मुख्य अक्ष प्रमेय: Difference between revisions

From Vigyanwiki
No edit summary
 
Line 109: Line 109:
==संदर्भ==
==संदर्भ==
* {{cite book|authorlink=Gilbert Strang|first=Gilbert|last=Strang|title=Introduction to Linear Algebra|publisher=Wellesley-Cambridge Press|year=1994|isbn=0-9614088-5-5}}
* {{cite book|authorlink=Gilbert Strang|first=Gilbert|last=Strang|title=Introduction to Linear Algebra|publisher=Wellesley-Cambridge Press|year=1994|isbn=0-9614088-5-5}}
[[Category: ज्यामिति में प्रमेय]] [[Category: रैखिक बीजगणित में प्रमेय]]


[[Category: Machine Translated Page]]
[[Category:Created On 24/07/2023]]
[[Category:Created On 24/07/2023]]
[[Category:Vigyan Ready]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:ज्यामिति में प्रमेय]]
[[Category:रैखिक बीजगणित में प्रमेय]]

Latest revision as of 09:41, 22 August 2023

ज्यामिति और रैखिक बीजगणित में, एक मुख्य अक्ष यूक्लिडियन समष्टि में एक दीर्घवृत्त या हाइपरबोलॉइड से जुड़ी एक निश्चित रेखा होती है, जो दीर्घवृत्त या अतिपरवलय की मुख्य और छोटी घूर्णी समरूपता को सामान्य बनाती है। मुख्य अक्ष प्रमेय बताता है कि मुख्य अक्ष लंबवत हैं, और उन्हें खोजने के लिए एक रचनात्मक प्रक्रिया देता है।

गणितीय रूप से, मुख्य अक्ष प्रमेय प्राथमिक बीजगणित से वर्ग को पूरा करने की विधि का एक सामान्यीकरण है। रैखिक बीजगणित और कार्यात्मक विश्लेषण में, मुख्य अक्ष प्रमेय वर्णक्रमीय प्रमेय का एक ज्यामितीय समकक्ष है। इसमें मुख्य घटकों के विश्लेषण और एकल मूल्य अपघटन के आँकड़ों के अनुप्रयोग हैं। भौतिकी में, प्रमेय कोणीय गति और द्विअपवर्तन के अध्ययन के लिए मौलिक है।

प्रेरणा

कार्तीय समतल R2 में समीकरण:

क्रमशः दीर्घवृत्त और अतिपरवलय को परिभाषित करें। प्रत्येक मामले में, x और y अक्ष मुख्य अक्ष हैं। यह आसानी से देखा जा सकता है, यह देखते हुए कि किसी भी अभिव्यक्ति में उत्पाद xy से संबंधित कोई क्रॉस-टर्म नहीं है। हालाँकि, जैसे समीकरणों के लिए स्थिति अधिक सम्मिश्र है:

यहां यह निर्धारित करने के लिए कुछ विधि की आवश्यकता है कि यह दीर्घवृत्त या अतिपरवलय है। मूल अवलोकन यह है कि यदि, वर्ग को पूरा करके, द्विघात अभिव्यक्ति को दो वर्गों के योग तक कम किया जा सकता है तो समीकरण एक दीर्घवृत्त को परिभाषित करता है, जबकि यदि यह दो वर्गों के अंतर तक कम हो जाता है तो समीकरण एक अतिपरवलय का प्रतिनिधित्व करता है:

इस प्रकार, हमारे उदाहरण अभिव्यक्ति में, समस्या यह है कि क्रॉस-टर्म 8xy के गुणांक को फलन U और V में कैसे अवशोषित किया जाए। औपचारिक रूप से, यह समस्या आव्यूह विकर्णीकरण की समस्या के समान है, जहां कोई एक उपयुक्त समन्वय प्रणाली ढूंढने का प्रयास करता है जिसमें रैखिक परिवर्तन का आव्यूह विकर्ण होता है। पहला कदम एक आव्यूह ढूंढना है जिसमें विकर्णीकरण की तकनीक लागू की जा सके।

युक्ति यह है कि द्विघात रूप को इस प्रकार लिखें

जहां क्रॉस-टर्म को दो बराबर भागों में विभाजित किया गया है। उपरोक्त अपघटन में आव्यूह ए एक सममित आव्यूह है। विशेष रूप से, वर्णक्रमीय प्रमेय के अनुसार, इसमें वास्तविक संख्याएँ ईजिनवैल्यू ​​​​हैं और यह एक ऑर्थोगोनल आव्यूह (ऑर्थोगोनली विकर्ण) द्वारा विकर्ण योग्य है।

A को ओर्थोगोनल रूप से विकर्ण करने के लिए, पहले इसके ईजिनवैल्यू ​​​​को ढूंढना होगा, और फिर एक ऑर्थोनॉर्मल ईजेनबासिस को ढूंढना होगा। गणना से पता चलता है कि A के ईजिनवैल्यू ​​​​हैं

संगत ईजिनसदिश के साथ

इन्हें उनकी संबंधित लंबाई से विभाजित करने पर एक ऑर्थोनॉर्मल ईजेनबासिस प्राप्त होता है:

अब आव्यूह S = ['u'1 u2] एक ऑर्थोगोनल आव्यूह है, क्योंकि इसमें ऑर्थोनॉर्मल कॉलम हैं, और A को इसके द्वारा विकर्ण किया गया है:

यह अवलोकन के माध्यम से द्विघात रूप को विकर्ण करने की वर्तमान समस्या पर लागू होता है

इस प्रकार, समीकरण यह एक दीर्घवृत्त है, क्योंकि बायीं ओर को दो वर्गों के योग के रूप में लिखा जा सकता है।

2 के गुणनखंडों को निकालकर इस अभिव्यक्ति को सरल बनाना आकर्षक है। हालाँकि, ऐसा न करना महत्वपूर्ण है। मात्राएँ

एक ज्यामितीय अर्थ है. वे 'R2' पर एक ऑर्थोनॉर्मल समन्वय प्रणाली निर्धारित करते हैं। दूसरे शब्दों में, वे मूल निर्देशांक से एक घूर्णन (और संभवतः एक प्रतिबिंब) के अनुप्रयोग द्वारा प्राप्त किए जाते हैं। निकटतम, कोई लंबाई और कोणों (विशेष रूप से लंबाई) के बारे में बताने के लिए c1 और c2 निर्देशांक का उपयोग कर सकता है, जो अन्यथा निर्देशांक की एक अलग पसंद में अधिक कठिन होगा (उदाहरण के लिए, उन्हें दोबारा स्केल करके)।उदाहरण के लिए, दीर्घवृत्त पर मूल बिंदु से अधिकतम दूरी c12+9c22 = 1 तब होता है जब c2 = 0, अत: बिंदु c1 = ±1। इसी प्रकार, न्यूनतम दूरी वह है जहाँ c2 = ±1/3।

अब इस दीर्घवृत्त की बड़ी और छोटी अक्षों को पढ़ना संभव है। ये वास्तव में आव्यूह A के अलग-अलग ईजिन समष्टि हैं, क्योंकि ये वहीं हैं जहां c2 = 0 या c1 = 0 है, प्रतीकात्मक रूप से, मुख्य अक्ष हैं

संक्षेप में:

  • समीकरण एक दीर्घवृत्त के लिए है, क्योंकि दोनों ईजिनवैल्यू ​​​​धनात्मक हैं। (अन्यथा, यदि एक सकारात्मक और दूसरा ऋणात्मक होता, तो यह अतिपरवलय होता।)
  • मुख्य अक्ष ईजिनसदिश द्वारा विस्तार हुई रेखाएँ हैं।
  • मूल बिंदु से न्यूनतम और अधिकतम दूरी को विकर्ण रूप में समीकरण से पढ़ा जा सकता है।

इस जानकारी का उपयोग करके, दीर्घवृत्त की एक स्पष्ट ज्यामितीय तस्वीर प्राप्त करना संभव है: उदाहरण के लिए, इसे ग्राफ़ करना।

औपचारिक कथन

मुख्य अक्ष प्रमेय Rn में द्विघात रूपों से संबंधित है, जो घात 2 के सजातीय बहुपद हैं। किसी भी द्विघात रूप को इस प्रकार दर्शाया जा सकता है

जहाँ A एक सममित आव्यूह है।

प्रमेय का पहला भाग वर्णक्रमीय प्रमेय द्वारा गारंटीकृत निम्नलिखित कथनों में निहित है:

  • A के ईजिनवैल्यू ​​​​वास्तविक हैं।
  • A विकर्णीय है, और A के ईजिनसमष्टि परस्पर ओर्थोगोनल हैं।

विशेष रूप से, A ओर्थोगोनली विकर्ण है, क्योंकि कोई व्यक्ति प्रत्येक ईजेनस्पेस का आधार ले सकता है और ऑर्थोनॉर्मल ईजेनबेस प्राप्त करने के लिए ईजेनस्पेस के भीतर ग्राम-श्मिट प्रक्रिया को अलग से लागू कर सकता है।

दूसरे भाग के लिए, मान लीजिए कि A के ईजिनवैल्यू λ1, ..., λn (संभवतः उनकी बीजगणितीय बहुलता के अनुसार दोहराया गया) और संबंधित ऑर्थोनॉर्मल ईजेनबेसिस u1, ..., un है, तब,

और

जहां ci 'c' की i-वीं प्रविष्टि है। इसके अतिरिक्त,

i-वें 'मुख्य अक्ष' c को बराबर करके निर्धारित की गई रेखा है cj =0 सभी के लिए 0 . i-वें मुख्य अक्ष सदिश 'ui' का विस्तार है।

यह भी देखें

  • सिल्वेस्टर का जड़त्व का नियम

संदर्भ

  • Strang, Gilbert (1994). Introduction to Linear Algebra. Wellesley-Cambridge Press. ISBN 0-9614088-5-5.