यह संपत्ति होती है; n-गॉन बाद वाले चतुर्भुज के एकांतर कोण पिछले चतुर्भुज के एकांतर कोणों के जोड़ का प्रतिनिधित्व करते हैं।


n-गॉन को एक सर्कल में अंकित होने दें, और दूसरे n-गॉन को उस सर्कल के पहले एन-गॉन के शीर्ष पर स्पर्श करने दें। फिर वृत्त के किसी बिंदु P से, P से पहले n-गॉन की भुजाओं की लम्बवत दूरियों का गुणनफल P से दूसरे n-गॉन की भुजाओं की लम्बवत दूरियों के गुणनफल के बराबर होता है।[19]

परिवृत्त पर बिंदु

मान लीजिए एक चक्रीय n-गॉन के एकांक वृत्त पर शीर्ष A1, …, An हैं। फिर लघु चाप A1An पर किसी बिंदु M के लिए, M से शीर्षों तक की दूरी संतुष्ट करती है [20]

एक नियमित के लिए n-गॉन, अगर किसी भी बिंदु से दूरी हैं M परिवृत्त पर शीर्षों तक Ai, फिर [21]


=== परिबद्ध स्थिरांक === बहुभुज

File:Kepler constant inverse.svg
परिबद्ध बहुभुजों और वृत्तों का एक क्रम।

कोई भी नियमित बहुभुज चक्रीय होता है। एक इकाई वृत्त पर विचार करें, फिर एक नियमित त्रिभुज को इस प्रकार परिचालित करें कि प्रत्येक भुजा वृत्त को स्पर्श करे। एक वृत्त का परिक्रमण करें, फिर एक वर्ग का परिक्रमण करें। फिर से एक वृत्त का परिसीमन करें, फिर एक नियमित पंचभुज का परिसीमन करें, और इसी प्रकार आगे भी। परिबद्ध वृत्तों की त्रिज्या तथाकथित परिवृत्त स्थिरांक में अभिसरित होती है

(sequence A051762 in the OEIS). इस स्थिरांक का व्युत्क्रम केप्लर-बाउकैंप स्थिरांक है।

यह भी देखें

संदर्भ

  1. Megiddo, N. (1983). "आर में लीनियर प्रोग्रामिंग के लिए लीनियर-टाइम एल्गोरिदम3 and related problems". SIAM Journal on Computing. 12 (4): 759–776. doi:10.1137/0212052. S2CID 14467740.
  2. Whitworth, William Allen (1866). त्रिरेखीय निर्देशांक और दो आयामों की आधुनिक विश्लेषणात्मक ज्यामिति के अन्य तरीके. Deighton, Bell, and Co. p. 199.
  3. Whitworth (1866), p. 19.
  4. 4.0 4.1 Kimberling, Clark. "भाग I: परिचय और केंद्र X(1) - X(1000)". Encyclopedia of Triangle Centers. The circumcenter is listed under X(3).
  5. Weisstein, Eric W. "Barycentric Coordinates". MathWorld.
  6. Coxeter, H.S.M. (1969). "Chapter 1". ज्यामिति का परिचय. Wiley. pp. 12–13. ISBN 0-471-50458-0.
  7. Dörrie, Heinrich (1965). प्राथमिक गणित की 100 बड़ी समस्याएं. Dover. p. 379.
  8. Nelson, Roger, "Euler's triangle inequality via proof without words," Mathematics Magazine 81(1), February 2008, 58-61.
  9. Svrtan, Dragutin; Veljan, Darko (2012). "कुछ शास्त्रीय त्रिभुज असमानताओं के गैर-यूक्लिडियन संस्करण". Forum Geometricorum. 12: 197–209. See in particular p. 198.
  10. Gras, Marie-Nicole (2014). "एक्सटच त्रिभुज के परिकेन्द्र और शास्त्रीय केन्द्रों के बीच की दूरी". Forum Geometricorum. 14: 51–61.
  11. Smith, G. C.; Leversha, Gerry (November 2007). "यूलर और त्रिकोण ज्यामिति". The Mathematical Gazette. 91 (522): 436–452. doi:10.1017/S0025557200182087. JSTOR 40378417. S2CID 125341434. See in particular p. 449.
  12. Johnson, Roger A. (1929). आधुनिक ज्यामिति: त्रिभुज और वृत्त की ज्यामिति पर एक प्राथमिक ग्रंथ. Houghton Mifflin Co. p. 189, #298(d). hdl:2027/wu.89043163211. Republished by Dover Publications as Advanced Euclidean Geometry, 1960 and 2007.
  13. Posamentier, Alfred S.; Lehmann, Ingmar (2012). त्रिभुजों का रहस्य. Prometheus Books. pp. 289–290.
  14. Altshiller Court, Nathan (1952). कॉलेज ज्यामिति: त्रिभुज और वृत्त की आधुनिक ज्यामिति का परिचय (2nd ed.). Barnes & Noble. p. 122, #96. Reprinted by Dover Publications, 2007.
  15. Altshiller Court (1952), p. 83.
  16. Johnson (1929), p. 188.
  17. De Villiers, Michael (March 2011). "95.14 समकोणीय चक्रीय और समबाहु परिवृत्त बहुभुज". The Mathematical Gazette. 95 (532): 102–107. doi:10.1017/S0025557200002461. JSTOR 23248632. S2CID 233361080.
  18. Buchholz, Ralph H.; MacDougall, James A. (2008). "परिमेय भुजाओं और क्षेत्रफल के साथ चक्रीय बहुभुज". Journal of Number Theory. 128 (1): 17–48. doi:10.1016/j.jnt.2007.05.005. MR 2382768.
  19. Johnson (1929), p. 72.
  20. ""क्रूक्स मैथेमेटिकम" में प्रस्तावित असमानताएँ" (PDF). The IMO Compendium. p. 190, #332.10.
  21. Meskhishvili, Mamuka (2020). "नियमित बहुभुजों और प्लेटोनिक ठोसों का चक्रीय औसत". Communications in Mathematics and Applications. 11: 335–355. arXiv:2010.12340. doi:10.26713/cma.v11i3.1420 (inactive 2022-10-22).{{cite journal}}: CS1 maint: DOI inactive as of October 2022 (link)


बाहरी संबंध


मैथवर्ल्ड

इंटरएक्टिव