उरीसोहन और पूर्ण हॉसडॉर्फ समष्टि: Difference between revisions

From Vigyanwiki
No edit summary
 
Line 51: Line 51:
* {{Willard General Topology}} <!-- {{sfn|Willard|2004|p=}} -->
* {{Willard General Topology}} <!-- {{sfn|Willard|2004|p=}} -->
* {{planetmath reference|urlname=CompletelyHausdorff|title=Completely Hausdorff}}
* {{planetmath reference|urlname=CompletelyHausdorff|title=Completely Hausdorff}}
[[Category: पृथक्करण अभिगृहीत]]


[[Category: Machine Translated Page]]
[[Category:Created On 08/07/2023]]
[[Category:Created On 08/07/2023]]
[[Category:Vigyan Ready]]
[[Category:Machine Translated Page]]
[[Category:Templates Vigyan Ready]]
[[Category:पृथक्करण अभिगृहीत]]

Latest revision as of 10:18, 28 August 2023

Separation axioms
in topological spaces
Kolmogorov classification
T0 (Kolmogorov)
T1 (Fréchet)
T2 (Hausdorff)
T2½(Urysohn)
completely T2 (completely Hausdorff)
T3 (regular Hausdorff)
T(Tychonoff)
T4 (normal Hausdorff)
T5 (completely normal
 Hausdorff)
T6 (perfectly normal
 Hausdorff)

टोपोलॉजी में, गणित के भीतर एक अनुशासन, एक उरीसोहन समष्टि, या T समष्टि, एक टोपोलॉजिकल समष्टि है जिसमें किन्हीं दो अलग-अलग बिंदुओं को सवृत प्रतिवैस (नेबरहुड) द्वारा अलग किया जा सकता है। पूर्ण हॉसडॉर्फ़ समष्टि, या कार्यात्मक रूप से हॉसडॉर्फ़ समष्टि, एक टोपोलॉजिकल समष्टि है जिसमें किन्हीं दो अलग-अलग बिंदुओं को एक सतत फलन द्वारा अलग किया जा सकता है। ये स्थितियाँ पृथक्करण अभिगृहीत हैं जो अधिक परिचित हॉसडॉर्फ अभिगृहीत T2 से कुछ हद तक अधिक मजबूत हैं।

परिभाषाएँ

मान लीजिए कि X एक टोपोलॉजिकल समष्टि है। मान लीजिए कि x और y, X में बिंदु हैं।

  • हम कहते हैं कि x और y को सवृत नेबरहुड से अलग किया जा सकता है यदि x का एक सवृत समुच्चय नेबरहुड (टोपोलॉजी) U और y का एक सवृत नेबरहुड V उपस्थित है, जैसे कि U और V असंयुक्त समुच्चय हैं (U ∩ V = ∅)। (ध्यान दें कि x का एक सवृत नेबरहुड एक सवृत समुच्चय है जिसमें x युक्त एक विवृत समुच्चय होता है।)
  • हम कहते हैं कि यदि f(x) = 0 और f(y) = 1 के साथ निरंतरता (टोपोलॉजी) f: X → [0,1] (इकाई अंतराल) उपस्थित है तो x और y को एक फलन द्वारा अलग किया जा सकता है।

'उरीसोहन समष्टि', जिसे 'T' भी कहा जाता है अंतरिक्ष, एक ऐसा समष्टि है जिसमें किन्हीं दो अलग-अलग बिंदुओं को सवृत नेबरहुड द्वारा अलग किया जा सकता है।

पूर्ण हॉसडॉर्फ़ समष्टि, या कार्यात्मक रूप से हॉसडॉर्फ़ समष्टि, एक ऐसा समष्टि है जिसमें किन्हीं दो अलग-अलग बिंदुओं को एक सतत फलन द्वारा अलग किया जा सकता है।

नामकरण परंपरा

पृथक्करण अभिगृहीत का अध्ययन प्रयुक्त नामकरण परंपराओं के साथ संघर्ष के लिए लोकप्रसिध्द है। इस लेख में उपयोग की गई परिभाषाएँ विलार्ड (1970) द्वारा दी गई हैं और अधिक आधुनिक परिभाषाएँ हैं। स्टीन और सीबैक (1970) और कई अन्य लेखक पूर्ण हॉसडॉर्फ रिक्त समष्टि और उरीसोहन रिक्त समष्टि की परिभाषा को उलट देते हैं। टोपोलॉजी में पाठ्यपुस्तकों के पाठकों को लेखक द्वारा उपयोग की गई परिभाषाओं की जांच अवश्य करनी चाहिए। इस मुद्दे पर अधिक जानकारी के लिए पृथक्करण स्वयंसिद्धों का इतिहास देखें।

अन्य पृथक्करण सिद्धांतों से संबंध

किन्हीं दो बिंदुओं को एक फलन द्वारा अलग किया जा सकता है जिन्हें सवृत नेबरहुड द्वारा अलग किया जा सकता है। यदि उन्हें सवृत नेबरहुड द्वारा अलग किया जा सकता है तो स्पष्ट रूप से उन्हें नेबरहुड द्वारा अलग किया जा सकता है। इसका तात्पर्य यह है कि प्रत्येक पूर्णतः हॉसडॉर्फ़ समष्टि उरीसोहन है और प्रत्येक उरीसोहन समष्टि हॉसडॉर्फ़ है।

कोई यह भी दिखा सकता है कि प्रत्येक नियमित हॉसडॉर्फ़ समष्टि उरीसोहन है और प्रत्येक टाइकोनॉफ़ समष्टि (=पूर्ण नियमित हॉसडॉर्फ़ समष्टि) पूर्ण हॉसडॉर्फ़ है। संक्षेप में हमारे पास निम्नलिखित निहितार्थ हैं:

Tychonoff (T)    regular Hausdorff (T3)
completely Hausdorff    Urysohn (T)    Hausdorff (T2)    T1

कोई भी ऐसे प्रति-उदाहरण पा सकता है जो दर्शाता है कि इनमें से कोई भी निहितार्थ क्रम बदला हुआ नहीं है।[1]

उदाहरण

कोकाउंटेबल (सहगणनीय टोपोलॉजी) एक्सटेंशन टोपोलॉजी सामान्य यूक्लिडियन टोपोलॉजी और कोकाउंटेबल टोपोलॉजी के मिलन से उत्पन्न वास्तविक रेखा पर टोपोलॉजी है। इस टोपोलॉजी में समुच्चय केवल तभी खुले होते हैं जब वे U \ A के रूप में होते हैं, जहां यूक्लिडियन टोपोलॉजी में U विवृत होता है और A गणनीय होता है। यह समष्टि पूर्ण हॉसडॉर्फ़ और उरीसोहन है, लेकिन नियमित नहीं है (और इस प्रकार टाइकोनॉफ़ नहीं है)।

ऐसे समष्टि उपस्थित हैं जो हौसडॉर्फ़ हैं लेकिन उरीसोहन नहीं हैं, और ऐसे समष्टि भी उपस्थित हैं जो उरीसोहन हैं लेकिन पूर्ण हॉसडॉर्फ़ या नियमित हॉसडॉर्फ़ नहीं हैं। उदाहरण गैर तुच्छ हैं; विवरण के लिए स्टीन और सीबैक देखें।

टिप्पणियाँ

  1. "Hausdorff space not completely Hausdorff". PlanetMath.


संदर्भ