एचपी-एफईएम: Difference between revisions
No edit summary |
No edit summary |
||
| Line 6: | Line 6: | ||
*स्वचालित एचपी-अनुकूलन: एचपी-एफईएम में, तत्व को अनेक भिन्न-भिन्न विधियों से एचपी-परिष्कृत किया जा सकता है, जैसे: इसे स्पेस में उप-विभाजित किए बिना इसकी बहुपद डिग्री बढ़ाना, या तत्व को ज्यामितीय रूप से उप-विभाजित करना हैं | जहां विभिन्न बहुपद डिग्री को उप-तत्वों पर प्रयुक्त किया जा सकता है। और तत्व शोधन प्रत्याशी की संख्या सरलता से दो आयामों में 100 और तीन आयामों में 1000 तक पहुंच जाती है। किसी तत्व में त्रुटि के आकार को सांकेतिक करने वाली संख्या स्वचालित एचपी-अनुकूलता को निर्देशित करने के लिए पर्याप्त नहीं होती है | यह (मानक एफईएम में अनुकूलता के विपरीत) होती हैं । प्रत्येक तत्व में त्रुटि के आकार के बारे में अधिक सूचना प्राप्त करने के लिए संदर्भ समाधान या विश्लेषणात्मक विचार जैसी अन्य तकनीकों को नियोजित किया जाना चाहिए।<ref>L. Demkowicz, W. Rachowicz, and Ph. Devloo: A Fully Automatic hp-Adaptivity, Journal of Scientific Computing, 17, Nos 1–3 (2002), 127–155</ref> | *स्वचालित एचपी-अनुकूलन: एचपी-एफईएम में, तत्व को अनेक भिन्न-भिन्न विधियों से एचपी-परिष्कृत किया जा सकता है, जैसे: इसे स्पेस में उप-विभाजित किए बिना इसकी बहुपद डिग्री बढ़ाना, या तत्व को ज्यामितीय रूप से उप-विभाजित करना हैं | जहां विभिन्न बहुपद डिग्री को उप-तत्वों पर प्रयुक्त किया जा सकता है। और तत्व शोधन प्रत्याशी की संख्या सरलता से दो आयामों में 100 और तीन आयामों में 1000 तक पहुंच जाती है। किसी तत्व में त्रुटि के आकार को सांकेतिक करने वाली संख्या स्वचालित एचपी-अनुकूलता को निर्देशित करने के लिए पर्याप्त नहीं होती है | यह (मानक एफईएम में अनुकूलता के विपरीत) होती हैं । प्रत्येक तत्व में त्रुटि के आकार के बारे में अधिक सूचना प्राप्त करने के लिए संदर्भ समाधान या विश्लेषणात्मक विचार जैसी अन्य तकनीकों को नियोजित किया जाना चाहिए।<ref>L. Demkowicz, W. Rachowicz, and Ph. Devloo: A Fully Automatic hp-Adaptivity, Journal of Scientific Computing, 17, Nos 1–3 (2002), 127–155</ref> | ||
* संयोजन और समाधान सीपीयू समय का अनुपात: मानक एफईएम में, कठोरता आव्युह सामान्यतः शीघ्रता से एकत्रित किया जाता है किन्तु यह अधिक विस्तृत होता है। यह सामान्यतः, असतत समस्या के समाधान में कुल कंप्यूटिंग समय का सबसे विस्तृत भाग व्यय होता है। इसके विपरीत, एचपी-एफईएम में कठोरता आव्युह सामान्यतः बहुत लघु होते हैं | किन्तु (समान आव्युह आकार के लिए) उनमें एकत्रित मानक एफईएम की तुलना में अधिक समय लगता है। यह मुख्य रूप से संख्यात्मक चतुर्भुज की कम्प्यूटेशनल निवेश के कारण होता है | जिसमें शीघ्र अभिसरण दरों का लाभ उठाने के लिए मानक एफईएम की तुलना में उच्च परिशुद्धता होनी चाहिए | और इसलिए यह उच्च क्रम का होना चाहिए। | * संयोजन और समाधान सीपीयू समय का अनुपात: मानक एफईएम में, कठोरता आव्युह सामान्यतः शीघ्रता से एकत्रित किया जाता है किन्तु यह अधिक विस्तृत होता है। यह सामान्यतः, असतत समस्या के समाधान में कुल कंप्यूटिंग समय का सबसे विस्तृत भाग व्यय होता है। इसके विपरीत, एचपी-एफईएम में कठोरता आव्युह सामान्यतः बहुत लघु होते हैं | किन्तु (समान आव्युह आकार के लिए) उनमें एकत्रित मानक एफईएम की तुलना में अधिक समय लगता है। यह मुख्य रूप से संख्यात्मक चतुर्भुज की कम्प्यूटेशनल निवेश के कारण होता है | जिसमें शीघ्र अभिसरण दरों का लाभ उठाने के लिए मानक एफईएम की तुलना में उच्च परिशुद्धता होनी चाहिए | और इसलिए यह उच्च क्रम का होना चाहिए। | ||
*विश्लेषणात्मक चुनौतियाँ: एचपी-एफईएम को सामान्यतः मानक एफईएम की तुलना में विश्लेषणात्मक दृष्टिकोण से समझना अधिक कठिन माना जाता है। जिसके अनुसार यह अनेक तकनीकों से संबंधित होता है, जैसे वृत्ताकार समस्याओं के लिए असतत अधिकतम सिद्धांत (डीएमपी) होता हैं। यह परिणाम बताते हैं कि, सामान्यतः जालक पर कुछ सीमित धारणाओं के साथ, खंड अनुसार-बहुपद एफईएम सन्निकटन अंतर्निहित वृत्ताकार पीडीई के समान अधिकतम | *विश्लेषणात्मक चुनौतियाँ: एचपी-एफईएम को सामान्यतः मानक एफईएम की तुलना में विश्लेषणात्मक दृष्टिकोण से समझना अधिक कठिन माना जाता है। जिसके अनुसार यह अनेक तकनीकों से संबंधित होता है, जैसे वृत्ताकार समस्याओं के लिए असतत अधिकतम सिद्धांत (डीएमपी) होता हैं। यह परिणाम बताते हैं कि, सामान्यतः जालक पर कुछ सीमित धारणाओं के साथ, खंड अनुसार-बहुपद एफईएम सन्निकटन अंतर्निहित वृत्ताकार पीडीई के समान अधिकतम सिद्धांतबं का पालन करता है। ऐसे परिणाम बहुत महत्वपूर्ण हैं क्योंकि वे गारंटी देते हैं कि सन्निकटन भौतिक रूप से स्वीकार्य रहता है, जिससे नकारात्मक घनत्व, नकारात्मक एकाग्रता, या नकारात्मक निरपेक्ष तापमान की गणना करने की कोई संभावना नहीं रहती है। डीएमपी निम्नतम-क्रम एफईएम के लिए अधिक अच्छी तरह से समझा जाता है किन्तु दो या दो से अधिक आयामों में एचपी-एफईएम के लिए पूरी तरह से अज्ञात होता है। स्थानिक आयाम में प्रथम डीएमपी वर्तमान में तैयार किया गया था। <ref>P. Solin, T. Vejchodsky: A Weak Discrete Maximum Principle for hp-FEM, J. Comput. Appl. Math. 209 (2007) 54–65</ref> <ref>T. Vejchodsky, P. Solin: Discrete Maximum Principle for Higher-Order Finite Elements in 1D, Math. Comput. 76 (2007), 1833–1846</ref> | ||
* प्रोग्रामिंग चुनौतियाँ: मानक एफईएम कोड की तुलना में hp-एफईएम सॉल्वर को प्रयुक्त करना बहुत कठिन होता है। जिनमें अनेक मुद्दों को दूर करने की आवश्यकता है | यह उनमें सम्मिलित होता हैं (किन्तु यह सिर्फ यहीं तक सीमित नहीं होता हैं) | उच्च-क्रम चतुर्भुज सूत्र, उच्च-क्रम आकार फ़ंक्शन, भौतिक डोमेन में आधार कार्यों के साथ संदर्भ डोमेन पर आकार कार्यों से संबंधित कनेक्टिविटी और अभिविन्यास सूचना आदि होते हैं। <ref>L. Demkowicz, J. Kurtz, D. Pardo, W. Rachowicz, M. Paszynski, A. Zdunek: Computing with hp-Adaptive Finite Elements, Chapman & Hall/CRC Press, 2007</ref> | * प्रोग्रामिंग चुनौतियाँ: मानक एफईएम कोड की तुलना में hp-एफईएम सॉल्वर को प्रयुक्त करना बहुत कठिन होता है। जिनमें अनेक मुद्दों को दूर करने की आवश्यकता है | यह उनमें सम्मिलित होता हैं (किन्तु यह सिर्फ यहीं तक सीमित नहीं होता हैं) | उच्च-क्रम चतुर्भुज सूत्र, उच्च-क्रम आकार फ़ंक्शन, भौतिक डोमेन में आधार कार्यों के साथ संदर्भ डोमेन पर आकार कार्यों से संबंधित कनेक्टिविटी और अभिविन्यास सूचना आदि होते हैं। <ref>L. Demkowicz, J. Kurtz, D. Pardo, W. Rachowicz, M. Paszynski, A. Zdunek: Computing with hp-Adaptive Finite Elements, Chapman & Hall/CRC Press, 2007</ref> | ||
| Line 12: | Line 12: | ||
==फ़िचेरा समस्या== | ==फ़िचेरा समस्या== | ||
फिचेरा समस्या (जिसे फिचेरा कॉर्नर समस्या भी कहा जाता है) | फिचेरा समस्या (जिसे फिचेरा कॉर्नर समस्या भी कहा जाता है) | यह अनुकूल एफईएम कोड के लिए मानक बेंचमार्क समस्या होती है। कोई इसका उपयोग मानक एफईएम और hp-एफईएम के प्रदर्शन में नाटकीय अंतर दिखाने के लिए कर सकता है। यह समस्या ज्यामिति घन है जिसका कॉर्नर लुप्त होता है।इसमें स्पष्ट समाधान के केंद्र में विलक्षण स्लोप (अनंत तनाव का सादृश्य) होता है। इसमें स्पष्ट समाधान का ज्ञान सन्निकटन त्रुटि की स्पष्ट गणना करना हैं और इस प्रकार यह विभिन्न संख्यात्मक विधियों की तुलना करना संभव बनाता है। उदाहरण के लिए, समस्या को अनुकूली एफईएम के तीन भिन्न-भिन्न संस्करणों का उपयोग करके समाधान किया गया था | जिसमे यह रैखिक तत्वों, द्विघात तत्वों और hp-एफईएम के साथ होता हैं। | ||
<gallery> | <gallery> | ||
| Line 18: | Line 18: | ||
Image:conv fichera.png|समस्या चार्ट: अभिसरण तुलना। | Image:conv fichera.png|समस्या चार्ट: अभिसरण तुलना। | ||
</gallery> | </gallery> | ||
अभिसरण ग्राफ स्वतंत्रता की डिग्री (डीओएफ) की संख्या के फ़ंक्शन के रूप में सन्निकटन त्रुटि दिखाते हैं। डीओएफ अज्ञात मापदंडों को संदर्भित करता है जो सन्निकटन को परिभाषित करने के लिए आवश्यक हैं | अभिसरण ग्राफ स्वतंत्रता की डिग्री (डीओएफ) की संख्या के फ़ंक्शन के रूप में सन्निकटन त्रुटि दिखाते हैं। और डीओएफ अज्ञात मापदंडों को संदर्भित करता है जो सन्निकटन को परिभाषित करने के लिए आवश्यक होते हैं | और डीओएफ की संख्या कठोरता आव्युह के आकार के सामान्य होता है। इसमें रीडर ग्राफ़ में देख सकते हैं कि एचपी-एफईएम का अभिसरण अन्य दोनों विधियों के अभिसरण की तुलना में बहुत शीघ्र होता है। इसमें प्रदर्शन अंतर इतना विस्तृत है कि रैखिक एफईएम पूर्णतया सभी (उचित समय में) अभिसरण नहीं कर सकते है और द्विघात एफईएम को उस स्पष्टता तक पहुंचने के लिए सैकड़ों हजारों या संभवतः लाखों डीओएफ की आवश्यकता होती हैं जो एचपी-एफईएम ने लगभग 17,000 डीओएफ के साथ प्राप्त की थी। यह स्वतंत्रता की अपेक्षाकृत कुछ डिग्री का उपयोग करके बहुत स्पष्ट परिणाम प्राप्त करना एचपी-एफईएम की मुख्य शक्ति होती है। | ||
==एचपी-एफईएम की दक्षता== | ==एचपी-एफईएम की दक्षता== | ||
लघु -रेखीय तत्वों की तुलना में | लघु -रेखीय तत्वों की तुलना में विस्तृत उच्च-क्रम वाले तत्वों का उपयोग करके सुचारू कार्यों का अधिक कुशलता से अनुमान लगाया जा सकता है। इसे नीचे दिए गए चित्र में दर्शाया गया है | जहां दो भिन्न-भिन्न जालकों पर शून्य डिरिचलेट सीमा स्थितियों के साथ आयामी पॉइसन समीकरण समाधान किया गया है। यह स्पष्ट समाधान साइन फ़ंक्शन होता है। | ||
* बाएँ: दो रैखिक तत्वों से युक्त | * बाएँ: दो रैखिक तत्वों से युक्त जालक हैं। | ||
* दाएँ: द्विघात तत्व से युक्त | * दाएँ: द्विघात तत्व से युक्त जालक हैं। | ||
[[Image:grad sin h.png|टुकड़े-टुकड़े-रैखिक सन्निकटन।]] | [[Image:grad sin h.png|टुकड़े-टुकड़े-रैखिक सन्निकटन।]][[Image:conv sin hp.png|द्विघात सन्निकटन.]] | ||
[[Image:conv sin hp.png|द्विघात सन्निकटन.]] | |||
इसके विपरीत, लघु निम्न-क्रम वाले तत्व | जबकि दोनों स्तिथियों में अज्ञात की संख्या समान है (1 डीओएफ), संबंधित मानदंड में त्रुटियां क्रमशः 0.68 और 0.20 हैं। इसका कारण यह है कि द्विघात सन्निकटन खंड-रेखीय सन्निकटन की तुलना में लगभग 3.5 गुना अधिक कुशल था। जब हम कदम आगे बढ़ते हैं और (a) चार रैखिक तत्वों की तुलना (b) चतुर्थक तत्व (p=4) से करते हैं, तब दोनों भिन्न-भिन्न समस्याओं में तीन डीओएफ होंते हैं | किन्तु चतुर्थक सन्निकटन लगभग 40 गुना अधिक कुशल होता हैं। | ||
इसके विपरीत, लघु निम्न-क्रम वाले तत्व विस्तृत उच्च-क्रम वाले तत्वों की तुलना में लघु पैमाने की विशेषताओं जैसे विलक्षणताओं को बेहतर तरीके से पकड़ सकते हैं। एचपी-एफईएम इन दो दृष्टिकोणों के इष्टतम संयोजन पर आधारित है जो घातांकीय अभिसरण की ओर ले जाता है। ध्यान दें कि यह घातीय अभिसरण त्रुटि की धुरी बनाम स्वतंत्रता की डिग्री में व्यक्त किया गया है। वास्तविक जीवन के अनुप्रयोगों के लिए, हम सामान्यतः स्पष्टता के समान स्तर तक पहुंचने के लिए आवश्यक कम्प्यूटेशनल समय पर विचार करते हैं। इस प्रदर्शन संकेतक के लिए एच- और एचपी-शोधन समान परिणाम प्रदान कर सकते हैं, उदाहरण के लिए <ref>{{Cite web|url=http://hpfem.org/wp-content/uploads/doc-web/doc-examples/src/hermes2d/examples/maxwell/microwave-oven.html|title = Microwave Oven — Hermes Examples Guide}}</ref> (वेब आर्काइव लिंक <ref>{{cite web |url=http://hpfem.org/wp-content/uploads/doc-web/doc-examples/src/hermes2d/examples/maxwell/microwave-oven.html |title=Microwave Oven — Hermes Examples Guide |website=hpfem.org |access-date=12 January 2022 |archive-url=https://web.archive.org/web/20180807173436/http://hpfem.org/wp-content/uploads/doc-web/doc-examples/src/hermes2d/examples/maxwell/microwave-oven.html |archive-date=7 August 2018 |url-status=dead}}</ref>) पर अंतिम आंकड़ा देखते हैं | जैसे ही एच-एफईएम की तुलना में एचपी-एफईएम को प्रोग्राम करना और [[समानांतर कंप्यूटिंग]] करना कठिन हो जाता है, एचपी-शोधन की अभिसरण उत्कृष्टता अव्यावहारिक हो सकती है। | |||
==एचपी-अनुकूलन== | ==एचपी-अनुकूलन== | ||
कुछ एफईएम साइटें एचपी-अनुकूलता को एच-अनुकूलता (उनकी बहुपद डिग्री को स्थिर रखते हुए स्पेस में तत्वों को विभाजित करना) और पी-अनुकूलता (सिर्फ उनकी बहुपद डिग्री को बढ़ाना) के संयोजन के रूप में वर्णित करती हैं।. यह पूरी तरह से | कुछ एफईएम साइटें एचपी-अनुकूलता को एच-अनुकूलता (उनकी बहुपद डिग्री को स्थिर रखते हुए स्पेस में तत्वों को विभाजित करना) और पी-अनुकूलता (सिर्फ उनकी बहुपद डिग्री को बढ़ाना) के संयोजन के रूप में वर्णित करती हैं।. यह पूरी तरह से स्पष्ट नहीं है, क्योंकि एचपी-अनुकूलता एच- और पी-अनुकूलता दोनों से अधिक भिन्न है क्योंकि किसी तत्व का एचपी-शोधन अनेक भिन्न-भिन्न विधियों से किया जा सकता है। पी-शोधन के अलावा, तत्व को स्पेस में उप-विभाजित किया जा सकता है (जैसा कि एच-अनुकूलता में), किन्तु उप-तत्वों पर बहुपद डिग्री के लिए अनेक संयोजन हैं। यह दाहिनी ओर के चित्र में दर्शाया गया है। उदाहरण के लिए, यदि त्रिकोणीय या चतुर्भुज तत्व को चार उप-तत्वों में विभाजित किया जाता है, जहां बहुपद डिग्री को अधिकतम दो तक भिन्न होने की अनुमति होती है, तब इससे 3^4 = 81 शोधन उम्मीदवार मिलते हैं (बहुपद अनिसोट्रोपिक प्रत्याशी पर विचार नहीं किया जाता है)। अनुरूप रूप से, हेक्साहेड्रोन को आठ उप-तत्वों में विभाजित करना और अधिकतम दो द्वारा उनकी बहुपद डिग्री को बदलना 3^8 = 6,561 शोधन उम्मीदवार प्राप्त करता है। प्रति तत्व स्थिर संख्या प्रदान करने वाला मानक एफईएम त्रुटि अनुमान स्वचालित एचपी-अनुकूलन का मार्गदर्शन करने के लिए पर्याप्त नहीं है। | ||
==उच्च-क्रम आकार के कार्य== | ==उच्च-क्रम आकार के कार्य== | ||
Revision as of 12:35, 26 July 2023
एचपी-एफईएम परिमित तत्व विधि (एफईएम) का सामान्य संस्करण होता है | जो खंड अनुसार-बहुपद सन्निकटन के आधार पर आंशिक अंतर समीकरणों का समाधान करने के लिए संख्यात्मक विश्लेषण विधि है जो वैरिएबल आकार (h) और बहुपद की डिग्री (p) के तत्वों को नियोजित करता है। एचपी-एफईएम की उत्पत्ति बार्ना A सज़ाबो और इवो बाबूस्का के अग्रणी कार्य से हुई है | [1] [2] [3] [4] [5] [6] जिन्होंने इसमें पाया कि परिमित तत्व विधि शीघ्रता से परिवर्तित होती है। जालक को h-शोधन (तत्वों को लघु भागों में विभाजित करना) हैं और p-शोधन (उनकी बहुपद डिग्री को बढ़ाना) के उपयुक्त संयोजन का उपयोग करके परिष्कृत किया जाता है। घातीय अभिसरण अधिकांश अन्य परिमित तत्व विधियों की तुलना में विधि को बहुत आकर्षक बनाता है | जो सिर्फ बीजगणितीय दर के साथ अभिसरण करता है। एचपी-एफईएम के घातीय अभिसरण का पूर्वानुमान न सिर्फ सैद्धांतिक रूप से किया गया था, किंतु अनेक स्वतंत्र शोधकर्ताओं द्वारा भी देखी गई थी। [7] [8] [9]
मानक एफईएम से अंतर
एचपी-एफईएम अनेक पहलुओं में मानक (निम्नतम-क्रम) एफईएम से भिन्न होते है।[10]
- उच्च-क्रम आकार कार्यों का चयन उदाहरण आवश्यक: तत्वों में उच्च-डिग्री बहुपद को आकार कार्यों के विभिन्न समुच्चयो का उपयोग करके उत्पन्न किया जा सकता है। ऐसे समुच्चय का चुनाव कठोरता आव्युह की कंडीशनिंग और उसी स्थान में संपूर्ण समाधान प्रक्रिया को नाटकीय रूप से प्रभावित कर सकता है। इस समस्या को सबसे पहले बाबुस्का एट अल द्वारा प्रलेखित किया गया था।[11]
- स्वचालित एचपी-अनुकूलन: एचपी-एफईएम में, तत्व को अनेक भिन्न-भिन्न विधियों से एचपी-परिष्कृत किया जा सकता है, जैसे: इसे स्पेस में उप-विभाजित किए बिना इसकी बहुपद डिग्री बढ़ाना, या तत्व को ज्यामितीय रूप से उप-विभाजित करना हैं | जहां विभिन्न बहुपद डिग्री को उप-तत्वों पर प्रयुक्त किया जा सकता है। और तत्व शोधन प्रत्याशी की संख्या सरलता से दो आयामों में 100 और तीन आयामों में 1000 तक पहुंच जाती है। किसी तत्व में त्रुटि के आकार को सांकेतिक करने वाली संख्या स्वचालित एचपी-अनुकूलता को निर्देशित करने के लिए पर्याप्त नहीं होती है | यह (मानक एफईएम में अनुकूलता के विपरीत) होती हैं । प्रत्येक तत्व में त्रुटि के आकार के बारे में अधिक सूचना प्राप्त करने के लिए संदर्भ समाधान या विश्लेषणात्मक विचार जैसी अन्य तकनीकों को नियोजित किया जाना चाहिए।[12]
- संयोजन और समाधान सीपीयू समय का अनुपात: मानक एफईएम में, कठोरता आव्युह सामान्यतः शीघ्रता से एकत्रित किया जाता है किन्तु यह अधिक विस्तृत होता है। यह सामान्यतः, असतत समस्या के समाधान में कुल कंप्यूटिंग समय का सबसे विस्तृत भाग व्यय होता है। इसके विपरीत, एचपी-एफईएम में कठोरता आव्युह सामान्यतः बहुत लघु होते हैं | किन्तु (समान आव्युह आकार के लिए) उनमें एकत्रित मानक एफईएम की तुलना में अधिक समय लगता है। यह मुख्य रूप से संख्यात्मक चतुर्भुज की कम्प्यूटेशनल निवेश के कारण होता है | जिसमें शीघ्र अभिसरण दरों का लाभ उठाने के लिए मानक एफईएम की तुलना में उच्च परिशुद्धता होनी चाहिए | और इसलिए यह उच्च क्रम का होना चाहिए।
- विश्लेषणात्मक चुनौतियाँ: एचपी-एफईएम को सामान्यतः मानक एफईएम की तुलना में विश्लेषणात्मक दृष्टिकोण से समझना अधिक कठिन माना जाता है। जिसके अनुसार यह अनेक तकनीकों से संबंधित होता है, जैसे वृत्ताकार समस्याओं के लिए असतत अधिकतम सिद्धांत (डीएमपी) होता हैं। यह परिणाम बताते हैं कि, सामान्यतः जालक पर कुछ सीमित धारणाओं के साथ, खंड अनुसार-बहुपद एफईएम सन्निकटन अंतर्निहित वृत्ताकार पीडीई के समान अधिकतम सिद्धांतबं का पालन करता है। ऐसे परिणाम बहुत महत्वपूर्ण हैं क्योंकि वे गारंटी देते हैं कि सन्निकटन भौतिक रूप से स्वीकार्य रहता है, जिससे नकारात्मक घनत्व, नकारात्मक एकाग्रता, या नकारात्मक निरपेक्ष तापमान की गणना करने की कोई संभावना नहीं रहती है। डीएमपी निम्नतम-क्रम एफईएम के लिए अधिक अच्छी तरह से समझा जाता है किन्तु दो या दो से अधिक आयामों में एचपी-एफईएम के लिए पूरी तरह से अज्ञात होता है। स्थानिक आयाम में प्रथम डीएमपी वर्तमान में तैयार किया गया था। [13] [14]
- प्रोग्रामिंग चुनौतियाँ: मानक एफईएम कोड की तुलना में hp-एफईएम सॉल्वर को प्रयुक्त करना बहुत कठिन होता है। जिनमें अनेक मुद्दों को दूर करने की आवश्यकता है | यह उनमें सम्मिलित होता हैं (किन्तु यह सिर्फ यहीं तक सीमित नहीं होता हैं) | उच्च-क्रम चतुर्भुज सूत्र, उच्च-क्रम आकार फ़ंक्शन, भौतिक डोमेन में आधार कार्यों के साथ संदर्भ डोमेन पर आकार कार्यों से संबंधित कनेक्टिविटी और अभिविन्यास सूचना आदि होते हैं। [15]
फ़िचेरा समस्या
फिचेरा समस्या (जिसे फिचेरा कॉर्नर समस्या भी कहा जाता है) | यह अनुकूल एफईएम कोड के लिए मानक बेंचमार्क समस्या होती है। कोई इसका उपयोग मानक एफईएम और hp-एफईएम के प्रदर्शन में नाटकीय अंतर दिखाने के लिए कर सकता है। यह समस्या ज्यामिति घन है जिसका कॉर्नर लुप्त होता है।इसमें स्पष्ट समाधान के केंद्र में विलक्षण स्लोप (अनंत तनाव का सादृश्य) होता है। इसमें स्पष्ट समाधान का ज्ञान सन्निकटन त्रुटि की स्पष्ट गणना करना हैं और इस प्रकार यह विभिन्न संख्यात्मक विधियों की तुलना करना संभव बनाता है। उदाहरण के लिए, समस्या को अनुकूली एफईएम के तीन भिन्न-भिन्न संस्करणों का उपयोग करके समाधान किया गया था | जिसमे यह रैखिक तत्वों, द्विघात तत्वों और hp-एफईएम के साथ होता हैं।
- Grad fichera.png
समस्या फ़ाइल: एकवचन ग्रेडिएंट.
अभिसरण ग्राफ स्वतंत्रता की डिग्री (डीओएफ) की संख्या के फ़ंक्शन के रूप में सन्निकटन त्रुटि दिखाते हैं। और डीओएफ अज्ञात मापदंडों को संदर्भित करता है जो सन्निकटन को परिभाषित करने के लिए आवश्यक होते हैं | और डीओएफ की संख्या कठोरता आव्युह के आकार के सामान्य होता है। इसमें रीडर ग्राफ़ में देख सकते हैं कि एचपी-एफईएम का अभिसरण अन्य दोनों विधियों के अभिसरण की तुलना में बहुत शीघ्र होता है। इसमें प्रदर्शन अंतर इतना विस्तृत है कि रैखिक एफईएम पूर्णतया सभी (उचित समय में) अभिसरण नहीं कर सकते है और द्विघात एफईएम को उस स्पष्टता तक पहुंचने के लिए सैकड़ों हजारों या संभवतः लाखों डीओएफ की आवश्यकता होती हैं जो एचपी-एफईएम ने लगभग 17,000 डीओएफ के साथ प्राप्त की थी। यह स्वतंत्रता की अपेक्षाकृत कुछ डिग्री का उपयोग करके बहुत स्पष्ट परिणाम प्राप्त करना एचपी-एफईएम की मुख्य शक्ति होती है।
एचपी-एफईएम की दक्षता
लघु -रेखीय तत्वों की तुलना में विस्तृत उच्च-क्रम वाले तत्वों का उपयोग करके सुचारू कार्यों का अधिक कुशलता से अनुमान लगाया जा सकता है। इसे नीचे दिए गए चित्र में दर्शाया गया है | जहां दो भिन्न-भिन्न जालकों पर शून्य डिरिचलेट सीमा स्थितियों के साथ आयामी पॉइसन समीकरण समाधान किया गया है। यह स्पष्ट समाधान साइन फ़ंक्शन होता है।
- बाएँ: दो रैखिक तत्वों से युक्त जालक हैं।
- दाएँ: द्विघात तत्व से युक्त जालक हैं।
टुकड़े-टुकड़े-रैखिक सन्निकटन।द्विघात सन्निकटन.
जबकि दोनों स्तिथियों में अज्ञात की संख्या समान है (1 डीओएफ), संबंधित मानदंड में त्रुटियां क्रमशः 0.68 और 0.20 हैं। इसका कारण यह है कि द्विघात सन्निकटन खंड-रेखीय सन्निकटन की तुलना में लगभग 3.5 गुना अधिक कुशल था। जब हम कदम आगे बढ़ते हैं और (a) चार रैखिक तत्वों की तुलना (b) चतुर्थक तत्व (p=4) से करते हैं, तब दोनों भिन्न-भिन्न समस्याओं में तीन डीओएफ होंते हैं | किन्तु चतुर्थक सन्निकटन लगभग 40 गुना अधिक कुशल होता हैं।
इसके विपरीत, लघु निम्न-क्रम वाले तत्व विस्तृत उच्च-क्रम वाले तत्वों की तुलना में लघु पैमाने की विशेषताओं जैसे विलक्षणताओं को बेहतर तरीके से पकड़ सकते हैं। एचपी-एफईएम इन दो दृष्टिकोणों के इष्टतम संयोजन पर आधारित है जो घातांकीय अभिसरण की ओर ले जाता है। ध्यान दें कि यह घातीय अभिसरण त्रुटि की धुरी बनाम स्वतंत्रता की डिग्री में व्यक्त किया गया है। वास्तविक जीवन के अनुप्रयोगों के लिए, हम सामान्यतः स्पष्टता के समान स्तर तक पहुंचने के लिए आवश्यक कम्प्यूटेशनल समय पर विचार करते हैं। इस प्रदर्शन संकेतक के लिए एच- और एचपी-शोधन समान परिणाम प्रदान कर सकते हैं, उदाहरण के लिए [16] (वेब आर्काइव लिंक [17]) पर अंतिम आंकड़ा देखते हैं | जैसे ही एच-एफईएम की तुलना में एचपी-एफईएम को प्रोग्राम करना और समानांतर कंप्यूटिंग करना कठिन हो जाता है, एचपी-शोधन की अभिसरण उत्कृष्टता अव्यावहारिक हो सकती है।
एचपी-अनुकूलन
कुछ एफईएम साइटें एचपी-अनुकूलता को एच-अनुकूलता (उनकी बहुपद डिग्री को स्थिर रखते हुए स्पेस में तत्वों को विभाजित करना) और पी-अनुकूलता (सिर्फ उनकी बहुपद डिग्री को बढ़ाना) के संयोजन के रूप में वर्णित करती हैं।. यह पूरी तरह से स्पष्ट नहीं है, क्योंकि एचपी-अनुकूलता एच- और पी-अनुकूलता दोनों से अधिक भिन्न है क्योंकि किसी तत्व का एचपी-शोधन अनेक भिन्न-भिन्न विधियों से किया जा सकता है। पी-शोधन के अलावा, तत्व को स्पेस में उप-विभाजित किया जा सकता है (जैसा कि एच-अनुकूलता में), किन्तु उप-तत्वों पर बहुपद डिग्री के लिए अनेक संयोजन हैं। यह दाहिनी ओर के चित्र में दर्शाया गया है। उदाहरण के लिए, यदि त्रिकोणीय या चतुर्भुज तत्व को चार उप-तत्वों में विभाजित किया जाता है, जहां बहुपद डिग्री को अधिकतम दो तक भिन्न होने की अनुमति होती है, तब इससे 3^4 = 81 शोधन उम्मीदवार मिलते हैं (बहुपद अनिसोट्रोपिक प्रत्याशी पर विचार नहीं किया जाता है)। अनुरूप रूप से, हेक्साहेड्रोन को आठ उप-तत्वों में विभाजित करना और अधिकतम दो द्वारा उनकी बहुपद डिग्री को बदलना 3^8 = 6,561 शोधन उम्मीदवार प्राप्त करता है। प्रति तत्व स्थिर संख्या प्रदान करने वाला मानक एफईएम त्रुटि अनुमान स्वचालित एचपी-अनुकूलन का मार्गदर्शन करने के लिए पर्याप्त नहीं है।
उच्च-क्रम आकार के कार्य
मानक एफईएम में सिर्फ ग्रिड से जुड़े आकार कार्यों के साथ काम करता है शीर्ष (तथाकथित शीर्ष फलन)। इसके विपरीत, एचपी-एफईएम का उपयोग करते समय, व्यक्ति एज फ़ंक्शंस (संबंधित) पर भी ध्यान देता है तत्व किनारों), चेहरे के कार्य (तत्व चेहरों के अनुरूप - सिर्फ 3डी), और बबल फ़ंक्शंस (उच्च-क्रम बहुपद जो गायब हो जाते हैं तत्व सीमाएँ)। निम्नलिखित छवियां इन कार्यों को दिखाती हैं (एकल तत्व तक सीमित):
- Vertex new.jpg
वर्टेक्स फ़ंक्शन.
- Face new.jpg
चेहरे का कार्य.
ध्यान दें: ये सभी फ़ंक्शन संपूर्ण तत्व इंटीरियर में परिभाषित हैं।
ओपन सोर्स एचपी-एफईएम कोड
- डील.II: डील.II परिमित तत्व विधि का उपयोग करके आंशिक अंतर समीकरणों कोसमाधान करने के लिए निःशुल्क, ओपन-सोर्स लाइब्रेरी है।
- अवधारणाएं: वृत्ताकार समीकरणों के लिए C/C++ hp-एफईएम/DGएफईएम/BEM लाइब्रेरी SAM, ETH ज्यूरिख (स्विट्जरलैंड) और बर्लिन के तकनीकी विश्वविद्यालय (जर्मनी) में K. श्मिट के समूह में विकसित की गई।
- 2dhp90, 3dhp90: वृत्ताकार समस्याओं और मैक्सवेल के समीकरणों के लिए फोरट्रान कोड, ICES, UT ऑस्टिन में एल. डेमकोविज़ द्वारा विकसित।
- पीएचएएमएल: समानांतर पदानुक्रमित अनुकूली बहु-स्तरीय परियोजना। अनुकूली जालक शोधन और मल्टी-ग्रिड समाधान तकनीकों का उपयोग करके वितरित मेमोरी समानांतर कंप्यूटर और मल्टी-कोर कंप्यूटर पर 2 डी वृत्ताकार आंशिक अंतर समीकरणों के संख्यात्मक समाधान के लिए, संयुक्त राज्य अमेरिका के राष्ट्रीय मानक और प्रौद्योगिकी संस्थान में परिमित तत्व सॉफ्टवेयर विकसित किया गया।
- हर्मीस परियोजना: पीडीई और मल्टीफिजिक्स पीडीई सिस्टम की विशाल विविधता के लिए स्पेस और स्पेस-समय अनुकूली एचपी-एफईएम सॉल्वरों के शीघ्रता से प्रोटोटाइप के लिए सी/सी++/पायथन लाइब्रेरी, नेवादा विश्वविद्यालय, रेनो (यूएसए), थर्मो-मैकेनिक्स संस्थान, प्राग (चेक गणराज्य) और पिल्सेन (चेक गणराज्य) में वेस्ट बोहेमिया विश्वविद्यालय में एचपी-एफईएम समूह द्वारा विकसित - शीर्ष पर निर्मित एग्रोस2डी इंजीनियरिंग सॉफ्टवेयर के साथ हर्मीस पुस्तकालय का.
- PHG: PHG समानांतर अनुकूली परिमित तत्व प्रोग्राम विकसित करने के लिए टूलबॉक्स है। यह h-, p- और hp-fem के लिए उपयुक्त है। पीएचजी वर्तमान में वैज्ञानिक और इंजीनियरिंग कंप्यूटिंग की राज्य प्रमुख प्रयोगशाला, कम्प्यूटेशनल गणित संस्थान और चीनी विज्ञान अकादमी (एलएसईसी, सीएएस, चीन) के वैज्ञानिक/इंजीनियरिंग कंप्यूटिंग संस्थान में सक्रिय विकास के अधीन है। पीएचजी अनुरूप टेट्राहेड्रल जालक से संबंधित है और संदेश भेजने के लिए अनुकूली स्थानीय जालक शोधन और एमपीआई के लिए द्विभाजन का उपयोग करता है। पीएचजी में ऑब्जेक्ट-ओरिएंटेड डिज़ाइन है जो समानांतर विवरण छुपाता है और अमूर्त तरीके से मेष और परिमित तत्व कार्यों पर सामान्य संचालन प्रदान करता है, जिससे उपयोगकर्ताओं को अपने संख्यात्मक एल्गोरिदम पर ध्यान केंद्रित करने की अनुमति मिलती है।
- Moएफईएम परिमित तत्व विश्लेषण कोड है जो बहु-भौतिकी समस्याओं के समाधान के लिए मनमाने ढंग से अनुमान के स्तर, जालक शोधन के विभिन्न स्तरों और उच्च-प्रदर्शन कंप्यूटिंग के लिए अनुकूलित है। इसे L2,H1, H-div और H-कर्ल स्थानों के लिए सन्निकटन के विषम क्रम से संबंधित जटिलताओं का प्रबंधन करने में सक्षम होने के लिए डिज़ाइन किया गया है।
- स्पार्सेलिज़ार्ड बहु-भौतिकी, एचपी-अनुकूली, उपयोगकर्ता के अनुकूल, ओपन-सोर्स सी++ परिमित तत्व पुस्तकालय है जिसे वर्तमान में टाम्परे विश्वविद्यालय, फिनलैंड में विकसित किया गया है। यह सामान्य स्थैतिक और क्षणिक एचपी-एफईएम के लिए मनमाना क्रम पदानुक्रमित एच 1 और एच-कर्ल फ़ंक्शन रिक्त स्थान के साथ 3 डी टेट्राहेड्रल और 2 डी त्रिकोण / चतुर्भुज अनुरूप अनुकूली जालक शोधन को जोड़ता है।
वाणिज्यिक एचपी-एफईएम सॉफ्टवेयर
- StressCheck विस्तृत संरचनात्मक विश्लेषण की ओर उन्मुख एचपी-क्षमताओं वाला सीमित तत्व विश्लेषण उपकरण है।
संदर्भ
- ↑ B. A. Szabó, A. K. Mehta: p-Convergent Finite Element Approximations in Fracture Mechanics, Int. J. Num. Meth. Engng, Volume 12, pp. 551-560, 1978.
- ↑ I. Babuška, B. A. Szabó and I. N. Katz: The p-Version of the Finite Element Method, SIAM J. Numer. Anl., Volume 18, pp. 515-544, 1981.
- ↑ I. Babuška, B. A. Szabó, On the Rates of Convergence of the Finite Element Method, Int. J. Numer. Meth.Engng., Volume 18, pp. 323-341, 1982.
- ↑ I. Babuška: The p- and hp-Versions of the Finite Element Method: the State of the Art, Finite Elements: Theory and Applications, edited by D. L. Dwoyer, M. Y. Hussaini and R. G. Voigt, New York, Springer-Verlag, 1988.
- ↑ B. A. Szabó, I. Babuška: Finite Element Analysis, John Wiley & Sons, ISBN 978-0-471-50273-9, 1991.
- ↑ I. Babuška, B.Q. Guo: The h, p and h-p version of the finite element method: basis theory and applications, Advances in Engineering Software, Volume 15, Issue 3-4, 1992.
- ↑ J.M. Melenk: hp-Finite Element Methods for Singular Perturbations, Springer, 2002
- ↑ C. Schwab: p- and hp- Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics, Oxford University Press, 1998
- ↑ P. Solin: Partial Differential Equations and the Finite Element Method, J. Wiley & Sons, 2005
- ↑ P. Solin, K. Segeth, I. Dolezel: Higher-Order Finite Element Methods, Chapman & Hall/CRC Press, 2003
- ↑ I. Babuska, M. Griebel and J. Pitkaranta, The problem of selecting the shape functions for a p-type finite element, Internat. J. Numer. Methods Engrg. (1989), pp. 1891–1908
- ↑ L. Demkowicz, W. Rachowicz, and Ph. Devloo: A Fully Automatic hp-Adaptivity, Journal of Scientific Computing, 17, Nos 1–3 (2002), 127–155
- ↑ P. Solin, T. Vejchodsky: A Weak Discrete Maximum Principle for hp-FEM, J. Comput. Appl. Math. 209 (2007) 54–65
- ↑ T. Vejchodsky, P. Solin: Discrete Maximum Principle for Higher-Order Finite Elements in 1D, Math. Comput. 76 (2007), 1833–1846
- ↑ L. Demkowicz, J. Kurtz, D. Pardo, W. Rachowicz, M. Paszynski, A. Zdunek: Computing with hp-Adaptive Finite Elements, Chapman & Hall/CRC Press, 2007
- ↑ "Microwave Oven — Hermes Examples Guide".
- ↑ "Microwave Oven — Hermes Examples Guide". hpfem.org. Archived from the original on 7 August 2018. Retrieved 12 January 2022.