स्कॉच योक: Difference between revisions

From Vigyanwiki
m (10 revisions imported from alpha:स्कॉच_योक)
No edit summary
 
Line 35: Line 35:


{{Piston engine configurations}}
{{Piston engine configurations}}
[[Category: इंजन प्रौद्योगिकी]] [[Category: लिंकेज (यांत्रिक)]]


 
[[Category:Collapse templates]]
 
[[Category:Commons category link is locally defined]]
[[Category: Machine Translated Page]]
[[Category:Created On 26/07/2023]]
[[Category:Created On 26/07/2023]]
[[Category:Vigyan Ready]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with broken file links]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:इंजन प्रौद्योगिकी]]
[[Category:लिंकेज (यांत्रिक)]]

Latest revision as of 19:23, 22 August 2023

स्कॉच योक एनीमेशन

स्कॉच योक (स्लॉटेड लिंक क्रियाविधि के रूप में भी जाना जाता है[1]) प्रत्यागामी गति क्रियाविधि है, जो स्लाइडर की रैखिक गति को निश्चित अक्ष के चारों ओर घूर्णन में या इसके विपरीत परिवर्तित करता है। पिस्टन या अन्य प्रत्यावर्ती भाग प्रत्यक्ष रूप से स्लॉट के साथ स्लाइडिंग योक से जुड़ा होता है, जो घूर्णन वाले भाग पर पिन लगाता है। पिस्टन का स्थान समय सरल आवर्त गति है, जैसे साइन तरंग जिसमें निरंतर आयाम और निरंतर आवृत्ति होती है, जिसे निरंतर घूर्णन गति प्रदान की जाती है।

File:Scotch yoke displacement.png
क्रैंक और स्लाइडर की तुलना में स्कॉच योक के विस्थापन और त्वरण की तुलना

अनुप्रयोग

पिस्टन वॉटर पंप, इसके फ्लाईव्हील से स्कॉच योक कनेक्शन के साथ

यह व्यवस्था सामान्यतः उच्च दबाव पाइपलाइन परिवहन में नियंत्रण वाल्व एक्चुएटर्स में उपयोग किया जाता है।

चूँकि वर्तमान में यह सामान्य धातु निर्मित करने वाली मशीन नहीं है, किन्तु क्रूड शेपर्स स्कॉच योक का उपयोग कर सकते हैं। उनमें से लगभग सभी विटवर्थ लिंकेज का उपयोग करते हैं, जो मंद गति से आगे बढ़ने वाले कटिंग स्ट्रोक और तीव्र प्रतिफल प्रदान करते है।

इसका उपयोग विभिन्न आंतरिक दहन इंजनों में किया गया है, जैसे बॉर्के इंजन, साईटेक इंजन, और कई तप्त वायु इंजन और भाप इंजन आदि।

स्कॉच योक शब्द का उपयोग तब प्रारम्भ रहता है जब योक में स्लॉट क्रैंक पिन द्वारा बनाए गए सर्कल के व्यास से छोटा होता है। उदाहरण के लिए, किसी लोकोमोटिव की साइड छड़ों में मध्यवर्ती ड्राइविंग एक्सल की ऊर्ध्वाधर गति की अनुमति प्रदान करने के लिए स्कॉच योक हो सकते हैं।[2][3]

अनिवार्य रूप से स्कॉच योक का उपयोग ज्वार-भविष्यवाणी मशीन नंबर 2 में साइनसॉइडल गति (साइन फ़ंक्शन) उत्पन्न करने के लिए किया जाता है।

आंतरिक दहन इंजन का उपयोग

आइडियल इंजीनियरिंग परिस्थितियों में, बल प्रत्यक्ष रूप से असेंबली के यात्रा की रेखा पर लगाया जाता है। साइनसॉइडल गति, कोसाइनसॉइडल वेग, और साइनसॉइडल त्वरण (निरंतर कोणीय वेग मानते हुए) के परिणामस्वरूप सुचारू रूप से संचालन होता है। शीर्ष स्थिर केन्द्र (निवास) पर लगाए गए समय का उच्च प्रतिशत निरंतर मात्रा दहन चक्रों की सैद्धांतिक इंजन दक्षता को उत्तम करता है।[4] यह सामान्यतः कलाई पिन द्वारा प्रदान किए जाने वाले संबद्ध को समाप्त करने की अनुमति देता है, और पिस्टन स्कर्ट और सिलेंडर घर्षण को लगभग समाप्त कर देता है, क्योंकि कनेक्टिंग छड़ कोण की साइन के कारण पिस्टन की साइड लोडिंग कम हो जाती है। पिस्टन और योक के मध्य की दूरी जितनी अधिक होगी, घिसाव उतना ही कम होगा, किन्तु जड़ता अधिक होगी, जिससे पिस्टन रॉड की लंबाई में ऐसी वृद्धि वास्तविक रूप से केवल कम आरपीएम (किन्तु उच्च टॉर्क) अनुप्रयोगों के लिए उपयुक्त होगी।[5][6]

अधिकांश आंतरिक दहन इंजनों में स्कॉच योक का उपयोग नहीं किया जाता है क्योंकि स्लाइडिंग घर्षण और उच्च संपर्क दबाव के कारण योक में स्लॉट तीव्रता से क्षय होता है। क्रैंक और पिस्टन रॉड में स्लॉट के मध्य स्लाइडिंग ब्लॉक द्वारा इसे कम किया जाता है। इसके अतिरिक्त, शीर्ष स्थिर केन्द्र पर लंबे समय तक रहने के कारण दहन के समय बढ़ी हुई ऊष्मा की हानि वास्तविक इंजनों में किसी भी निरंतर मात्रा के दहन सुधार को प्रभावित करती है।[4] इंजन अनुप्रयोग में, पारंपरिक पिस्टन और क्रैंकशाफ्ट क्रियाविधि की तुलना में निचले स्थिर केन्द्र पर कम प्रतिशत समय व्यतीत होता है, जो दो स्ट्रोक इंजन के लिए ब्लोडाउन समय को कम करता है। प्रयोगों से ज्ञात होता है कि विस्तारित निवास समय निरंतर मात्रा दहन ओटो चक्र इंजन के साथ उत्तम प्रकार से कार्य नहीं करता है।[4] ऊष्मा की हानि को कम करने के लिए विभक्त हो गया प्रत्यक्ष इंजेक्शन (डीजल या समान) चक्र का उपयोग करने वाले ओटो चक्र इंजन में लाभ अधिक स्पष्ट हो सकता है।[7]

एनिमेशन

संशोधन

साइडवेज़ थ्रस्ट को अवशोषित करने के साधन के साथ उत्तम स्कॉच योक का 1978 में विलियम एल. कार्लसन, जूनियर, U.S. Patent 4,075,898 द्वारा कराया गया था। .[8]

संदर्भ

  1. "ME 700 Mechanisms | EdLabQuip".
  2. General Construction, Baldwin Gasoline Industrial Locomotives Baldwin Locomotive Works Record, No. 74, 1913; pages 7-9. The use of the scotch yoke is explained page 8.
  3. Norman W. Storer, Electric Locomotive, U.S. Patent 991,038, granted May 2, 1911. The use of the scotch yoke is discussed on page 2 of the text.
  4. 4.0 4.1 4.2 "Science Links Japan | Effect of Piston Speed around Top Dead Centre on Thermal Efficiency". Sciencelinks.jp. 2009-03-18. Archived from the original on 2012-01-27. Retrieved 2011-12-06.
  5. Bourke Engine Documentary, Published 1968, p50, "Appraising Engine Efficiency" para2
  6. Bourke Engine Documentary, Published 1968, p51, "Important Factors in Engine Design"
  7. "थर्मल दक्षता पर कनेक्टिंग-रॉड लंबाई और क्रैंक त्रिज्या के बीच अनुपात का प्रभाव". Science Links Japan. Archived from the original on 2008-01-28. Retrieved 2008-07-08.
  8. "Patent US4075898 - Scotch yoke - Google Patents". Retrieved 2013-01-21.


बाहरी संबंध