मेसन समीकरण: Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
'''मेसन समीकरण''' पानी की बूंदों की वृद्धि (संक्षेपण के कारण) या [[[[वाष्पीकरण]]]] के लिए अनुमानित विश्लेषणात्मक अभिव्यक्ति है- यह मौसम विज्ञानी बेसिल जॉन मेसन बी के कारण है। जे. मेसन.<ref name=Mason>1. B. J. Mason ''The Physics of Clouds'' (1957) Oxford Univ. Press.</ref> अभिव्यक्ति यह पहचान | '''मेसन समीकरण''' पानी की बूंदों की वृद्धि (संक्षेपण के कारण) या [[[[वाष्पीकरण]]]] के लिए अनुमानित विश्लेषणात्मक अभिव्यक्ति है- यह मौसम विज्ञानी बेसिल जॉन मेसन बी के कारण है। जे. मेसन.<ref name=Mason>1. B. J. Mason ''The Physics of Clouds'' (1957) Oxford Univ. Press.</ref> अभिव्यक्ति द्वारा यह पहचान पाई जाती है कि अति संतृप्त वातावरण में पानी की बूंद की ओर द्रव्यमान का [[प्रसार]] ऊर्जा को [[अव्यक्त गर्मी|अव्यक्त ऊर्जा]] के रूप में स्थानांतरित करता है, और इसे [[सीमा परत]] के पार संवेदी ऊर्जा के प्रसार द्वारा संतुलित किया जाना चाहिए, (और बूंद की ऊर्जा), किंतु बादल के आकार की कमी के लिए यह अंतिम पद सामान्यतः छोटा होता है)। | ||
== समीकरण == | == समीकरण == | ||
Revision as of 17:58, 10 August 2023
मेसन समीकरण पानी की बूंदों की वृद्धि (संक्षेपण के कारण) या [[वाष्पीकरण]] के लिए अनुमानित विश्लेषणात्मक अभिव्यक्ति है- यह मौसम विज्ञानी बेसिल जॉन मेसन बी के कारण है। जे. मेसन.[1] अभिव्यक्ति द्वारा यह पहचान पाई जाती है कि अति संतृप्त वातावरण में पानी की बूंद की ओर द्रव्यमान का प्रसार ऊर्जा को अव्यक्त ऊर्जा के रूप में स्थानांतरित करता है, और इसे सीमा परत के पार संवेदी ऊर्जा के प्रसार द्वारा संतुलित किया जाना चाहिए, (और बूंद की ऊर्जा), किंतु बादल के आकार की कमी के लिए यह अंतिम पद सामान्यतः छोटा होता है)।
समीकरण
मेसन के सूत्रीकरण में सीमा परत के पार तापमान में परिवर्तन क्लॉसियस-क्लैपेरॉन संबंध द्वारा संतृप्त वाष्प दबाव में परिवर्तन से संबंधित हो सकता है; दो ऊर्जा परिवहन शब्द लगभग समान किंतु संकेत में विपरीत होने चाहिए और इसलिए यह बूंद का इंटरफ़ेस तापमान निर्धारित करता है। विकास दर के लिए परिणामी अभिव्यक्ति अपेक्षा से अधिक कम है यदि कमी को लुप्त ऊर्जा से गर्म नहीं किया गया था।
इस प्रकार यदि बूंद का आकार r है, तो अंदर की ओर द्रव्यमान प्रवाह दर दी जाती है:[1]
और सेंसिबल ऊर्जा प्रवाह द्वारा[1]
और विकास दर के लिए अंतिम अभिव्यक्ति है[1]
जहाँ
- S कमी से दूर अतिसंतृप्ति है।
- L लुप्त ऊष्मा है।
- K वाष्प तापीय चालकता है।
- D द्विआधारी प्रसार गुणांक है।
- R गैस स्थिरांक है।
संदर्भ