मॉडुलन: Difference between revisions
No edit summary |
|||
| Line 196: | Line 196: | ||
* [http://ittrap.com/modemmodulation-and-demodulation/ Modem (Modulation and Demodulation)] | * [http://ittrap.com/modemmodulation-and-demodulation/ Modem (Modulation and Demodulation)] | ||
* [https://www.ac.uma.es/~guille/codsim2.0/ CodSim 2.0: Open source Virtual Laboratory for Digital Data Communications Model] Department of Computer Architecture, University of Malaga. Simulates Digital line encodings and Digital Modulations. Written in HTML for any web browser. | * [https://www.ac.uma.es/~guille/codsim2.0/ CodSim 2.0: Open source Virtual Laboratory for Digital Data Communications Model] Department of Computer Architecture, University of Malaga. Simulates Digital line encodings and Digital Modulations. Written in HTML for any web browser. | ||
[[Category:AC with 0 elements]] | [[Category:AC with 0 elements]] | ||
| Line 207: | Line 203: | ||
[[Category:Articles with unsourced statements from October 2008]] | [[Category:Articles with unsourced statements from October 2008]] | ||
[[Category:CS1 maint]] | [[Category:CS1 maint]] | ||
[[Category:Citation Style 1 templates|M]] | |||
[[Category:Collapse templates]] | [[Category:Collapse templates]] | ||
[[Category:Commons category link is locally defined]] | |||
[[Category:Created On 05/09/2022]] | [[Category:Created On 05/09/2022]] | ||
[[Category:Exclude in print]] | [[Category:Exclude in print]] | ||
[[Category:Interwiki category linking templates]] | [[Category:Interwiki category linking templates]] | ||
[[Category:Interwiki link templates]] | [[Category:Interwiki link templates]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | [[Category:Machine Translated Page]] | ||
[[Category:Multi-column templates]] | |||
[[Category:Navigational boxes| ]] | [[Category:Navigational boxes| ]] | ||
[[Category:Navigational boxes without horizontal lists]] | [[Category:Navigational boxes without horizontal lists]] | ||
[[Category:Pages using div col with small parameter]] | |||
[[Category:Pages with empty portal template]] | [[Category:Pages with empty portal template]] | ||
[[Category:Pages with script errors]] | [[Category:Pages with script errors]] | ||
| Line 221: | Line 222: | ||
[[Category:Sidebars with styles needing conversion]] | [[Category:Sidebars with styles needing conversion]] | ||
[[Category:Template documentation pages|Documentation/doc]] | [[Category:Template documentation pages|Documentation/doc]] | ||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates based on the Citation/CS1 Lua module]] | |||
[[Category:Templates generating COinS|Cite magazine]] | |||
[[Category:Templates generating microformats]] | [[Category:Templates generating microformats]] | ||
[[Category:Templates that add a tracking category]] | [[Category:Templates that add a tracking category]] | ||
[[Category:Templates that are not mobile friendly]] | [[Category:Templates that are not mobile friendly]] | ||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | [[Category:Templates using TemplateData]] | ||
[[Category:Templates using under-protected Lua modules]] | |||
[[Category:Wikimedia Commons templates]] | [[Category:Wikimedia Commons templates]] | ||
[[Category:Wikipedia fully protected templates|Div col]] | |||
[[Category:Wikipedia metatemplates]] | [[Category:Wikipedia metatemplates]] | ||
[[Category:आवृत्ति मिक्सर]] | [[Category:आवृत्ति मिक्सर]] | ||
Latest revision as of 16:20, 8 September 2023
इलेक्ट्रॉनिक्स और दूरसंचार में, मॉडुलन एक आवधिक तरंग के एक या अधिक गुणों को बदलने की प्रक्रिया है, जिसे वाहक संकेत कहा जाता है, जिसमें एक अलग सिग्नल होता है जिसे मॉड्यूलेशन सिग्नल कहा जाता है जिसमें आम तौर पर संचारित होने वाली जानकारी होती है। उदाहरण के लिए, मॉड्यूलेशन सिग्नल एक माइक्रोफ़ोन से ध्वनि का प्रतिनिधित्व करने वाला एक ऑडियो सिग्नल हो सकता है, एक वीडियो सिग्नल एक वीडियो कैमरा से मूविंग इमेजेस का प्रतिनिधित्व करता है, या एक डिजिटल सिग्नल बाइनरी अंकों के अनुक्रम का प्रतिनिधित्व करता है, एक कंप्यूटर से एक बिटस्ट्रीम मॉडुलन सिग्नल की तुलना में वाहक आवृत्ति में अधिक होती है। रेडियो संचार में संग्राहक वाहक अंतरिक्ष के माध्यम से एक रेडियो तरंग के रूप में एक रेडियो रिसीवर को प्रेषित किया जाता है। एक अन्य उद्देश्य आवृत्ति-विभाजन एफडीएम का उपयोग करके एक संचार माध्यम के माध्यम से सूचना के कई चैनलों को प्रसारित करना है। उदाहरण के लिए केबल टेलीविजन में, जो एफडीएम का उपयोग करता है, कई वाहक सिग्नल, प्रत्येक अलग टेलीविजन चैनल के साथ संशोधित, एक केबल के माध्यम से ग्राहकों तक पहुंचाए जाते हैं। चूंकि प्रत्येक वाहक एक अलग आवृत्ति रखता है, चैनल एक दूसरे के साथ हस्तक्षेप नहीं करते हैं। गंतव्य के अंत में, वाहक सिग्नल को मॉड्यूलेशन सिग्नल असर वाली जानकारी निकालने के लिए डिमॉड्यूलेट किया जाता है।
मॉड्यूलेटर एक उपकरण या परिपथ है जो मॉड्यूलेशन करता है। डिमोडुलेटर एक परिपथ होता है जो मॉड्यूलेशन के विपरीत, डिमॉड्यूलेशन करता है। मॉडेम, द्विदिश संचार में उपयोग किया जाता है, दोनों ऑपरेशन कर सकता है। मॉडुलन सिग्नल द्वारा कब्जा किए गए आवृत्ति बैंड को बेसबैंड कहा जाता है, जबकि मॉड्यूलेटेड वाहक द्वारा कब्जा करके उच्च आवृत्ति बैंड को पासबैंड कहा जाता है।
एनालॉग मॉड्यूलेशन में कैरियर पर एक एनालॉग मॉड्यूलेशन सिग्नल प्रभावित होता है। उदाहरण आयाम मॉड्यूलेशन हैं जिसमें वाहक तरंग का आयाम मॉड्यूलेशन सिग्नल और आवृत्ति मॉड्यूलेशन द्वारा भिन्न होता है जिसमें वाहक तरंग की आवृत्ति मॉड्यूलेशन सिग्नल द्वारा भिन्न होती है। ये सबसे शुरुआती प्रकार के मॉड्यूलेशन थे, और AM और FM रेडियो प्रसारण में ध्वनि का प्रतिनिधित्व करने वाले एक ऑडियो सिग्नल को प्रसारित करने के लिए उपयोग किया जाता है। अधिक हाल के सिस्टम डिजिटल मॉड्यूलेशन का उपयोग करते हैं, जो एक डिजिटल सिग्नल को प्रभावित करता है जिसमें बाइनरी अंकों का एक क्रम होता है, एक बिटस्ट्रीम, वाहक पर बिट्स को मैप करने के माध्यम से एक असतत वर्णमाला से तत्वों को प्रेषित किया जाता है। इस वर्णमाला में वास्तविक या जटिल संख्याओं, या अनुक्रमों का एक सेट शामिल हो सकता है, जैसे विभिन्न आवृत्तियों के दोलन, तथाकथित फ़्रीक्वेंसी-शिफ़्ट कीइंग मॉडुलन। एक अधिक जटिल डिजिटल मॉड्यूलेशन विधि जो कई वाहकों को नियोजित करती है, ऑर्थोगोनल फ़्रीक्वेंसी-डिवीजन मल्टीप्लेक्सिंग, का उपयोग वाईफाई नेटवर्क, डिजिटल रेडियो स्टेशनों और डिजिटल केबल टेलीविजन ट्रांसमिशन में किया जाता है।
एनालॉग मॉडुलन विधियाँ
एनालॉग मॉड्यूलेशन में, एनालॉग सूचना संकेत के जवाब में मॉड्यूलेशन लगातार लागू किया जाता है। सामान्य एनालॉग मॉड्यूलेशन तकनीकों में शामिल हैं:
- आयाम मॉड्यूलेशन (यहां वाहक सिग्नल का आयाम मॉड्यूलेटिंग सिग्नल के तात्कालिक आयाम के अनुसार भिन्न होता है)
- डबल-साइडबैंड मॉड्यूलेशन
- कैरियर के साथ डबल-साइडबैंड मॉड्यूलेशन (ए एम रेडियो प्रसारण बैंड पर प्रयुक्त)
- डबल-साइडबैंड सप्रेस्ड-कैरियर ट्रांसमिशन
- डबल-साइडबैंड कम वाहक संचरण
- सिंगल-साइडबैंड मॉड्यूलेशन
- कैरियर के साथ सिंगल-साइडबैंड मॉड्यूलेशन
- सिंगल-साइडबैंड मॉड्यूलेशन सप्रेस्ड कैरियर मॉड्यूलेशन
- वेस्टिजियल साइडबैंड मॉड्यूलेशन
- चतुर्भुज आयाम मॉडुलन
- डबल-साइडबैंड मॉड्यूलेशन
- कोण मॉडुलन, जो लगभग स्थिर लिफाफा है
- फ़्रीक्वेंसी मॉड्यूलेशन (यहाँ वाहक सिग्नल की आवृत्ति मॉड्यूलेटिंग सिग्नल के तात्कालिक आयाम के अनुसार भिन्न होती है)
- फेज मॉडुलन (यहां वाहक सिग्नल की फेज शिफ्ट मॉड्यूलेटिंग सिग्नल के तात्कालिक आयाम के अनुसार भिन्न होती है)
- ट्रांसपोज़िशनल मॉड्यूलेशन, जिसमें तरंग विभक्ति को संशोधित किया जाता है जिसके परिणामस्वरूप एक संकेत होता है जहां मॉड्यूलेशन प्रक्रिया में प्रत्येक तिमाही चक्र को स्थानांतरित किया जाता है। टीएम एक छद्म-एनालॉग मॉड्यूलेशन है। जहां एक AM वाहक एक चर चरण f(ǿ) भी वहन करता है। यहाँ टीएम f(AM,ǿ) है।
डिजिटल मॉडुलन विधियाँ
डिजिटल मॉड्यूलेशन में, एक एनालॉग कैरियर सिग्नल को असतत सिग्नल द्वारा संशोधित किया जाता है। डिजिटल मॉड्यूलेशन विधियों को डिजिटल-से-एनालॉग रूपांतरण और संबंधित डिमॉड्यूलेशन या डिटेक्शन को एनालॉग-टू-डिजिटल रूपांतरण के रूप में माना जा सकता है। वाहक संकेत में परिवर्तन एम वैकल्पिक प्रतीकों की एक सीमित संख्या से चुने जाते हैं।
एक साधारण उदाहरण: एक टेलीफोन लाइन श्रव्य ध्वनियों को स्थानांतरित करने के लिए डिज़ाइन की गई है, उदाहरण के लिए, टोन, और डिजिटल बिट्स (शून्य और वाले) नहीं। चूँकि, कंप्यूटर मॉडेम के माध्यम से टेलीफोन लाइन पर संचार कर सकते हैं, जो डिजिटल बिट्स को टोन द्वारा निरूपित कर रहे हैं, जिन्हें सिंबल कहा जाता है। यदि चार वैकल्पिक प्रतीक हैं (एक संगीत वाद्ययंत्र के अनुरूप जो चार अलग-अलग स्वर उत्पन्न कर सकता है, एक समय में एक), पहला प्रतीक बिट अनुक्रम 00, दूसरा 01, तीसरा 10 और चौथा 11 का प्रतिनिधित्व कर सकता है। यदि मॉडेम 1000 टन प्रति सेकंड की धुन बजाता है, तो प्रतीक दर 1000 प्रतीक/सेकंड, या 1000 बॉड है। चूंकि प्रत्येक स्वर यानी प्रतीक दो डिजिटल बिट्स से युक्त संदेश का प्रतिनिधित्व करता है इस उदाहरण में, बिट दर प्रतीक दर का दोगुना है, यानी 2000 बिट प्रति सेकंड।
डिजिटल सिग्नल की एक परिभाषा के अनुसार,[1] मॉड्यूलेटेड सिग्नल एक डिजिटल सिग्नल है। एक अन्य परिभाषा के अनुसार, मॉडुलन डिजिटल-से-एनालॉग रूपांतरण का एक रूप है। अधिकांश पाठ्य पुस्तकें डिजिटल मॉड्यूलेशन योजनाओं को डिजिटल ट्रांसमिशन के रूप में मानती हैं, जो डेटा ट्रांसमिशन का पर्याय है; बहुत कम लोग इसे एनालॉग ट्रांसमिशन मानेंगे।
मौलिक डिजिटल मॉडुलन विधियाँ
सबसे मौलिक डिजिटल मॉडुलन तकनीक कुंजीयन पर आधारित हैं:
- चरण-शिफ्ट कुंजीयन: पीएसके (चरण-शिफ्ट कुंजीयन): चरणों की एक सीमित संख्या का उपयोग किया जाता है।
- फ़्रीक्वेंसी-शिफ़्ट कीइंग: एफएसके (फ़्रीक्वेंसी-शिफ़्ट कीइंग): फ़्रीक्वेंसी की एक सीमित संख्या का उपयोग किया जाता है।
- आयाम-शिफ्ट कुंजीयन: एएसके (आयाम-शिफ्ट कुंजीयन): आयामों की एक सीमित संख्या का उपयोग किया जाता है।
- चतुर्भुज आयाम मॉडुलन: क्यूएएम (चतुर्भुज आयाम मॉडुलन): कम से कम दो चरणों की एक सीमित संख्या और कम से कम दो आयामों का उपयोग किया जाता है।
क्यूएएम में, एक इन-फेज सिग्नल और एक क्वाड्रेचर फेज सिग्नल आयाम की एक सीमित संख्या के साथ संशोधित आयाम हैं और फिर संक्षेप में हैं। इसे दो-चैनल प्रणाली के रूप में देखा जा सकता है, प्रत्येक चैनल ASK का उपयोग करता है। परिणामी संकेत पीएसके और एएसके के संयोजन के बराबर है।
उपरोक्त सभी विधियों में, इन चरणों, आवृत्तियों या आयामों में से प्रत्येक को बाइनरी अंक प्रणाली बिट्स का एक अनूठा पैटर्न सौंपा गया है। सामान्यतः पर, प्रत्येक चरण, आवृत्ति या आयाम समान संख्या में बिट्स को एन्कोड करता है। बिट्स की इस संख्या में वह प्रतीक शामिल होता है जो विशेष चरण, आवृत्ति या आयाम द्वारा दर्शाया जाता है।
यदि वर्णमाला में होता है वैकल्पिक प्रतीकों, प्रत्येक प्रतीक एन बिट्स से युक्त एक संदेश का प्रतिनिधित्व करता है। यदि प्रतीक दर जिसे बॉड भी कहा जाता है प्रतीक/सेकंड (या बॉड), डेटा दर है बिट/सेकंड।
उदाहरण के लिए, 16 वैकल्पिक प्रतीकों वाले वर्णमाला के साथ, प्रत्येक प्रतीक 4 बिट्स का प्रतिनिधित्व करता है। इस प्रकार, डेटा दर बॉड दर का चार गुना है।
पीएसके, एएसके या क्यूएएम के मामले में, जहां मॉड्यूलेटेड सिग्नल की वाहक आवृत्ति स्थिर होती है, मॉड्यूलेशन वर्णमाला को अक्सर नक्षत्र आरेख पर आसानी से दर्शाया जाता है, जो एक्स-अक्ष पर आई सिग्नल के आयाम और के आयाम को दर्शाता है। प्रत्येक प्रतीक के लिए y-अक्ष पर Q संकेत।
संचालन के न्यूनाधिक और डिटेक्टर सिद्धांत
पीएसके और एएसके, और कभी-कभी एफएसके भी, अक्सर क्यूएएम के सिद्धांत का उपयोग करके उत्पन्न और पता लगाया जाता है। I और Q संकेतों को एक जटिल-मूल्यवान सिग्नल I+jQ (जहाँ j काल्पनिक इकाई है) में जोड़ा जा सकता है। परिणामी तथाकथित समकक्ष लोपास सिग्नल या समकक्ष बेसबैंड सिग्नल वास्तविक-मूल्यवान मॉड्यूटेड भौतिक सिग्नल (तथाकथित पासबैंड सिग्नल या आरएफ सिग्नल) का एक जटिल-मूल्यवान प्रतिनिधित्व है।
डेटा संचारित करने के लिए न्यूनाधिक द्वारा उपयोग किए जाने वाले ये सामान्य चरण हैं:
- आने वाले डेटा बिट्स को कोडवर्ड में समूहित करें, प्रत्येक प्रतीक के लिए एक जिसे प्रेषित किया जाएगा।
- कोडवर्ड को विशेषताओं के लिए मैप करें, उदाहरण के लिए, I और Q सिग्नल के आयाम (समतुल्य कम पास सिग्नल), या आवृत्ति या चरण मान।
- बैंडविड्थ को सीमित करने के लिए पल्स शेपिंग या कुछ अन्य फ़िल्टरिंग को अनुकूलित करें और समान रूप से कम पास सिग्नल के स्पेक्ट्रम का निर्माण करें, सामान्यतः पर डिजिटल सिग्नल प्रोसेसिंग का उपयोग करते हुए।
- I और Q संकेतों के डिजिटल से एनालॉग रूपांतरण का प्रदर्शन करें (क्योंकि आज से उपरोक्त सभी सामान्य रूप से डिजिटल सिग्नल प्रोसेसिंग, डीएसपी का उपयोग करके प्राप्त किए जाते हैं)।
- एक उच्च-आवृत्ति साइन वाहक तरंग उत्पन्न करें, और शायद एक कोसाइन क्वाडरेचर घटक भी। मॉड्यूलेशन को पूरा करें, उदाहरण के लिए साइन और कोसाइन तरंगफॉर्म को I और Q सिग्नल से गुणा करके, जिसके परिणामस्वरूप समकक्ष लो पास सिग्नल आवृत्ति को मॉड्यूटेड पासबैंड सिग्नल या आरएफ सिग्नल में स्थानांतरित कर दिया जाता है। कभी-कभी यह डीएसपी तकनीक का उपयोग करके प्राप्त किया जाता है, उदाहरण के लिए एनालॉग सिग्नल प्रोसेसिंग के बजाय एक तरंग तालिका का उपयोग करके प्रत्यक्ष डिजिटल सिंथेसाइज़र। उस स्थिति में, इस चरण के बाद उपरोक्त डीएसी चरण किया जाना चाहिए।
- हार्मोनिक विरूपण और आवधिक स्पेक्ट्रम से बचने के लिए प्रवर्धन और एनालॉग बैंडपास फ़िल्टरिंग।
रिसीवर की तरफ, डेमोडुलेटर सामान्यतः पर प्रदर्शन करता है:
- बैंडपास फ़िल्टरिंग।
- स्वचालित लाभ नियंत्रण, एजीसी (क्षीणन के लिए क्षतिपूर्ति करने के लिए, उदाहरण के लिए लुप्त होती)।
- आरएफ सिग्नल को समतुल्य बेसबैंड I और Q सिग्नल में या एक इंटरमीडिएट फ़्रीक्वेंसी सिग्नल में स्थानांतरित करना, RF सिग्नल को स्थानीय ऑसिलेटर साइन तरंग और कोसाइन तरंग फ़्रीक्वेंसी से गुणा करके (सुपरहीटरोडाइन रिसीवर सिद्धांत देखें)।
- नमूनाकरण और एनालॉग-टू-डिजिटल रूपांतरण (कभी-कभी उपरोक्त बिंदु से पहले या इसके बजाय, उदाहरण के लिए अंडरसैंपलिंग के माध्यम से)।
- इक्वलाइज़ेशन फ़िल्टरिंग, उदाहरण के लिए, एक मिलान फ़िल्टर, मल्टीपाथ प्रसार के लिए मुआवजा, समय प्रसार, चरण विरूपण और आवृत्ति चयनात्मक लुप्त होती, इंटरसिम्बल हस्तक्षेप और प्रतीक विरूपण से बचने के लिए।
- I और Q संकेतों के आयाम, या IF सिग्नल की आवृत्ति या चरण का पता लगाना।
- निकटतम अनुमत प्रतीक मूल्यों के लिए आयामों, आवृत्तियों या चरणों का परिमाणीकरण।
- परिमाणित आयामों, आवृत्तियों या चरणों का कोडवर्ड में मानचित्रण।
- कोडवर्ड का समानांतर-से-सीरियल रूपांतरण एक बिट स्ट्रीम में।
- किसी भी त्रुटि-सुधार कोड को हटाने जैसे आगे की प्रक्रिया के लिए परिणामी बिट स्ट्रीम को पास करें।
जैसा कि सभी डिजिटल संचार प्रणालियों के लिए सामान्य है, मॉड्यूलेटर और डिमोडुलेटर दोनों का डिज़ाइन एक साथ किया जाना चाहिए। डिजिटल मॉडुलन योजनाएं संभव हैं क्योंकि ट्रांसमीटर-रिसीवर जोड़ी को इस बात का पूर्व ज्ञान है कि संचार प्रणाली में डेटा को कैसे एन्कोड और प्रतिनिधित्व किया जाता है। सभी डिजिटल संचार प्रणालियों में, ट्रांसमीटर पर मॉड्यूलेटर और रिसीवर पर डिमोडुलेटर दोनों को संरचित किया जाता है ताकि वे उलटा संचालन कर सकें।
एसिंक्रोनस विधियों को एक रिसीवर संदर्भ घड़ी संकेत की आवश्यकता नहीं होती है जो प्रेषक वाहक सिग्नल के साथ चरण सिंक्रनाइज़ेशन है। इस मामले में, मॉड्यूलेशन प्रतीक (बिट्स, कैरेक्टर या डेटा पैकेट के बजाय) अतुल्यकालिक संचार स्थानांतरित होते हैं। विपरीत बिट-सिंक्रोनस ऑपरेशन है।
सामान्य डिजिटल मॉडुलन तकनीकों की सूची
सबसे आम डिजिटल मॉड्यूलेशन तकनीकें हैं:
- चरण-शिफ्ट कुंजीयन
- बाइनरी पीएसके, एम = 2 प्रतीकों का उपयोग कर
- क्वाडरेचर पीएसके, एम = 4 प्रतीकों का उपयोग कर
- 8पीएसके, एम=8 प्रतीकों का उपयोग करते हुए
- 16पीएसके, एम=16 प्रतीकों का उपयोग करके
- डिफरेंशियल पीएसके
- डिफरेंशियल क्यूपीएसके
- ऑफसेट क्यूपीएसके
- π/4–क्यूपीएसके
- फ़्रीक्वेंसी-शिफ्ट कुंजीयन
- ऑडियो आवृत्ति-शिफ्ट कुंजीयन
- एकाधिक आवृत्ति-शिफ्ट कुंजीयन | बहु-आवृत्ति शिफ्ट कुंजीयन
- डुअल-टोन मल्टी-फ़्रीक्वेंसी
- आयाम-शिफ्ट कुंजीयन
- ऑन-ऑफ कुंजीयन, सबसे आम आस्क फॉर्म
- एम-आर्य वेस्टीजियल साइडबैंड मॉड्यूलेशन, उदाहरण के लिए 8वीएसबी
- चतुर्भुज आयाम मॉडुलन, पीएसके और एएसके का संयोजन
- ध्रुवीय मॉडुलन जैसे क्यूएएम पीएसके और एएसके का संयोजन[citation needed]
- सतत चरण मॉडुलन विधियां
- न्यूनतम-शिफ्ट कुंजीयन
- गाऊसी न्यूनतम-शिफ्ट कुंजीयन
- सतत-चरण आवृत्ति-शिफ्ट कुंजीयन
- ऑर्थोगोनल फ़्रीक्वेंसी-डिवीज़न मल्टीप्लेक्सिंग मॉड्यूलेशन
- असतत मल्टीटोन मॉडुलन, अनुकूली मॉडुलन और बिट-लोडिंग सहित
- तरंगलेट मॉड्यूलेशन
- ट्रेलिस कोडेड मॉड्यूलेशन, जिसे ट्रेलिस मॉड्यूलेशन के रूप में भी जाना जाता है
- स्प्रेड-स्पेक्ट्रम तकनीक
- डायरेक्ट-सीक्वेंस स्प्रेड स्पेक्ट्रम
- आईईईई 802.15.4a के अनुसार चिरप स्प्रेड स्पेक्ट्रम सीएसएस छद्म-स्टोकेस्टिक कोडिंग का उपयोग करता है
- फ़्रीक्वेंसी-होपिंग स्प्रेड स्पेक्ट्रम चैनल रिलीज़ के लिए एक विशेष योजना लागू करता है
न्यूनतम-शिफ्ट कुंजीयन और जीएमएसके निरंतर चरण मॉडुलन के विशेष मामले हैं। दरअसल, एमएसके सीपीएम के उप-परिवार का एक विशेष मामला है जिसे निरंतर-चरण आवृत्ति-शिफ्ट कुंजीयन के रूप में जाना जाता है, जिसे एक-प्रतीक-समय अवधि के आयताकार आवृत्ति नाड़ी (यानी एक रैखिक रूप से बढ़ती चरण नाड़ी) द्वारा परिभाषित किया जाता है।
ऑर्थोगोनल फ़्रीक्वेंसी-डिवीज़न मल्टीप्लेक्सिंग फ़्रीक्वेंसी-डिवीज़न मल्टीप्लेक्सिंग के विचार पर आधारित है, लेकिन मल्टीप्लेक्सेड स्ट्रीम एक ही मूल स्ट्रीम के सभी भाग हैं। बिट स्ट्रीम को कई समानांतर डेटा स्ट्रीम में विभाजित किया जाता है, प्रत्येक को कुछ पारंपरिक डिजिटल मॉड्यूलेशन स्कीम का उपयोग करके अपने स्वयं के उप-वाहक पर स्थानांतरित किया जाता है। मॉड्युलेटेड सब-कैरियर्स को ओएफडीएम सिग्नल बनाने के लिए सम्मिलित किया जाता है। यह विभाजन और पुनर्संयोजन चैनल की खराबी से निपटने में मदद करता है। ओएफडीएम को मल्टीप्लेक्स तकनीक के बजाय एक मॉडुलन तकनीक के रूप में माना जाता है क्योंकि यह तथाकथित ओएफडीएम प्रतीकों के एक अनुक्रम का उपयोग करके एक संचार चैनल पर एक बिट स्ट्रीम को स्थानांतरित करता है। ओएफडीएम को ऑर्थोगोनल फ़्रीक्वेंसी-डिवीज़न मल्टीपल एक्सेस और मल्टी-कैरियर कोड-डिवीज़न मल्टीपल एक्सेस योजनाओं में मल्टी-यूज़र चैनल एक्सेस मेथड तक बढ़ाया जा सकता है, जिससे कई उपयोगकर्ता अलग-अलग देकर एक ही भौतिक माध्यम साझा कर सकते हैं। उप-वाहक या विभिन्न उपयोगकर्ताओं के लिए कोड फैलाना।
दो प्रकार के आरएफ पावर एम्पलीफायर में से, स्विचिंग एम्पलीफायर (कक्षा डी एम्पलीफायर) की लागत कम होती है और समान आउटपुट पावर के रैखिक एम्पलीफायरों की तुलना में कम बैटरी पावर का उपयोग करते हैं। हालांकि, वे केवल अपेक्षाकृत स्थिर-आयाम-मॉड्यूलेशन संकेतों जैसे कोण मॉड्यूलेशन और सीडीएमए के साथ काम करते हैं, लेकिन क्यूएएम और ओएफडीएम के साथ नहीं। फिर भी, भले ही स्विचिंग एम्पलीफायर सामान्य क्यूएएम तारामंडल के लिए पूरी तरह से अनुपयुक्त हैं, अक्सर क्यूएएम मॉडुलन सिद्धांत का उपयोग इन FM और अन्य तरंगों के साथ स्विचिंग एम्पलीफायरों को चलाने के लिए किया जाता है, और कभी-कभी क्यूएएम डिमोडुलेटर का उपयोग इन स्विचिंग एम्पलीफायरों द्वारा लगाए गए संकेतों को प्राप्त करने के लिए किया जाता है।
स्वचालित डिजिटल मॉडुलन पहचान (एडीएमआर)
बुद्धिमान संचार प्रणालियों में स्वचालित डिजिटल मॉड्यूलेशन मान्यता सॉफ्टवेयर-परिभाषित रेडियो और संज्ञानात्मक रेडियो में सबसे महत्वपूर्ण मुद्दों में से एक है। बुद्धिमान रिसीवरों के बढ़ते विस्तार के अनुसार, दूरसंचार प्रणालियों और कंप्यूटर अभियांत्रिकी में स्वचालित मॉड्यूलेशन मान्यता एक चुनौतीपूर्ण विषय बन जाता है। ऐसी प्रणालियों में कई नागरिक और सैन्य अनुप्रयोग हैं। इसके अलावा, मॉडुलन प्रकार की अंधा पहचान वाणिज्यिक प्रणालियों में एक महत्वपूर्ण समस्या है, विशेष रूप से सॉफ्टवेयर-परिभाषित रेडियो में। सामान्यतः पर ऐसी प्रणालियों में, सिस्टम कॉन्फ़िगरेशन के लिए कुछ अतिरिक्त जानकारी होती है, लेकिन बुद्धिमान रिसीवरों में अंधा दृष्टिकोण को देखते हुए, हम सूचना अधिभार को कम कर सकते हैं और संचरण प्रदर्शन को बढ़ा सकते हैं। जाहिर है, प्रेषित डेटा और रिसीवर पर कई अज्ञात मापदंडों, जैसे सिग्नल पावर, वाहक आवृत्ति और चरण ऑफसेट, समय की जानकारी, आदि के ज्ञान के बिना, मॉड्यूलेशन की अंधा पहचान काफी कठिन हो जाती है। मल्टीपाथ फ़ेडिंग, आवृत्ति-चयनात्मक और समय-भिन्न चैनलों के साथ वास्तविक दुनिया के परिदृश्यों में यह और भी चुनौतीपूर्ण हो जाता है।[2] स्वचालित मॉडुलन पहचान के लिए दो मुख्य दृष्टिकोण हैं। पहला दृष्टिकोण उचित वर्ग को इनपुट सिग्नल असाइन करने के लिए संभावना-आधारित विधियों का उपयोग करता है। एक और हालिया दृष्टिकोण फीचर निष्कर्षण पर आधारित है।
डिजिटल बेसबैंड मॉडुलन
डिजिटल बेसबैंड मॉड्यूलेशन बेसबैंड सिग्नल की विशेषताओं को बदल देता है, यानी, एक उच्च आवृत्ति पर वाहक के बिना।
इसे बाद में फ़्रीक्वेंसी मिक्सर के समकक्ष सिग्नल के रूप में इस्तेमाल किया जा सकता है | आवृत्ति-एक वाहक आवृत्ति में परिवर्तित, या बेसबैंड में सीधे संचार के लिए। बाद के तरीकों में अपेक्षाकृत सरल लाइन कोड शामिल हैं, जैसा कि अक्सर स्थानीय बसों में उपयोग किया जाता है, और जटिल बेसबैंड सिग्नलिंग योजनाएं जैसे कि डिजिटल सब्सक्राइबर लाइन में उपयोग की जाती हैं।
पल्स मॉडुलन विधियाँ
पल्स मॉड्यूलेशन योजनाओं का उद्देश्य एक पल्स तरंग को संशोधित करके एक दो-स्तरीय सिग्नल के रूप में एक एनालॉग बेसबैंड चैनल पर एक नैरोबैंड एनालॉग सिग्नल को स्थानांतरित करना है। कुछ पल्स मॉड्यूलेशन योजनाएं नैरोबैंड एनालॉग सिग्नल को एक निश्चित बिट दर के साथ एक डिजिटल सिग्नल (यानी, एक मात्रात्मक असतत-समय सिग्नल के रूप में) के रूप में स्थानांतरित करने की अनुमति देती हैं, जिसे एक अंतर्निहित डिजिटल ट्रांसमिशन सिस्टम पर स्थानांतरित किया जा सकता है, उदाहरण के लिए, कुछ लाइन कोड। ये पारंपरिक अर्थों में मॉड्यूलेशन स्कीम नहीं हैं क्योंकि ये चैनल कोडिंग स्कीम नहीं हैं, लेकिन इन्हें सोर्स कोडिंग स्कीम माना जाना चाहिए, और कुछ मामलों में एनालॉग-टू-डिजिटल रूपांतरण तकनीक।
- एनालॉग-ओवर-एनालॉग तरीके
- पल्स-आयाम मॉडुलन
- पल्स-चौड़ाई मॉड्यूलेशन और पल्स-डेप्थ मॉड्यूलेशन
- पल्स-फ्रीक्वेंसी मॉड्यूलेशन
- पल्स-पोजिशन मॉड्यूलेशन
- एनालॉग-ओवर-डिजिटल तरीके
- पल्स-कोड मॉड्यूलेशन
- डीपीसीएम
- अनुकूली अंतर पल्स-कोड मॉड्यूलेशन
- डीपीसीएम
- डेल्टा मॉडुलन
- डेल्टा-सिग्मा मॉडुलन (ΣΔ)
- लगातार परिवर्तनशील स्लोप डेल्टा मॉड्यूलेशन, जिसे अनुकूली डेल्टा मॉड्यूलेशन भी कहा जाता है
- पल्स-घनत्व मॉडुलन
विविध मॉडुलन तकनीक
- रेडियो फ़्रीक्वेंसी पर मोर्स कोड ट्रांसमिट करने के लिए ऑन-ऑफ़ कुंजीयन के उपयोग को कंटीन्यूअस तरंग ऑपरेशन के रूप में जाना जाता है।
- अनुकूली मॉडुलन
- स्पेस मॉड्यूलेशन एक ऐसी विधि है जिसके द्वारा सिग्नल को एयरस्पेस के भीतर मॉड्यूलेट किया जाता है जैसे कि इंस्ट्रूमेंट लैंडिंग सिस्टम में उपयोग किया जाता है।
- सूक्ष्म तरंग श्रवण प्रभाव को स्पंदित किया गया है, जो समझने योग्य बोलचाल की संख्याओं को उद्घाटित करने के लिए ऑडियो तरंगों के साथ संशोधित किया गया है।[3][4][5]
यह भी देखें
- चैनल एक्सेस के तरीके
- चैनल कोडिंग
- कोडेक
- संचार चैनल
- डिमॉड्यूलेशन
- विद्युत प्रतिध्वनि
- हेटेरोडाइन
- लाइन कोड
- मोडेम
- मॉड्यूलेशन आदेश
- न्यूरोमॉड्यूलेशन
- आरएफ न्यूनाधिक
- रिंग मॉड्यूलेशन
- दूरसंचार
- रेडियो उत्सर्जन के प्रकार
संदर्भ
- ↑ "Modulation Methods | Electronics Basics | ROHM". www.rohm.com. Retrieved 2020-05-15.
- ↑
Dobre, Octavia A., Ali Abdi, Yeheskel Bar-Ness, and Wei Su. Communications, IET 1, no. 2 (2007): 137–156. (2007). "Survey of automatic modulation classification techniques: classical approaches and new trends" (PDF). IET Communications. 1 (2): 137–156. doi:10.1049/iet-com:20050176.
{{cite journal}}: CS1 maint: multiple names: authors list (link) - ↑ Lin, James C. (August 20, 2021). Auditory Effects of Microwave Radiation. Chicago: Springer. p. 326. ISBN 978-3030645434.
- ↑ Justesen, Don (March 1, 1975). "Microwaves and Behavior" (PDF). American Psychologist. Washington, D.C.: American Psychological Association. Archived from the original (PDF) on 2016-09-10. Retrieved October 5, 2021.
- ↑ Justesen, Don (March 1, 1975). "Microwaves and Behavior". American Psychologist. Vol. 30, no. 3. Washington, D.C.: American Psychological Association. pp. 391–401. doi:10.1037/0003-066x.30.3.391. PMID 1137231. Retrieved October 15, 2021.
अग्रिम पठन
- Multipliers vs. Modulators Analog Dialogue, June 2013
बाहरी संबंध
- Interactive presentation of soft-demapping for AWGN-channel in a web-demo Institute of Telecommunications, University of Stuttgart
- Modem (Modulation and Demodulation)
- CodSim 2.0: Open source Virtual Laboratory for Digital Data Communications Model Department of Computer Architecture, University of Malaga. Simulates Digital line encodings and Digital Modulations. Written in HTML for any web browser.