मॉडुलन: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Process of varying one or more properties of a periodic waveform}} {{About|the method to imprint data on a carrier used in communications and electrical en...")
 
No edit summary
Line 4: Line 4:
{{Modulation techniques}}
{{Modulation techniques}}
[[File:Modulation categorization.svg|thumb|300px|डेटा और वाहक प्रकारों के आधार पर सिग्नल मॉड्यूलेशन के लिए वर्गीकरण]]
[[File:Modulation categorization.svg|thumb|300px|डेटा और वाहक प्रकारों के आधार पर सिग्नल मॉड्यूलेशन के लिए वर्गीकरण]]
इलेक्ट्रॉनिक्स और दूरसंचार में, मॉडुलन एक आवधिक तरंग के एक या एक से अधिक गुणों को अलग करने की प्रक्रिया है, जिसे ''वाहक संकेत'' कहा जाता है, जिसमें ''मॉड्यूलेशन सिग्नल'' नामक एक अलग संकेत होता है जिसमें आम तौर पर संचारित होने वाली जानकारी होती है। उदाहरण के लिए, मॉड्यूलेशन सिग्नल एक माइक्रोफ़ोन से ध्वनि का प्रतिनिधित्व करने वाला एक ऑडियो सिग्नल हो सकता है, एक वीडियो सिग्नल एक वीडियो कैमरा से चलती छवियों का प्रतिनिधित्व करता है, या एक डिजिटल सिग्नल बाइनरी अंकों के अनुक्रम का प्रतिनिधित्व करता है, एक कंप्यूटर से बिटस्ट्रीम। मॉडुलन सिग्नल की तुलना में वाहक आवृत्ति में अधिक होता है। रेडियो संचार में संग्राहक वाहक को रेडियो तरंग के रूप में अंतरिक्ष के माध्यम से रेडियो रिसीवर तक प्रेषित किया जाता है। एक अन्य उद्देश्य आवृत्ति-विभाजन बहुसंकेतन (एफडीएम) का उपयोग करके एक संचार माध्यम के माध्यम से सूचना के कई चैनलों को प्रसारित करना है। उदाहरण के लिए केबल टेलीविजन में जो एफडीएम का उपयोग करता है, कई वाहक सिग्नल, प्रत्येक एक अलग टेलीविजन चैनल के साथ संशोधित, एक केबल के माध्यम से ग्राहकों तक पहुंचाए जाते हैं। चूंकि प्रत्येक वाहक एक अलग आवृत्ति रखता है, चैनल एक दूसरे के साथ हस्तक्षेप नहीं करते हैं। गंतव्य के अंत में, वाहक संकेत मॉड्यूलेशन सिग्नल असर सूचना निकालने के लिए डिमोड्यूलेशन है।
इलेक्ट्रॉनिक्स और दूरसंचार में, मॉडुलन एक आवधिक तरंग के एक या अधिक गुणों को बदलने की प्रक्रिया है, जिसे वाहक संकेत कहा जाता है, जिसमें एक अलग सिग्नल होता है जिसे मॉड्यूलेशन सिग्नल कहा जाता है जिसमें आम तौर पर संचारित होने वाली जानकारी होती है। उदाहरण के लिए, मॉड्यूलेशन सिग्नल एक माइक्रोफ़ोन से ध्वनि का प्रतिनिधित्व करने वाला एक ऑडियो सिग्नल हो सकता है, एक वीडियो सिग्नल एक वीडियो कैमरा से चलती छवियों का प्रतिनिधित्व करता है, या एक डिजिटल सिग्नल बाइनरी अंकों के अनुक्रम का प्रतिनिधित्व करता है, एक कंप्यूटर से एक बिटस्ट्रीम। मॉडुलन सिग्नल की तुलना में वाहक आवृत्ति में अधिक होता है। रेडियो संचार में संग्राहक वाहक अंतरिक्ष के माध्यम से एक रेडियो तरंग के रूप में एक रेडियो रिसीवर को प्रेषित किया जाता है। एक अन्य उद्देश्य आवृत्ति-विभाजन बहुसंकेतन (एफडीएम) का उपयोग करके एक संचार माध्यम के माध्यम से सूचना के कई चैनलों को प्रसारित करना है। उदाहरण के लिए केबल टेलीविजन में, जो एफडीएम का उपयोग करता है, कई वाहक सिग्नल, प्रत्येक एक अलग टेलीविजन चैनल के साथ संशोधित, एक केबल के माध्यम से ग्राहकों तक पहुंचाए जाते हैं। चूंकि प्रत्येक वाहक एक अलग आवृत्ति रखता है, चैनल एक दूसरे के साथ हस्तक्षेप नहीं करते हैं। गंतव्य के अंत में, वाहक सिग्नल को मॉड्यूलेशन सिग्नल असर वाली जानकारी निकालने के लिए डिमॉड्यूलेट किया जाता है।


एक न्यूनाधिक एक उपकरण या विद्युत परिपथ है जो मॉडुलन करता है। एक डिमोडुलेटर (कभी-कभी ''डिटेक्टर (रेडियो)'') एक सर्किट होता है जो मॉड्यूलेशन के विपरीत, डिमॉड्यूलेशन करता है। एक मॉडेम (मॉड्यूलेटर-डिमोडुलेटर से), द्विदिश संचार में उपयोग किया जाता है, दोनों ऑपरेशन कर सकता है। मॉडुलन सिग्नल द्वारा कब्जा किए गए आवृत्ति बैंड को ''बेसबैंड'' कहा जाता है, जबकि मॉड्यूलेटेड कैरियर द्वारा कब्जा कर लिया गया उच्च आवृत्ति बैंड ''पासबैंड'' कहलाता है।
मॉड्यूलेटर एक उपकरण या परिपथ है जो मॉड्यूलेशन करता है। एक डिमोडुलेटर (कभी-कभी डिटेक्टर) एक परिपथ होता है जो मॉड्यूलेशन के विपरीत, डिमॉड्यूलेशन करता है। एक मॉडेम (मॉड्यूलेटर-डिमोडुलेटर से), द्विदिश संचार में उपयोग किया जाता है, दोनों ऑपरेशन कर सकता है। मॉडुलन सिग्नल द्वारा कब्जा किए गए आवृत्ति बैंड को बेसबैंड कहा जाता है, जबकि मॉड्यूलेटेड वाहक द्वारा कब्जा करके उच्च आवृत्ति बैंड को पासबैंड कहा जाता है।


एनालॉग मॉड्यूलेशन में कैरियर पर एक एनालॉग सिग्नल मॉड्यूलेशन सिग्नल प्रभावित होता है। उदाहरण आयाम मॉडुलन (एएम) हैं जिसमें वाहक तरंग का आयाम (ताकत) मॉड्यूलेशन सिग्नल और आवृत्ति मॉड्यूलेशन (एफएम) द्वारा भिन्न होता है जिसमें वाहक तरंग की आवृत्ति मॉड्यूलेशन सिग्नल द्वारा भिन्न होती है। ये सबसे शुरुआती प्रकार के मॉड्यूलेशन थे, और एएम और एफएम रेडियो प्रसारण में ध्वनि का प्रतिनिधित्व करने वाले ऑडियो सिग्नल को प्रसारित करने के लिए उपयोग किया जाता है। अधिक हाल के सिस्टम डिजिटल मॉड्यूलेशन का उपयोग करते हैं, जो एक डिजिटल सिग्नल को प्रभावित करता है जिसमें बाइनरी अंकों (बिट्स) का एक क्रम होता है, एक बिटस्ट्रीम, वाहक पर, बिट्स को मैप करने के माध्यम से एक असतत वर्णमाला से तत्वों को प्रेषित किया जाता है। इस वर्णमाला में वास्तविक या जटिल संख्याओं, या अनुक्रमों का एक सेट शामिल हो सकता है, जैसे विभिन्न आवृत्तियों के दोलन, तथाकथित फ़्रीक्वेंसी-शिफ्ट कीइंग (FSK) मॉडुलन। एक अधिक जटिल डिजिटल मॉड्यूलेशन विधि जो कई वाहकों को नियोजित करती है, ऑर्थोगोनल फ़्रीक्वेंसी-डिवीजन मल्टीप्लेक्सिंग (OFDM) का उपयोग वाईफाई नेटवर्क, डिजिटल रेडियो स्टेशनों और डिजिटल केबल टेलीविज़न ट्रांसमिशन में किया जाता है।
एनालॉग मॉड्यूलेशन में कैरियर पर एक एनालॉग मॉड्यूलेशन सिग्नल प्रभावित होता है। उदाहरण आयाम मॉड्यूलेशन (एएम) हैं जिसमें वाहक तरंग का आयाम (ताकत) मॉड्यूलेशन सिग्नल और आवृत्ति मॉड्यूलेशन (एफएम) द्वारा भिन्न होता है जिसमें वाहक तरंग की आवृत्ति मॉड्यूलेशन सिग्नल द्वारा भिन्न होती है। ये सबसे शुरुआती प्रकार के मॉड्यूलेशन थे, और AM और FM रेडियो प्रसारण में ध्वनि का प्रतिनिधित्व करने वाले एक ऑडियो सिग्नल को प्रसारित करने के लिए उपयोग किया जाता है। अधिक हाल के सिस्टम डिजिटल मॉड्यूलेशन का उपयोग करते हैं, जो एक डिजिटल सिग्नल को प्रभावित करता है जिसमें बाइनरी अंकों (बिट्स) का एक क्रम होता है, एक बिटस्ट्रीम, वाहक पर बिट्स को मैप करने के माध्यम से एक असतत वर्णमाला से तत्वों को प्रेषित किया जाता है। इस वर्णमाला में वास्तविक या जटिल संख्याओं, या अनुक्रमों का एक सेट शामिल हो सकता है, जैसे विभिन्न आवृत्तियों के दोलन, तथाकथित फ़्रीक्वेंसी-शिफ़्ट कीइंग (एफएसके) मॉडुलन। एक अधिक जटिल डिजिटल मॉड्यूलेशन विधि जो कई वाहकों को नियोजित करती है, ऑर्थोगोनल फ़्रीक्वेंसी-डिवीजन मल्टीप्लेक्सिंग (ओएफडीएम), का उपयोग वाईफाई नेटवर्क, डिजिटल रेडियो स्टेशनों और डिजिटल केबल टेलीविजन ट्रांसमिशन में किया जाता है।


==एनालॉग मॉडुलन विधियाँ==
==एनालॉग मॉडुलन विधियाँ==
Line 14: Line 14:
[[File:Waterfall AM.jpg|thumb|146.52 मेगाहर्ट्ज रेडियो कैरियर का वाटरफॉल प्लॉट, 1,000 हर्ट्ज साइनसॉइड द्वारा आयाम मॉडुलन के साथ। वाहक आवृत्ति से + और - 1 kHz पर दो मजबूत साइडबैंड दिखाए गए हैं।]]
[[File:Waterfall AM.jpg|thumb|146.52 मेगाहर्ट्ज रेडियो कैरियर का वाटरफॉल प्लॉट, 1,000 हर्ट्ज साइनसॉइड द्वारा आयाम मॉडुलन के साथ। वाहक आवृत्ति से + और - 1 kHz पर दो मजबूत साइडबैंड दिखाए गए हैं।]]
[[File:Waterfall FM.jpg|thumb|एक वाहक, आवृत्ति एक 1,000 हर्ट्ज साइनसॉइड द्वारा संशोधित। मॉडुलन सूचकांक को लगभग 2.4 पर समायोजित किया गया है, इसलिए वाहक आवृत्ति का आयाम छोटा है। कई मजबूत साइडबैंड स्पष्ट हैं; सिद्धांत रूप में FM में एक अनंत संख्या उत्पन्न होती है लेकिन उच्च-क्रम वाले साइडबैंड नगण्य परिमाण के होते हैं।]]
[[File:Waterfall FM.jpg|thumb|एक वाहक, आवृत्ति एक 1,000 हर्ट्ज साइनसॉइड द्वारा संशोधित। मॉडुलन सूचकांक को लगभग 2.4 पर समायोजित किया गया है, इसलिए वाहक आवृत्ति का आयाम छोटा है। कई मजबूत साइडबैंड स्पष्ट हैं; सिद्धांत रूप में FM में एक अनंत संख्या उत्पन्न होती है लेकिन उच्च-क्रम वाले साइडबैंड नगण्य परिमाण के होते हैं।]]
एनालॉग सिग्नल मॉड्यूलेशन में, एनालॉग इंफॉर्मेशन सिग्नल के जवाब में मॉड्यूलेशन को लगातार लागू किया जाता है। सामान्य एनालॉग मॉड्यूलेशन तकनीकों में शामिल हैं:
एनालॉग मॉड्यूलेशन में, एनालॉग सूचना संकेत के जवाब में मॉड्यूलेशन लगातार लागू किया जाता है। सामान्य एनालॉग मॉड्यूलेशन तकनीकों में शामिल हैं:
* आयाम मॉडुलन (एएम) (यहां वाहक सिग्नल का आयाम मॉड्यूलेटिंग सिग्नल के तात्कालिक आयाम के अनुसार भिन्न होता है)
* आयाम मॉड्यूलेशन (एएम) (यहां वाहक सिग्नल का आयाम मॉड्यूलेटिंग सिग्नल के तात्कालिक आयाम के अनुसार भिन्न होता है)
** डबल-साइडबैंड मॉड्यूलेशन (DSB)
** डबल-साइडबैंड मॉड्यूलेशन (डीएसबी)
*** वाहक (डीएसबी-डब्ल्यूसी) के साथ डबल-साइडबैंड मॉड्यूलेशन (एएम रेडियो प्रसारण बैंड पर प्रयुक्त)
*** कैरियर के साथ डबल-साइडबैंड मॉड्यूलेशन (डीएसबी-डब्ल्यूसी) (ए एम रेडियो प्रसारण बैंड पर प्रयुक्त)
*** डबल-साइडबैंड सप्रेस्ड-कैरियर ट्रांसमिशन (DSB-SC)
*** डबल-साइडबैंड सप्रेस्ड-कैरियर ट्रांसमिशन (DSB-SC)
*** डबल-साइडबैंड कम वाहक संचरण (डीएसबी-आरसी)
*** डबल-साइडबैंड कम वाहक संचरण (डीएसबी-आरसी)
Line 26: Line 26:
** चतुर्भुज आयाम मॉडुलन (क्यूएएम)
** चतुर्भुज आयाम मॉडुलन (क्यूएएम)
* कोण मॉडुलन, जो लगभग स्थिर लिफाफा है
* कोण मॉडुलन, जो लगभग स्थिर लिफाफा है
** फ़्रीक्वेंसी मॉड्यूलेशन (FM) (यहाँ वाहक सिग्नल की आवृत्ति मॉड्यूलेटिंग सिग्नल के तात्कालिक आयाम के अनुसार भिन्न होती है)
** फ़्रीक्वेंसी मॉड्यूलेशन (यहाँ वाहक सिग्नल की आवृत्ति मॉड्यूलेटिंग सिग्नल के तात्कालिक आयाम के अनुसार भिन्न होती है)
** फेज मॉडुलन (पीएम) (यहां वाहक सिग्नल की फेज शिफ्ट मॉड्यूलेटिंग सिग्नल के तात्कालिक आयाम के अनुसार भिन्न होती है)
** फेज मॉडुलन (पीएम) (यहां वाहक सिग्नल की फेज शिफ्ट मॉड्यूलेटिंग सिग्नल के तात्कालिक आयाम के अनुसार भिन्न होती है)
** ट्रांसपोज़िशनल मॉड्यूलेशन (टीएम), जिसमें तरंग विभक्ति को संशोधित किया जाता है जिसके परिणामस्वरूप एक संकेत होता है जहां मॉड्यूलेशन प्रक्रिया में प्रत्येक तिमाही चक्र को स्थानांतरित किया जाता है। TM एक छद्म-एनालॉग मॉड्यूलेशन (AM) है। जहां एक AM वाहक एक चरण चर चरण f(ǿ) भी वहन करता है। टीएम f(AM,ǿ) है
** ट्रांसपोज़िशनल मॉड्यूलेशन (टीएम), जिसमें तरंग विभक्ति को संशोधित किया जाता है जिसके परिणामस्वरूप एक संकेत होता है जहां मॉड्यूलेशन प्रक्रिया में प्रत्येक तिमाही चक्र को स्थानांतरित किया जाता है। टीएम एक छद्म-एनालॉग मॉड्यूलेशन है। जहां एक AM वाहक एक चरण चर चरण f(ǿ) भी वहन करता है। यहाँ टीएम f(AM,ǿ) है।
{{Clear}}
 
 
==डिजिटल मॉडुलन विधियाँ==
==डिजिटल मॉडुलन विधियाँ==
<!-- This section is linked from [[Phase-shift keying]] -->
डिजिटल मॉड्यूलेशन में, एक एनालॉग कैरियर सिग्नल को असतत सिग्नल द्वारा संशोधित किया जाता है। डिजिटल मॉड्यूलेशन विधियों को डिजिटल-से-एनालॉग रूपांतरण और संबंधित डिमॉड्यूलेशन या डिटेक्शन को एनालॉग-टू-डिजिटल रूपांतरण के रूप में माना जा सकता है। वाहक संकेत में परिवर्तन एम वैकल्पिक प्रतीकों (मॉड्यूलेशन वर्णमाला) की एक सीमित संख्या से चुने जाते हैं।
डिजिटल डेटा मॉड्यूलेशन में, एक एनालॉग कैरियर सिग्नल को असतत सिग्नल द्वारा संशोधित किया जाता है। डिजिटल मॉडुलन विधियों को डिजिटल-से-एनालॉग रूपांतरण और अनुरूप-से-डिजिटल रूपांतरण के रूप में संबंधित डिमॉड्यूलेशन या पहचान के रूप में माना जा सकता है। वाहक संकेत में परिवर्तन एम वैकल्पिक प्रतीकों (मॉड्यूलेशन वर्णमाला) की एक सीमित संख्या से चुना जाता है।


[[File:baud.svg|thumb|right|200px|4 बॉड की योजनाबद्ध, 8 बिट/एस डेटा लिंक जिसमें मनमाने ढंग से चुने गए मान शामिल हैं]]
[[File:baud.svg|thumb|right|200px|4 बॉड की योजनाबद्ध, 8 बिट/एस डेटा लिंक जिसमें मनमाने ढंग से चुने गए मान शामिल हैं]]
Line 44: Line 40:
सबसे मौलिक डिजिटल मॉडुलन तकनीक कुंजीयन (दूरसंचार) पर आधारित हैं:
सबसे मौलिक डिजिटल मॉडुलन तकनीक कुंजीयन (दूरसंचार) पर आधारित हैं:
* चरण-शिफ्ट कुंजीयन | पीएसके (चरण-शिफ्ट कुंजीयन): चरणों की एक सीमित संख्या का उपयोग किया जाता है।
* चरण-शिफ्ट कुंजीयन | पीएसके (चरण-शिफ्ट कुंजीयन): चरणों की एक सीमित संख्या का उपयोग किया जाता है।
* फ़्रीक्वेंसी-शिफ़्ट कीइंग|FSK (फ़्रीक्वेंसी-शिफ़्ट कीइंग): फ़्रीक्वेंसी की एक सीमित संख्या का उपयोग किया जाता है।
* फ़्रीक्वेंसी-शिफ़्ट कीइंग|एफएसके (फ़्रीक्वेंसी-शिफ़्ट कीइंग): फ़्रीक्वेंसी की एक सीमित संख्या का उपयोग किया जाता है।
* आयाम-शिफ्ट कुंजीयन | ASK (आयाम-शिफ्ट कुंजीयन): आयामों की एक सीमित संख्या का उपयोग किया जाता है।
* आयाम-शिफ्ट कुंजीयन | ASK (आयाम-शिफ्ट कुंजीयन): आयामों की एक सीमित संख्या का उपयोग किया जाता है।
* चतुर्भुज आयाम मॉडुलन | QAM (चतुर्भुज आयाम मॉडुलन): कम से कम दो चरणों की एक सीमित संख्या और कम से कम दो आयामों का उपयोग किया जाता है।
* चतुर्भुज आयाम मॉडुलन | क्यूएएम (चतुर्भुज आयाम मॉडुलन): कम से कम दो चरणों की एक सीमित संख्या और कम से कम दो आयामों का उपयोग किया जाता है।


QAM में, एक इन-फेज सिग्नल (या I, एक उदाहरण कोसाइन वेवफॉर्म के साथ) और एक क्वाड्रेचर फेज सिग्नल (या Q, एक उदाहरण के साथ साइन वेव है) आयाम की एक सीमित संख्या के साथ संशोधित आयाम हैं और फिर संक्षेप में हैं। इसे दो-चैनल प्रणाली के रूप में देखा जा सकता है, प्रत्येक चैनल ASK का उपयोग करता है। परिणामी संकेत पीएसके और एएसके के संयोजन के बराबर है।
क्यूएएम में, एक इन-फेज सिग्नल (या I, एक उदाहरण कोसाइन तरंगफॉर्म के साथ) और एक क्वाड्रेचर फेज सिग्नल (या Q, एक उदाहरण के साथ साइन तरंग है) आयाम की एक सीमित संख्या के साथ संशोधित आयाम हैं और फिर संक्षेप में हैं। इसे दो-चैनल प्रणाली के रूप में देखा जा सकता है, प्रत्येक चैनल ASK का उपयोग करता है। परिणामी संकेत पीएसके और एएसके के संयोजन के बराबर है।


उपरोक्त सभी विधियों में, इन चरणों, आवृत्तियों या आयामों में से प्रत्येक को बाइनरी अंक प्रणाली बिट्स का एक अनूठा पैटर्न सौंपा गया है। आमतौर पर, प्रत्येक चरण, आवृत्ति या आयाम समान संख्या में बिट्स को एन्कोड करता है। बिट्स की इस संख्या में वह प्रतीक शामिल होता है जो विशेष चरण, आवृत्ति या आयाम द्वारा दर्शाया जाता है।
उपरोक्त सभी विधियों में, इन चरणों, आवृत्तियों या आयामों में से प्रत्येक को बाइनरी अंक प्रणाली बिट्स का एक अनूठा पैटर्न सौंपा गया है। सामान्यतः पर, प्रत्येक चरण, आवृत्ति या आयाम समान संख्या में बिट्स को एन्कोड करता है। बिट्स की इस संख्या में वह प्रतीक शामिल होता है जो विशेष चरण, आवृत्ति या आयाम द्वारा दर्शाया जाता है।


यदि वर्णमाला में होता है <math>M = 2^N </math> वैकल्पिक प्रतीकों, प्रत्येक प्रतीक एन बिट्स से युक्त एक संदेश का प्रतिनिधित्व करता है। यदि प्रतीक दर (जिसे बॉड भी कहा जाता है) है <math>f_{S}</math> प्रतीक/सेकंड (या बॉड), डेटा दर है <math>N f_{S}</math> बिट/सेकंड।
यदि वर्णमाला में होता है <math>M = 2^N </math> वैकल्पिक प्रतीकों, प्रत्येक प्रतीक एन बिट्स से युक्त एक संदेश का प्रतिनिधित्व करता है। यदि प्रतीक दर (जिसे बॉड भी कहा जाता है) है <math>f_{S}</math> प्रतीक/सेकंड (या बॉड), डेटा दर है <math>N f_{S}</math> बिट/सेकंड।
Line 64: Line 60:
# आने वाले डेटा बिट्स को कोडवर्ड में समूहित करें, प्रत्येक प्रतीक के लिए एक जिसे प्रेषित किया जाएगा।
# आने वाले डेटा बिट्स को कोडवर्ड में समूहित करें, प्रत्येक प्रतीक के लिए एक जिसे प्रेषित किया जाएगा।
# कोडवर्ड को विशेषताओं के लिए मैप करें, उदाहरण के लिए, I और Q सिग्नल के आयाम (समतुल्य कम पास सिग्नल), या आवृत्ति या चरण मान।
# कोडवर्ड को विशेषताओं के लिए मैप करें, उदाहरण के लिए, I और Q सिग्नल के आयाम (समतुल्य कम पास सिग्नल), या आवृत्ति या चरण मान।
# बैंडविड्थ को सीमित करने के लिए पल्स शेपिंग या कुछ अन्य फ़िल्टरिंग को अनुकूलित करें और समान रूप से कम पास सिग्नल के स्पेक्ट्रम का निर्माण करें, आमतौर पर डिजिटल सिग्नल प्रोसेसिंग का उपयोग करते हुए।
# बैंडविड्थ को सीमित करने के लिए पल्स शेपिंग या कुछ अन्य फ़िल्टरिंग को अनुकूलित करें और समान रूप से कम पास सिग्नल के स्पेक्ट्रम का निर्माण करें, सामान्यतः पर डिजिटल सिग्नल प्रोसेसिंग का उपयोग करते हुए।
# I और Q संकेतों के डिजिटल से एनालॉग रूपांतरण (DAC) का प्रदर्शन करें (क्योंकि आज से उपरोक्त सभी सामान्य रूप से डिजिटल सिग्नल प्रोसेसिंग, DSP का उपयोग करके प्राप्त किए जाते हैं)।
# I और Q संकेतों के डिजिटल से एनालॉग रूपांतरण (DAC) का प्रदर्शन करें (क्योंकि आज से उपरोक्त सभी सामान्य रूप से डिजिटल सिग्नल प्रोसेसिंग, DSP का उपयोग करके प्राप्त किए जाते हैं)।
# एक उच्च-आवृत्ति साइन वाहक तरंग उत्पन्न करें, और शायद एक कोसाइन क्वाडरेचर घटक भी। मॉड्यूलेशन को पूरा करें, उदाहरण के लिए साइन और कोसाइन वेवफॉर्म को I और Q सिग्नल से गुणा करके, जिसके परिणामस्वरूप समकक्ष लो पास सिग्नल आवृत्ति को मॉड्यूटेड पासबैंड सिग्नल या आरएफ सिग्नल में स्थानांतरित कर दिया जाता है। कभी-कभी यह डीएसपी तकनीक का उपयोग करके प्राप्त किया जाता है, उदाहरण के लिए एनालॉग सिग्नल प्रोसेसिंग के बजाय एक तरंग तालिका का उपयोग करके प्रत्यक्ष डिजिटल सिंथेसाइज़र। उस स्थिति में, इस चरण के बाद उपरोक्त डीएसी चरण किया जाना चाहिए।
# एक उच्च-आवृत्ति साइन वाहक तरंग उत्पन्न करें, और शायद एक कोसाइन क्वाडरेचर घटक भी। मॉड्यूलेशन को पूरा करें, उदाहरण के लिए साइन और कोसाइन तरंगफॉर्म को I और Q सिग्नल से गुणा करके, जिसके परिणामस्वरूप समकक्ष लो पास सिग्नल आवृत्ति को मॉड्यूटेड पासबैंड सिग्नल या आरएफ सिग्नल में स्थानांतरित कर दिया जाता है। कभी-कभी यह डीएसपी तकनीक का उपयोग करके प्राप्त किया जाता है, उदाहरण के लिए एनालॉग सिग्नल प्रोसेसिंग के बजाय एक तरंग तालिका का उपयोग करके प्रत्यक्ष डिजिटल सिंथेसाइज़र। उस स्थिति में, इस चरण के बाद उपरोक्त डीएसी चरण किया जाना चाहिए।
# हार्मोनिक विरूपण और आवधिक स्पेक्ट्रम से बचने के लिए प्रवर्धन और एनालॉग बैंडपास फ़िल्टरिंग।
# हार्मोनिक विरूपण और आवधिक स्पेक्ट्रम से बचने के लिए प्रवर्धन और एनालॉग बैंडपास फ़िल्टरिंग।


रिसीवर की तरफ, डेमोडुलेटर आमतौर पर प्रदर्शन करता है:
रिसीवर की तरफ, डेमोडुलेटर सामान्यतः पर प्रदर्शन करता है:
# बैंडपास फ़िल्टरिंग।
# बैंडपास फ़िल्टरिंग।
# स्वचालित लाभ नियंत्रण, एजीसी (क्षीणन के लिए क्षतिपूर्ति करने के लिए, उदाहरण के लिए लुप्त होती)।
# स्वचालित लाभ नियंत्रण, एजीसी (क्षीणन के लिए क्षतिपूर्ति करने के लिए, उदाहरण के लिए लुप्त होती)।
# आरएफ सिग्नल को समतुल्य बेसबैंड I और Q सिग्नल में या एक इंटरमीडिएट फ़्रीक्वेंसी (IF) सिग्नल में स्थानांतरित करना, RF सिग्नल को स्थानीय ऑसिलेटर साइन वेव और कोसाइन वेव फ़्रीक्वेंसी से गुणा करके (सुपरहीटरोडाइन रिसीवर सिद्धांत देखें)।
# आरएफ सिग्नल को समतुल्य बेसबैंड I और Q सिग्नल में या एक इंटरमीडिएट फ़्रीक्वेंसी (IF) सिग्नल में स्थानांतरित करना, RF सिग्नल को स्थानीय ऑसिलेटर साइन तरंग और कोसाइन तरंग फ़्रीक्वेंसी से गुणा करके (सुपरहीटरोडाइन रिसीवर सिद्धांत देखें)।
# नमूनाकरण और एनालॉग-टू-डिजिटल रूपांतरण (एडीसी) (कभी-कभी उपरोक्त बिंदु से पहले या इसके बजाय, उदाहरण के लिए अंडरसैंपलिंग के माध्यम से)।
# नमूनाकरण और एनालॉग-टू-डिजिटल रूपांतरण (एडीसी) (कभी-कभी उपरोक्त बिंदु से पहले या इसके बजाय, उदाहरण के लिए अंडरसैंपलिंग के माध्यम से)।
# इक्वलाइज़ेशन फ़िल्टरिंग, उदाहरण के लिए, एक मिलान फ़िल्टर, मल्टीपाथ प्रसार के लिए मुआवजा, समय प्रसार, चरण विरूपण और आवृत्ति चयनात्मक लुप्त होती, इंटरसिम्बल हस्तक्षेप और प्रतीक विरूपण से बचने के लिए।
# इक्वलाइज़ेशन फ़िल्टरिंग, उदाहरण के लिए, एक मिलान फ़िल्टर, मल्टीपाथ प्रसार के लिए मुआवजा, समय प्रसार, चरण विरूपण और आवृत्ति चयनात्मक लुप्त होती, इंटरसिम्बल हस्तक्षेप और प्रतीक विरूपण से बचने के लिए।
Line 90: Line 86:
** बाइनरी पीएसके (बीपीएसके), एम = 2 प्रतीकों का उपयोग कर
** बाइनरी पीएसके (बीपीएसके), एम = 2 प्रतीकों का उपयोग कर
** क्वाडरेचर पीएसके (क्यूपीएसके), एम = 4 प्रतीकों का उपयोग कर
** क्वाडरेचर पीएसके (क्यूपीएसके), एम = 4 प्रतीकों का उपयोग कर
** 8PSK, M=8 प्रतीकों का उपयोग करते हुए
** 8पीएसके, एम=8 प्रतीकों का उपयोग करते हुए
** 16PSK, M=16 प्रतीकों का उपयोग करके
** 16पीएसके, एम=16 प्रतीकों का उपयोग करके
** डिफरेंशियल पीएसके (डीपीएसके)
** डिफरेंशियल पीएसके (डीपीएसके)
** डिफरेंशियल क्यूपीएसके (डीक्यूपीएसके)
** डिफरेंशियल क्यूपीएसके (डीक्यूपीएसके)
** ऑफसेट QPSK (OQPSK)
** ऑफसेट क्यूपीएसके (ओक्यूपीएसके)
**π/4–क्यूपीएसके
**π/4–क्यूपीएसके
* फ़्रीक्वेंसी-शिफ्ट कुंजीयन (FSK)
* फ़्रीक्वेंसी-शिफ्ट कुंजीयन (एफएसके)
** ऑडियो आवृत्ति-शिफ्ट कुंजीयन (AFSK)
** ऑडियो आवृत्ति-शिफ्ट कुंजीयन (ए-एफएसके)
** एकाधिक आवृत्ति-शिफ्ट कुंजीयन | बहु-आवृत्ति शिफ्ट कुंजीयन (एम-आरी एफएसके या एमएफएसके)
** एकाधिक आवृत्ति-शिफ्ट कुंजीयन | बहु-आवृत्ति शिफ्ट कुंजीयन (एम-आरी एफएसके या एमएफएसके)
** डुअल-टोन मल्टी-फ़्रीक्वेंसी (DTMF)
** डुअल-टोन मल्टी-फ़्रीक्वेंसी (डीटीएफएम)
* आयाम-शिफ्ट कुंजीयन (एएसके)
* आयाम-शिफ्ट कुंजीयन (एएसके)
* ऑन-ऑफ कुंजीयन (OOK), सबसे आम आस्क फॉर्म
* ऑन-ऑफ कुंजीयन (ओओके), सबसे आम आस्क फॉर्म
** एम-आर्य वेस्टीजियल साइडबैंड मॉड्यूलेशन, उदाहरण के लिए 8वीएसबी
** एम-आर्य वेस्टीजियल साइडबैंड मॉड्यूलेशन, उदाहरण के लिए 8वीएसबी
* चतुर्भुज आयाम मॉडुलन (क्यूएएम), पीएसके और एएसके का संयोजन
* चतुर्भुज आयाम मॉडुलन (क्यूएएम), पीएसके और एएसके का संयोजन
** ध्रुवीय मॉडुलन जैसे QAM PSK और ASK का संयोजन{{Citation needed|date=October 2008}}
** ध्रुवीय मॉडुलन जैसे क्यूएएम पीएसके और एएसके का संयोजन{{Citation needed|date=October 2008}}
* सतत चरण मॉडुलन (सीपीएम) विधियां
* सतत चरण मॉडुलन (सीपीएम) विधियां
** न्यूनतम-शिफ्ट कुंजीयन (एमएसके)
** न्यूनतम-शिफ्ट कुंजीयन (एमएसके)
** गाऊसी न्यूनतम-शिफ्ट कुंजीयन (GMSK)
** गाऊसी न्यूनतम-शिफ्ट कुंजीयन (जीएमएसके)
** सतत-चरण आवृत्ति-शिफ्ट कुंजीयन (CPFSK)
** सतत-चरण आवृत्ति-शिफ्ट कुंजीयन (सीपीएफएसके)
* ऑर्थोगोनल फ़्रीक्वेंसी-डिवीज़न मल्टीप्लेक्सिंग (OFDM) मॉड्यूलेशन
* ऑर्थोगोनल फ़्रीक्वेंसी-डिवीज़न मल्टीप्लेक्सिंग (ओएफडीएम) मॉड्यूलेशन
** असतत मल्टीटोन मॉडुलन (डीएमटी), अनुकूली मॉडुलन और बिट-लोडिंग सहित
** असतत मल्टीटोन मॉडुलन (डीएमटी), अनुकूली मॉडुलन और बिट-लोडिंग सहित
* वेवलेट मॉड्यूलेशन
* तरंगलेट मॉड्यूलेशन
* ट्रेलिस कोडेड मॉड्यूलेशन (TCM), जिसे ट्रेलिस मॉड्यूलेशन के रूप में भी जाना जाता है
* ट्रेलिस कोडेड मॉड्यूलेशन (टीसीेम), जिसे ट्रेलिस मॉड्यूलेशन के रूप में भी जाना जाता है
* स्प्रेड-स्पेक्ट्रम तकनीक
* स्प्रेड-स्पेक्ट्रम तकनीक
** डायरेक्ट-सीक्वेंस स्प्रेड स्पेक्ट्रम (DSSS)
** डायरेक्ट-सीक्वेंस स्प्रेड स्पेक्ट्रम (डीएसएसएस)
** IEEE 802.15.4a के अनुसार चिरप स्प्रेड स्पेक्ट्रम (CSS) CSS छद्म-स्टोकेस्टिक कोडिंग का उपयोग करता है
** आईईईई 802.15.4a के अनुसार चिरप स्प्रेड स्पेक्ट्रम सीएसएस छद्म-स्टोकेस्टिक कोडिंग का उपयोग करता है
** फ़्रीक्वेंसी-होपिंग स्प्रेड स्पेक्ट्रम (FHSS) चैनल रिलीज़ के लिए एक विशेष योजना लागू करता है
** फ़्रीक्वेंसी-होपिंग स्प्रेड स्पेक्ट्रम (एफएचएसएस) चैनल रिलीज़ के लिए एक विशेष योजना लागू करता है


न्यूनतम-शिफ्ट कुंजीयन और GMSK निरंतर चरण मॉडुलन के विशेष मामले हैं। दरअसल, एमएसके सीपीएम के उप-परिवार का एक विशेष मामला है जिसे निरंतर-चरण आवृत्ति-शिफ्ट कुंजीयन (सीपीएफएसके) के रूप में जाना जाता है, जिसे एक-प्रतीक-समय अवधि के आयताकार आवृत्ति नाड़ी (यानी एक रैखिक रूप से बढ़ती चरण नाड़ी) द्वारा परिभाषित किया जाता है ( कुल प्रतिक्रिया संकेतन)।
न्यूनतम-शिफ्ट कुंजीयन और जीएमएसके निरंतर चरण मॉडुलन के विशेष मामले हैं। दरअसल, एमएसके सीपीएम के उप-परिवार का एक विशेष मामला है जिसे निरंतर-चरण आवृत्ति-शिफ्ट कुंजीयन (सीपीएफएसके) के रूप में जाना जाता है, जिसे एक-प्रतीक-समय अवधि के आयताकार आवृत्ति नाड़ी (यानी एक रैखिक रूप से बढ़ती चरण नाड़ी) द्वारा परिभाषित किया जाता है ( कुल प्रतिक्रिया संकेतन)।


ऑर्थोगोनल फ़्रीक्वेंसी-डिवीज़न मल्टीप्लेक्सिंग फ़्रीक्वेंसी-डिवीज़न मल्टीप्लेक्सिंग (FDM) के विचार पर आधारित है, लेकिन मल्टीप्लेक्सेड स्ट्रीम एक ही मूल स्ट्रीम के सभी भाग हैं। बिट स्ट्रीम को कई समानांतर डेटा स्ट्रीम में विभाजित किया जाता है, प्रत्येक को कुछ पारंपरिक डिजिटल मॉड्यूलेशन स्कीम का उपयोग करके अपने स्वयं के उप-वाहक पर स्थानांतरित किया जाता है। मॉड्युलेटेड सब-कैरियर्स को OFDM सिग्नल बनाने के लिए सम्‍मिलित किया जाता है। यह विभाजन और पुनर्संयोजन चैनल की खराबी से निपटने में मदद करता है। OFDM को मल्टीप्लेक्स तकनीक के बजाय एक मॉडुलन तकनीक के रूप में माना जाता है क्योंकि यह तथाकथित OFDM प्रतीकों के एक अनुक्रम का उपयोग करके एक संचार चैनल पर एक बिट स्ट्रीम को स्थानांतरित करता है। ओएफडीएम को ऑर्थोगोनल फ़्रीक्वेंसी-डिवीज़न मल्टीपल एक्सेस (ओएफडीएमए) और मल्टी-कैरियर कोड-डिवीज़न मल्टीपल एक्सेस (एमसी-सीडीएमए) योजनाओं में मल्टी-यूज़र चैनल एक्सेस मेथड तक बढ़ाया जा सकता है, जिससे कई उपयोगकर्ता अलग-अलग देकर एक ही भौतिक माध्यम साझा कर सकते हैं। उप-वाहक या विभिन्न उपयोगकर्ताओं के लिए कोड फैलाना।
ऑर्थोगोनल फ़्रीक्वेंसी-डिवीज़न मल्टीप्लेक्सिंग फ़्रीक्वेंसी-डिवीज़न मल्टीप्लेक्सिंग (एफडीेएम) के विचार पर आधारित है, लेकिन मल्टीप्लेक्सेड स्ट्रीम एक ही मूल स्ट्रीम के सभी भाग हैं। बिट स्ट्रीम को कई समानांतर डेटा स्ट्रीम में विभाजित किया जाता है, प्रत्येक को कुछ पारंपरिक डिजिटल मॉड्यूलेशन स्कीम का उपयोग करके अपने स्वयं के उप-वाहक पर स्थानांतरित किया जाता है। मॉड्युलेटेड सब-कैरियर्स को ओएफडीएम सिग्नल बनाने के लिए सम्‍मिलित किया जाता है। यह विभाजन और पुनर्संयोजन चैनल की खराबी से निपटने में मदद करता है। ओएफडीएम को मल्टीप्लेक्स तकनीक के बजाय एक मॉडुलन तकनीक के रूप में माना जाता है क्योंकि यह तथाकथित ओएफडीएम प्रतीकों के एक अनुक्रम का उपयोग करके एक संचार चैनल पर एक बिट स्ट्रीम को स्थानांतरित करता है। ओएफडीएम को ऑर्थोगोनल फ़्रीक्वेंसी-डिवीज़न मल्टीपल एक्सेस (ओएफडीएमए) और मल्टी-कैरियर कोड-डिवीज़न मल्टीपल एक्सेस (एमसी-सीडीएमए) योजनाओं में मल्टी-यूज़र चैनल एक्सेस मेथड तक बढ़ाया जा सकता है, जिससे कई उपयोगकर्ता अलग-अलग देकर एक ही भौतिक माध्यम साझा कर सकते हैं। उप-वाहक या विभिन्न उपयोगकर्ताओं के लिए कोड फैलाना।


दो प्रकार के आरएफ पावर एम्पलीफायर में से, स्विचिंग एम्पलीफायरों (कक्षा डी एम्पलीफायरों) की लागत कम होती है और समान आउटपुट पावर के रैखिक एम्पलीफायरों की तुलना में कम बैटरी पावर का उपयोग करते हैं। हालांकि, वे केवल अपेक्षाकृत स्थिर-आयाम-मॉड्यूलेशन सिग्नल जैसे कोण मॉड्यूलेशन (एफएसके या पीएसके) और कोड-डिवीजन मल्टीपल एक्सेस के साथ काम करते हैं, लेकिन क्यूएएम और ओएफडीएम के साथ नहीं। फिर भी, भले ही स्विचिंग एम्पलीफायर सामान्य QAM तारामंडल के लिए पूरी तरह से अनुपयुक्त हैं, अक्सर QAM मॉडुलन सिद्धांत का उपयोग इन FM और अन्य तरंगों के साथ स्विचिंग एम्पलीफायरों को चलाने के लिए किया जाता है, और कभी-कभी QAM डिमोडुलेटर का उपयोग इन स्विचिंग एम्पलीफायरों द्वारा लगाए गए संकेतों को प्राप्त करने के लिए किया जाता है।
दो प्रकार के आरएफ पावर एम्पलीफायर में से, स्विचिंग एम्पलीफायर (कक्षा डी एम्पलीफायर) की लागत कम होती है और समान आउटपुट पावर के रैखिक एम्पलीफायरों की तुलना में कम बैटरी पावर का उपयोग करते हैं। हालांकि, वे केवल अपेक्षाकृत स्थिर-आयाम-मॉड्यूलेशन संकेतों जैसे कोण मॉड्यूलेशन (एफएसके या पीएसके) और सीडीएमए के साथ काम करते हैं, लेकिन क्यूएएम और ओएफडीएम के साथ नहीं। फिर भी, भले ही स्विचिंग एम्पलीफायर सामान्य क्यूएएम तारामंडल के लिए पूरी तरह से अनुपयुक्त हैं, अक्सर क्यूएएम मॉडुलन सिद्धांत का उपयोग इन FM और अन्य तरंगों के साथ स्विचिंग एम्पलीफायरों को चलाने के लिए किया जाता है, और कभी-कभी क्यूएएम डिमोडुलेटर का उपयोग इन स्विचिंग एम्पलीफायरों द्वारा लगाए गए संकेतों को प्राप्त करने के लिए किया जाता है।


===स्वचालित डिजिटल मॉडुलन पहचान (एडीएमआर)===
===स्वचालित डिजिटल मॉडुलन पहचान (एडीएमआर)===
बुद्धिमान संचार प्रणालियों में स्वचालित डिजिटल मॉड्यूलेशन मान्यता सॉफ्टवेयर-परिभाषित रेडियो और संज्ञानात्मक रेडियो में सबसे महत्वपूर्ण मुद्दों में से एक है। बुद्धिमान रिसीवरों के बढ़ते विस्तार के अनुसार, दूरसंचार प्रणालियों और कंप्यूटर इंजीनियरिंग में स्वचालित मॉड्यूलेशन मान्यता एक चुनौतीपूर्ण विषय बन जाता है। ऐसी प्रणालियों में कई नागरिक और सैन्य अनुप्रयोग हैं। इसके अलावा, मॉडुलन प्रकार की अंधा पहचान वाणिज्यिक प्रणालियों में एक महत्वपूर्ण समस्या है, विशेष रूप से सॉफ्टवेयर-परिभाषित रेडियो में। आमतौर पर ऐसी प्रणालियों में, सिस्टम कॉन्फ़िगरेशन के लिए कुछ अतिरिक्त जानकारी होती है, लेकिन बुद्धिमान रिसीवरों में अंधा दृष्टिकोण को देखते हुए, हम सूचना अधिभार को कम कर सकते हैं और संचरण प्रदर्शन को बढ़ा सकते हैं। जाहिर है, प्रेषित डेटा और रिसीवर पर कई अज्ञात मापदंडों, जैसे सिग्नल पावर, वाहक आवृत्ति और चरण ऑफसेट, समय की जानकारी, आदि के ज्ञान के बिना, मॉड्यूलेशन की अंधा पहचान काफी कठिन हो जाती है। मल्टीपाथ फ़ेडिंग, फ़्रीक्वेंसी-चयनात्मक और समय-भिन्न चैनलों के साथ वास्तविक दुनिया के परिदृश्यों में यह और भी चुनौतीपूर्ण हो जाता है।<ref>
बुद्धिमान संचार प्रणालियों में स्वचालित डिजिटल मॉड्यूलेशन मान्यता सॉफ्टवेयर-परिभाषित रेडियो और संज्ञानात्मक रेडियो में सबसे महत्वपूर्ण मुद्दों में से एक है। बुद्धिमान रिसीवरों के बढ़ते विस्तार के अनुसार, दूरसंचार प्रणालियों और कंप्यूटर अभियांत्रिकी में स्वचालित मॉड्यूलेशन मान्यता एक चुनौतीपूर्ण विषय बन जाता है। ऐसी प्रणालियों में कई नागरिक और सैन्य अनुप्रयोग हैं। इसके अलावा, मॉडुलन प्रकार की अंधा पहचान वाणिज्यिक प्रणालियों में एक महत्वपूर्ण समस्या है, विशेष रूप से सॉफ्टवेयर-परिभाषित रेडियो में। सामान्यतः पर ऐसी प्रणालियों में, सिस्टम कॉन्फ़िगरेशन के लिए कुछ अतिरिक्त जानकारी होती है, लेकिन बुद्धिमान रिसीवरों में अंधा दृष्टिकोण को देखते हुए, हम सूचना अधिभार को कम कर सकते हैं और संचरण प्रदर्शन को बढ़ा सकते हैं। जाहिर है, प्रेषित डेटा और रिसीवर पर कई अज्ञात मापदंडों, जैसे सिग्नल पावर, वाहक आवृत्ति और चरण ऑफसेट, समय की जानकारी, आदि के ज्ञान के बिना, मॉड्यूलेशन की अंधा पहचान काफी कठिन हो जाती है। मल्टीपाथ फ़ेडिंग, आवृत्ति-चयनात्मक और समय-भिन्न चैनलों के साथ वास्तविक दुनिया के परिदृश्यों में यह और भी चुनौतीपूर्ण हो जाता है।<ref>
{{cite journal
{{cite journal
  | title = Survey of automatic modulation classification techniques: classical approaches and new trends
  | title = Survey of automatic modulation classification techniques: classical approaches and new trends
Line 145: Line 141:


== पल्स मॉडुलन विधियाँ ==
== पल्स मॉडुलन विधियाँ ==
पल्स मॉड्यूलेशन योजनाओं का उद्देश्य एक नैरोबैंड एनालॉग सिग्नल को एक एनालॉग बेसबैंड चैनल पर एक पल्स वेव को संशोधित करके दो-स्तरीय सिग्नल के रूप में स्थानांतरित करना है। कुछ पल्स मॉडुलन योजनाएं नैरोबैंड एनालॉग सिग्नल को एक निश्चित बिट दर के साथ एक डिजिटल सिग्नल (यानी, क्वांटिज़ेशन (सिग्नल प्रोसेसिंग) असतत-समय सिग्नल के रूप में) के रूप में स्थानांतरित करने की अनुमति देती हैं, जिसे एक अंतर्निहित डिजिटल ट्रांसमिशन सिस्टम पर स्थानांतरित किया जा सकता है। उदाहरण, कुछ लाइन कोड। ये पारंपरिक अर्थों में मॉड्यूलेशन स्कीम नहीं हैं क्योंकि ये चैनल कोडिंग स्कीम नहीं हैं, लेकिन इन्हें सोर्स कोडिंग स्कीम माना जाना चाहिए, और कुछ मामलों में एनालॉग-टू-डिजिटल रूपांतरण तकनीक।
पल्स मॉड्यूलेशन योजनाओं का उद्देश्य एक पल्स तरंग को संशोधित करके एक दो-स्तरीय सिग्नल के रूप में एक एनालॉग बेसबैंड चैनल पर एक नैरोबैंड एनालॉग सिग्नल को स्थानांतरित करना है। कुछ पल्स मॉड्यूलेशन योजनाएं नैरोबैंड एनालॉग सिग्नल को एक निश्चित बिट दर के साथ एक डिजिटल सिग्नल (यानी, एक मात्रात्मक असतत-समय सिग्नल के रूप में) के रूप में स्थानांतरित करने की अनुमति देती हैं, जिसे एक अंतर्निहित डिजिटल ट्रांसमिशन सिस्टम पर स्थानांतरित किया जा सकता है, उदाहरण के लिए, कुछ लाइन कोड। ये पारंपरिक अर्थों में मॉड्यूलेशन स्कीम नहीं हैं क्योंकि ये चैनल कोडिंग स्कीम नहीं हैं, लेकिन इन्हें सोर्स कोडिंग स्कीम माना जाना चाहिए, और कुछ मामलों में एनालॉग-टू-डिजिटल रूपांतरण तकनीक।


;एनालॉग-ओवर-एनालॉग तरीके
;एनालॉग-ओवर-एनालॉग तरीके
Line 163: Line 159:


==विविध मॉडुलन तकनीक==
==विविध मॉडुलन तकनीक==
* रेडियो फ्रीक्वेंसी पर मोर्स कोड ट्रांसमिट करने के लिए ऑन-ऑफ कीइंग के इस्तेमाल को कंटीन्यूअस वेव (CW) ऑपरेशन के रूप में जाना जाता है।
* रेडियो फ़्रीक्वेंसी पर मोर्स कोड ट्रांसमिट करने के लिए ऑन-ऑफ़ कुंजीयन के उपयोग को कंटीन्यूअस तरंग (CW) ऑपरेशन के रूप में जाना जाता है।
* अनुकूली मॉडुलन
* अनुकूली मॉडुलन
* स्पेस मॉड्यूलेशन एक ऐसी विधि है जिसके द्वारा संकेतों को हवाई क्षेत्र के भीतर संशोधित किया जाता है जैसे कि उपकरण लैंडिंग सिस्टम में उपयोग किया जाता है।
* स्पेस मॉड्यूलेशन एक ऐसी विधि है जिसके द्वारा सिग्नल को एयरस्पेस के भीतर मॉड्यूलेट किया जाता है जैसे कि इंस्ट्रूमेंट लैंडिंग सिस्टम में उपयोग किया जाता है।
* माइक्रोवेव श्रवण प्रभाव को समझने योग्य स्पोकन नंबरों को जगाने के लिए ऑडियो तरंगों के साथ पल्स को संशोधित किया गया है।<ref>{{cite book |last= Lin|first= James C.|author-link= |date= August 20, 2021|title= Auditory Effects of Microwave Radiation|location= Chicago|publisher= Springer|page= 326|isbn= 978-3030645434}}</ref><ref>{{cite magazine |last= Justesen|first= Don|date= March 1, 1975|title= Microwaves and Behavior|url= http://www.mitchelleffect.com/1973_voice_to_skull.pdf|magazine= American Psychologist|location= Washington, D.C.|publisher= American Psychological Association|archive-url= https://web.archive.org/web/20160910133313/http://www.mitchelleffect.com/1973_voice_to_skull.pdf|access-date= October 5, 2021|archive-date= 2016-09-10}}</ref><ref>{{cite magazine |last= Justesen|first= Don|date= March 1, 1975|title= Microwaves and Behavior|url= https://pubmed.ncbi.nlm.nih.gov/1137231/|magazine= American Psychologist|volume= 30|issue= 3|pages= 391–401|location= Washington, D.C.|publisher= American Psychological Association|doi= 10.1037/0003-066x.30.3.391|pmid= 1137231|access-date= October 15, 2021}}</ref>
* सूक्ष्म तरंग श्रवण प्रभाव को स्पंदित किया गया है, जो समझने योग्य बोलचाल की संख्याओं को उद्घाटित करने के लिए ऑडियो तरंगों के साथ संशोधित किया गया है।<ref>{{cite book |last= Lin|first= James C.|author-link= |date= August 20, 2021|title= Auditory Effects of Microwave Radiation|location= Chicago|publisher= Springer|page= 326|isbn= 978-3030645434}}</ref><ref>{{cite magazine |last= Justesen|first= Don|date= March 1, 1975|title= Microwaves and Behavior|url= http://www.mitchelleffect.com/1973_voice_to_skull.pdf|magazine= American Psychologist|location= Washington, D.C.|publisher= American Psychological Association|archive-url= https://web.archive.org/web/20160910133313/http://www.mitchelleffect.com/1973_voice_to_skull.pdf|access-date= October 5, 2021|archive-date= 2016-09-10}}</ref><ref>{{cite magazine |last= Justesen|first= Don|date= March 1, 1975|title= Microwaves and Behavior|url= https://pubmed.ncbi.nlm.nih.gov/1137231/|magazine= American Psychologist|volume= 30|issue= 3|pages= 391–401|location= Washington, D.C.|publisher= American Psychological Association|doi= 10.1037/0003-066x.30.3.391|pmid= 1137231|access-date= October 15, 2021}}</ref>




Line 333: Line 329:
*निरंतर कश्मीर फिल्टर
*निरंतर कश्मीर फिल्टर
*जटिल विमान
*जटिल विमान
*फासर (साइन वेव्स)
*फासर (साइन तरंग्स)
*पोर्ट (सर्किट सिद्धांत)
*पोर्ट (परिपथ सिद्धांत)
*लग्रांगियन यांत्रिकी
*लग्रांगियन यांत्रिकी
*जाल विश्लेषण
*जाल विश्लेषण
Line 583: Line 579:
*प्रतिक्रिया (इलेक्ट्रॉनिक्स)
*प्रतिक्रिया (इलेक्ट्रॉनिक्स)
*अण्डाकार फिल्टर
*अण्डाकार फिल्टर
*सीरिज़ सर्किट)
*सीरिज़ परिपथ)
*मिलान जेड-ट्रांसफॉर्म विधि
*मिलान जेड-ट्रांसफॉर्म विधि
*कंघी फ़िल्टर
*कंघी फ़िल्टर
Line 653: Line 649:
*पोल (जटिल विश्लेषण)
*पोल (जटिल विश्लेषण)
*दुर्लभ
*दुर्लभ
*आरसी सर्किट
*आरसी परिपथ
*अवरोध
*अवरोध
*स्थिर समय
*स्थिर समय

Revision as of 23:51, 27 October 2022

डेटा और वाहक प्रकारों के आधार पर सिग्नल मॉड्यूलेशन के लिए वर्गीकरण

इलेक्ट्रॉनिक्स और दूरसंचार में, मॉडुलन एक आवधिक तरंग के एक या अधिक गुणों को बदलने की प्रक्रिया है, जिसे वाहक संकेत कहा जाता है, जिसमें एक अलग सिग्नल होता है जिसे मॉड्यूलेशन सिग्नल कहा जाता है जिसमें आम तौर पर संचारित होने वाली जानकारी होती है। उदाहरण के लिए, मॉड्यूलेशन सिग्नल एक माइक्रोफ़ोन से ध्वनि का प्रतिनिधित्व करने वाला एक ऑडियो सिग्नल हो सकता है, एक वीडियो सिग्नल एक वीडियो कैमरा से चलती छवियों का प्रतिनिधित्व करता है, या एक डिजिटल सिग्नल बाइनरी अंकों के अनुक्रम का प्रतिनिधित्व करता है, एक कंप्यूटर से एक बिटस्ट्रीम। मॉडुलन सिग्नल की तुलना में वाहक आवृत्ति में अधिक होता है। रेडियो संचार में संग्राहक वाहक अंतरिक्ष के माध्यम से एक रेडियो तरंग के रूप में एक रेडियो रिसीवर को प्रेषित किया जाता है। एक अन्य उद्देश्य आवृत्ति-विभाजन बहुसंकेतन (एफडीएम) का उपयोग करके एक संचार माध्यम के माध्यम से सूचना के कई चैनलों को प्रसारित करना है। उदाहरण के लिए केबल टेलीविजन में, जो एफडीएम का उपयोग करता है, कई वाहक सिग्नल, प्रत्येक एक अलग टेलीविजन चैनल के साथ संशोधित, एक केबल के माध्यम से ग्राहकों तक पहुंचाए जाते हैं। चूंकि प्रत्येक वाहक एक अलग आवृत्ति रखता है, चैनल एक दूसरे के साथ हस्तक्षेप नहीं करते हैं। गंतव्य के अंत में, वाहक सिग्नल को मॉड्यूलेशन सिग्नल असर वाली जानकारी निकालने के लिए डिमॉड्यूलेट किया जाता है।

मॉड्यूलेटर एक उपकरण या परिपथ है जो मॉड्यूलेशन करता है। एक डिमोडुलेटर (कभी-कभी डिटेक्टर) एक परिपथ होता है जो मॉड्यूलेशन के विपरीत, डिमॉड्यूलेशन करता है। एक मॉडेम (मॉड्यूलेटर-डिमोडुलेटर से), द्विदिश संचार में उपयोग किया जाता है, दोनों ऑपरेशन कर सकता है। मॉडुलन सिग्नल द्वारा कब्जा किए गए आवृत्ति बैंड को बेसबैंड कहा जाता है, जबकि मॉड्यूलेटेड वाहक द्वारा कब्जा करके उच्च आवृत्ति बैंड को पासबैंड कहा जाता है।

एनालॉग मॉड्यूलेशन में कैरियर पर एक एनालॉग मॉड्यूलेशन सिग्नल प्रभावित होता है। उदाहरण आयाम मॉड्यूलेशन (एएम) हैं जिसमें वाहक तरंग का आयाम (ताकत) मॉड्यूलेशन सिग्नल और आवृत्ति मॉड्यूलेशन (एफएम) द्वारा भिन्न होता है जिसमें वाहक तरंग की आवृत्ति मॉड्यूलेशन सिग्नल द्वारा भिन्न होती है। ये सबसे शुरुआती प्रकार के मॉड्यूलेशन थे, और AM और FM रेडियो प्रसारण में ध्वनि का प्रतिनिधित्व करने वाले एक ऑडियो सिग्नल को प्रसारित करने के लिए उपयोग किया जाता है। अधिक हाल के सिस्टम डिजिटल मॉड्यूलेशन का उपयोग करते हैं, जो एक डिजिटल सिग्नल को प्रभावित करता है जिसमें बाइनरी अंकों (बिट्स) का एक क्रम होता है, एक बिटस्ट्रीम, वाहक पर बिट्स को मैप करने के माध्यम से एक असतत वर्णमाला से तत्वों को प्रेषित किया जाता है। इस वर्णमाला में वास्तविक या जटिल संख्याओं, या अनुक्रमों का एक सेट शामिल हो सकता है, जैसे विभिन्न आवृत्तियों के दोलन, तथाकथित फ़्रीक्वेंसी-शिफ़्ट कीइंग (एफएसके) मॉडुलन। एक अधिक जटिल डिजिटल मॉड्यूलेशन विधि जो कई वाहकों को नियोजित करती है, ऑर्थोगोनल फ़्रीक्वेंसी-डिवीजन मल्टीप्लेक्सिंग (ओएफडीएम), का उपयोग वाईफाई नेटवर्क, डिजिटल रेडियो स्टेशनों और डिजिटल केबल टेलीविजन ट्रांसमिशन में किया जाता है।

एनालॉग मॉडुलन विधियाँ

एक कम आवृत्ति संदेश संकेत (शीर्ष) AM या FM रेडियो तरंग द्वारा ले जाया जा सकता है।
146.52 मेगाहर्ट्ज रेडियो कैरियर का वाटरफॉल प्लॉट, 1,000 हर्ट्ज साइनसॉइड द्वारा आयाम मॉडुलन के साथ। वाहक आवृत्ति से + और - 1 kHz पर दो मजबूत साइडबैंड दिखाए गए हैं।
एक वाहक, आवृत्ति एक 1,000 हर्ट्ज साइनसॉइड द्वारा संशोधित। मॉडुलन सूचकांक को लगभग 2.4 पर समायोजित किया गया है, इसलिए वाहक आवृत्ति का आयाम छोटा है। कई मजबूत साइडबैंड स्पष्ट हैं; सिद्धांत रूप में FM में एक अनंत संख्या उत्पन्न होती है लेकिन उच्च-क्रम वाले साइडबैंड नगण्य परिमाण के होते हैं।

एनालॉग मॉड्यूलेशन में, एनालॉग सूचना संकेत के जवाब में मॉड्यूलेशन लगातार लागू किया जाता है। सामान्य एनालॉग मॉड्यूलेशन तकनीकों में शामिल हैं:

  • आयाम मॉड्यूलेशन (एएम) (यहां वाहक सिग्नल का आयाम मॉड्यूलेटिंग सिग्नल के तात्कालिक आयाम के अनुसार भिन्न होता है)
    • डबल-साइडबैंड मॉड्यूलेशन (डीएसबी)
      • कैरियर के साथ डबल-साइडबैंड मॉड्यूलेशन (डीएसबी-डब्ल्यूसी) (ए एम रेडियो प्रसारण बैंड पर प्रयुक्त)
      • डबल-साइडबैंड सप्रेस्ड-कैरियर ट्रांसमिशन (DSB-SC)
      • डबल-साइडबैंड कम वाहक संचरण (डीएसबी-आरसी)
    • सिंगल-साइडबैंड मॉड्यूलेशन (SSB, या SSB-AM)
      • कैरियर के साथ सिंगल-साइडबैंड मॉड्यूलेशन (SSB-WC)
      • सिंगल-साइडबैंड मॉड्यूलेशन सप्रेस्ड कैरियर मॉड्यूलेशन (SSB-SC)
    • वेस्टिजियल साइडबैंड मॉड्यूलेशन (VSB, या VSB-AM)
    • चतुर्भुज आयाम मॉडुलन (क्यूएएम)
  • कोण मॉडुलन, जो लगभग स्थिर लिफाफा है
    • फ़्रीक्वेंसी मॉड्यूलेशन (यहाँ वाहक सिग्नल की आवृत्ति मॉड्यूलेटिंग सिग्नल के तात्कालिक आयाम के अनुसार भिन्न होती है)
    • फेज मॉडुलन (पीएम) (यहां वाहक सिग्नल की फेज शिफ्ट मॉड्यूलेटिंग सिग्नल के तात्कालिक आयाम के अनुसार भिन्न होती है)
    • ट्रांसपोज़िशनल मॉड्यूलेशन (टीएम), जिसमें तरंग विभक्ति को संशोधित किया जाता है जिसके परिणामस्वरूप एक संकेत होता है जहां मॉड्यूलेशन प्रक्रिया में प्रत्येक तिमाही चक्र को स्थानांतरित किया जाता है। टीएम एक छद्म-एनालॉग मॉड्यूलेशन है। जहां एक AM वाहक एक चरण चर चरण f(ǿ) भी वहन करता है। यहाँ टीएम f(AM,ǿ) है।

डिजिटल मॉडुलन विधियाँ

डिजिटल मॉड्यूलेशन में, एक एनालॉग कैरियर सिग्नल को असतत सिग्नल द्वारा संशोधित किया जाता है। डिजिटल मॉड्यूलेशन विधियों को डिजिटल-से-एनालॉग रूपांतरण और संबंधित डिमॉड्यूलेशन या डिटेक्शन को एनालॉग-टू-डिजिटल रूपांतरण के रूप में माना जा सकता है। वाहक संकेत में परिवर्तन एम वैकल्पिक प्रतीकों (मॉड्यूलेशन वर्णमाला) की एक सीमित संख्या से चुने जाते हैं।

File:Baud.svg
4 बॉड की योजनाबद्ध, 8 बिट/एस डेटा लिंक जिसमें मनमाने ढंग से चुने गए मान शामिल हैं

एक सरल उदाहरण: एक टेलीफोन लाइन श्रव्य ध्वनियों को स्थानांतरित करने के लिए डिज़ाइन की गई है, उदाहरण के लिए, टोन, न कि डिजिटल बिट्स (शून्य और एक)। हालाँकि, कंप्यूटर मॉडेम के माध्यम से एक टेलीफोन लाइन पर संचार कर सकते हैं, जो टोन द्वारा डिजिटल बिट्स का प्रतिनिधित्व कर रहे हैं, जिन्हें प्रतीक कहा जाता है। यदि चार वैकल्पिक प्रतीक हैं (एक संगीत वाद्ययंत्र के अनुरूप जो चार अलग-अलग स्वर उत्पन्न कर सकता है, एक समय में एक), पहला प्रतीक बिट अनुक्रम 00, दूसरा 01, तीसरा 10 और चौथा 11 का प्रतिनिधित्व कर सकता है। यदि मॉडेम एक राग बजाता है जिसमें प्रति सेकंड 1000 टन होता है, प्रतीक दर 1000 प्रतीकों/सेकंड, या 1000 बॉड है। चूंकि प्रत्येक स्वर (यानी, प्रतीक) इस उदाहरण में दो डिजिटल बिट्स वाले संदेश का प्रतिनिधित्व करता है, बिट दर प्रतीक दर से दोगुना है, यानी 2000 बिट प्रति सेकंड।

डिजिटल सिग्नल (इलेक्ट्रॉनिक्स) की एक परिभाषा के अनुसार,[1] मॉड्यूलेटेड सिग्नल एक डिजिटल सिग्नल है। एक अन्य परिभाषा के अनुसार, मॉडुलन डिजिटल-से-एनालॉग रूपांतरण का एक रूप है। अधिकांश पाठ्यपुस्तकें डिजिटल मॉड्यूलेशन योजनाओं को डिजिटल ट्रांसमिशन के रूप में मानती हैं, जो डेटा ट्रांसमिशन का पर्याय है; बहुत कम लोग इसे एनालॉग ट्रांसमिशन मानेंगे।

मौलिक डिजिटल मॉडुलन विधियाँ

सबसे मौलिक डिजिटल मॉडुलन तकनीक कुंजीयन (दूरसंचार) पर आधारित हैं:

  • चरण-शिफ्ट कुंजीयन | पीएसके (चरण-शिफ्ट कुंजीयन): चरणों की एक सीमित संख्या का उपयोग किया जाता है।
  • फ़्रीक्वेंसी-शिफ़्ट कीइंग|एफएसके (फ़्रीक्वेंसी-शिफ़्ट कीइंग): फ़्रीक्वेंसी की एक सीमित संख्या का उपयोग किया जाता है।
  • आयाम-शिफ्ट कुंजीयन | ASK (आयाम-शिफ्ट कुंजीयन): आयामों की एक सीमित संख्या का उपयोग किया जाता है।
  • चतुर्भुज आयाम मॉडुलन | क्यूएएम (चतुर्भुज आयाम मॉडुलन): कम से कम दो चरणों की एक सीमित संख्या और कम से कम दो आयामों का उपयोग किया जाता है।

क्यूएएम में, एक इन-फेज सिग्नल (या I, एक उदाहरण कोसाइन तरंगफॉर्म के साथ) और एक क्वाड्रेचर फेज सिग्नल (या Q, एक उदाहरण के साथ साइन तरंग है) आयाम की एक सीमित संख्या के साथ संशोधित आयाम हैं और फिर संक्षेप में हैं। इसे दो-चैनल प्रणाली के रूप में देखा जा सकता है, प्रत्येक चैनल ASK का उपयोग करता है। परिणामी संकेत पीएसके और एएसके के संयोजन के बराबर है।

उपरोक्त सभी विधियों में, इन चरणों, आवृत्तियों या आयामों में से प्रत्येक को बाइनरी अंक प्रणाली बिट्स का एक अनूठा पैटर्न सौंपा गया है। सामान्यतः पर, प्रत्येक चरण, आवृत्ति या आयाम समान संख्या में बिट्स को एन्कोड करता है। बिट्स की इस संख्या में वह प्रतीक शामिल होता है जो विशेष चरण, आवृत्ति या आयाम द्वारा दर्शाया जाता है।

यदि वर्णमाला में होता है वैकल्पिक प्रतीकों, प्रत्येक प्रतीक एन बिट्स से युक्त एक संदेश का प्रतिनिधित्व करता है। यदि प्रतीक दर (जिसे बॉड भी कहा जाता है) है प्रतीक/सेकंड (या बॉड), डेटा दर है बिट/सेकंड।

उदाहरण के लिए, 16 वैकल्पिक प्रतीकों वाले वर्णमाला के साथ, प्रत्येक प्रतीक 4 बिट्स का प्रतिनिधित्व करता है। इस प्रकार, डेटा दर बॉड दर का चार गुना है।

पीएसके, एएसके या क्यूएएम के मामले में, जहां मॉड्यूलेटेड सिग्नल की वाहक आवृत्ति स्थिर होती है, मॉड्यूलेशन वर्णमाला को अक्सर नक्षत्र आरेख पर आसानी से दर्शाया जाता है, जो एक्स-अक्ष पर आई सिग्नल के आयाम और के आयाम को दर्शाता है। प्रत्येक प्रतीक के लिए y-अक्ष पर Q संकेत।

संचालन के न्यूनाधिक और डिटेक्टर सिद्धांत

पीएसके और एएसके, और कभी-कभी एफएसके भी, अक्सर क्यूएएम के सिद्धांत का उपयोग करके उत्पन्न और पता लगाया जाता है। I और Q संकेतों को एक जटिल-मूल्यवान सिग्नल I+jQ (जहाँ j काल्पनिक इकाई है) में जोड़ा जा सकता है। परिणामी तथाकथित समकक्ष लोपास सिग्नल या समकक्ष बेसबैंड सिग्नल वास्तविक-मूल्यवान मॉड्यूटेड भौतिक सिग्नल (तथाकथित पासबैंड सिग्नल या आरएफ सिग्नल) का एक जटिल-मूल्यवान प्रतिनिधित्व है।

डेटा संचारित करने के लिए न्यूनाधिक द्वारा उपयोग किए जाने वाले ये सामान्य चरण हैं:

  1. आने वाले डेटा बिट्स को कोडवर्ड में समूहित करें, प्रत्येक प्रतीक के लिए एक जिसे प्रेषित किया जाएगा।
  2. कोडवर्ड को विशेषताओं के लिए मैप करें, उदाहरण के लिए, I और Q सिग्नल के आयाम (समतुल्य कम पास सिग्नल), या आवृत्ति या चरण मान।
  3. बैंडविड्थ को सीमित करने के लिए पल्स शेपिंग या कुछ अन्य फ़िल्टरिंग को अनुकूलित करें और समान रूप से कम पास सिग्नल के स्पेक्ट्रम का निर्माण करें, सामान्यतः पर डिजिटल सिग्नल प्रोसेसिंग का उपयोग करते हुए।
  4. I और Q संकेतों के डिजिटल से एनालॉग रूपांतरण (DAC) का प्रदर्शन करें (क्योंकि आज से उपरोक्त सभी सामान्य रूप से डिजिटल सिग्नल प्रोसेसिंग, DSP का उपयोग करके प्राप्त किए जाते हैं)।
  5. एक उच्च-आवृत्ति साइन वाहक तरंग उत्पन्न करें, और शायद एक कोसाइन क्वाडरेचर घटक भी। मॉड्यूलेशन को पूरा करें, उदाहरण के लिए साइन और कोसाइन तरंगफॉर्म को I और Q सिग्नल से गुणा करके, जिसके परिणामस्वरूप समकक्ष लो पास सिग्नल आवृत्ति को मॉड्यूटेड पासबैंड सिग्नल या आरएफ सिग्नल में स्थानांतरित कर दिया जाता है। कभी-कभी यह डीएसपी तकनीक का उपयोग करके प्राप्त किया जाता है, उदाहरण के लिए एनालॉग सिग्नल प्रोसेसिंग के बजाय एक तरंग तालिका का उपयोग करके प्रत्यक्ष डिजिटल सिंथेसाइज़र। उस स्थिति में, इस चरण के बाद उपरोक्त डीएसी चरण किया जाना चाहिए।
  6. हार्मोनिक विरूपण और आवधिक स्पेक्ट्रम से बचने के लिए प्रवर्धन और एनालॉग बैंडपास फ़िल्टरिंग।

रिसीवर की तरफ, डेमोडुलेटर सामान्यतः पर प्रदर्शन करता है:

  1. बैंडपास फ़िल्टरिंग।
  2. स्वचालित लाभ नियंत्रण, एजीसी (क्षीणन के लिए क्षतिपूर्ति करने के लिए, उदाहरण के लिए लुप्त होती)।
  3. आरएफ सिग्नल को समतुल्य बेसबैंड I और Q सिग्नल में या एक इंटरमीडिएट फ़्रीक्वेंसी (IF) सिग्नल में स्थानांतरित करना, RF सिग्नल को स्थानीय ऑसिलेटर साइन तरंग और कोसाइन तरंग फ़्रीक्वेंसी से गुणा करके (सुपरहीटरोडाइन रिसीवर सिद्धांत देखें)।
  4. नमूनाकरण और एनालॉग-टू-डिजिटल रूपांतरण (एडीसी) (कभी-कभी उपरोक्त बिंदु से पहले या इसके बजाय, उदाहरण के लिए अंडरसैंपलिंग के माध्यम से)।
  5. इक्वलाइज़ेशन फ़िल्टरिंग, उदाहरण के लिए, एक मिलान फ़िल्टर, मल्टीपाथ प्रसार के लिए मुआवजा, समय प्रसार, चरण विरूपण और आवृत्ति चयनात्मक लुप्त होती, इंटरसिम्बल हस्तक्षेप और प्रतीक विरूपण से बचने के लिए।
  6. I और Q संकेतों के आयाम, या IF सिग्नल की आवृत्ति या चरण का पता लगाना।
  7. निकटतम अनुमत प्रतीक मूल्यों के लिए आयामों, आवृत्तियों या चरणों का परिमाणीकरण।
  8. परिमाणित आयामों, आवृत्तियों या चरणों का कोडवर्ड (बिट समूह) में मानचित्रण।
  9. कोडवर्ड का समानांतर-से-सीरियल रूपांतरण एक बिट स्ट्रीम में।
  10. किसी भी त्रुटि-सुधार कोड को हटाने जैसे आगे की प्रक्रिया के लिए परिणामी बिट स्ट्रीम को पास करें।

जैसा कि सभी डिजिटल संचार प्रणालियों के लिए सामान्य है, मॉड्यूलेटर और डिमोडुलेटर दोनों का डिज़ाइन एक साथ किया जाना चाहिए। डिजिटल मॉडुलन योजनाएं संभव हैं क्योंकि ट्रांसमीटर-रिसीवर जोड़ी को इस बात का पूर्व ज्ञान है कि संचार प्रणाली में डेटा को कैसे एन्कोड और प्रतिनिधित्व किया जाता है। सभी डिजिटल संचार प्रणालियों में, ट्रांसमीटर पर मॉड्यूलेटर और रिसीवर पर डिमोडुलेटर दोनों को संरचित किया जाता है ताकि वे उलटा संचालन कर सकें।

एसिंक्रोनस विधियों को एक रिसीवर संदर्भ घड़ी संकेत की आवश्यकता नहीं होती है जो प्रेषक वाहक सिग्नल के साथ चरण सिंक्रनाइज़ेशन है। इस मामले में, मॉड्यूलेशन प्रतीक (बिट्स, कैरेक्टर या डेटा पैकेट के बजाय) अतुल्यकालिक संचार स्थानांतरित होते हैं। विपरीत बिट-सिंक्रोनस ऑपरेशन है।

सामान्य डिजिटल मॉडुलन तकनीकों की सूची

सबसे आम डिजिटल मॉड्यूलेशन तकनीकें हैं:

  • चरण-शिफ्ट कुंजीयन (पीएसके)
    • बाइनरी पीएसके (बीपीएसके), एम = 2 प्रतीकों का उपयोग कर
    • क्वाडरेचर पीएसके (क्यूपीएसके), एम = 4 प्रतीकों का उपयोग कर
    • 8पीएसके, एम=8 प्रतीकों का उपयोग करते हुए
    • 16पीएसके, एम=16 प्रतीकों का उपयोग करके
    • डिफरेंशियल पीएसके (डीपीएसके)
    • डिफरेंशियल क्यूपीएसके (डीक्यूपीएसके)
    • ऑफसेट क्यूपीएसके (ओक्यूपीएसके)
    • π/4–क्यूपीएसके
  • फ़्रीक्वेंसी-शिफ्ट कुंजीयन (एफएसके)
    • ऑडियो आवृत्ति-शिफ्ट कुंजीयन (ए-एफएसके)
    • एकाधिक आवृत्ति-शिफ्ट कुंजीयन | बहु-आवृत्ति शिफ्ट कुंजीयन (एम-आरी एफएसके या एमएफएसके)
    • डुअल-टोन मल्टी-फ़्रीक्वेंसी (डीटीएफएम)
  • आयाम-शिफ्ट कुंजीयन (एएसके)
  • ऑन-ऑफ कुंजीयन (ओओके), सबसे आम आस्क फॉर्म
    • एम-आर्य वेस्टीजियल साइडबैंड मॉड्यूलेशन, उदाहरण के लिए 8वीएसबी
  • चतुर्भुज आयाम मॉडुलन (क्यूएएम), पीएसके और एएसके का संयोजन
    • ध्रुवीय मॉडुलन जैसे क्यूएएम पीएसके और एएसके का संयोजन[citation needed]
  • सतत चरण मॉडुलन (सीपीएम) विधियां
    • न्यूनतम-शिफ्ट कुंजीयन (एमएसके)
    • गाऊसी न्यूनतम-शिफ्ट कुंजीयन (जीएमएसके)
    • सतत-चरण आवृत्ति-शिफ्ट कुंजीयन (सीपीएफएसके)
  • ऑर्थोगोनल फ़्रीक्वेंसी-डिवीज़न मल्टीप्लेक्सिंग (ओएफडीएम) मॉड्यूलेशन
    • असतत मल्टीटोन मॉडुलन (डीएमटी), अनुकूली मॉडुलन और बिट-लोडिंग सहित
  • तरंगलेट मॉड्यूलेशन
  • ट्रेलिस कोडेड मॉड्यूलेशन (टीसीेम), जिसे ट्रेलिस मॉड्यूलेशन के रूप में भी जाना जाता है
  • स्प्रेड-स्पेक्ट्रम तकनीक
    • डायरेक्ट-सीक्वेंस स्प्रेड स्पेक्ट्रम (डीएसएसएस)
    • आईईईई 802.15.4a के अनुसार चिरप स्प्रेड स्पेक्ट्रम सीएसएस छद्म-स्टोकेस्टिक कोडिंग का उपयोग करता है
    • फ़्रीक्वेंसी-होपिंग स्प्रेड स्पेक्ट्रम (एफएचएसएस) चैनल रिलीज़ के लिए एक विशेष योजना लागू करता है

न्यूनतम-शिफ्ट कुंजीयन और जीएमएसके निरंतर चरण मॉडुलन के विशेष मामले हैं। दरअसल, एमएसके सीपीएम के उप-परिवार का एक विशेष मामला है जिसे निरंतर-चरण आवृत्ति-शिफ्ट कुंजीयन (सीपीएफएसके) के रूप में जाना जाता है, जिसे एक-प्रतीक-समय अवधि के आयताकार आवृत्ति नाड़ी (यानी एक रैखिक रूप से बढ़ती चरण नाड़ी) द्वारा परिभाषित किया जाता है ( कुल प्रतिक्रिया संकेतन)।

ऑर्थोगोनल फ़्रीक्वेंसी-डिवीज़न मल्टीप्लेक्सिंग फ़्रीक्वेंसी-डिवीज़न मल्टीप्लेक्सिंग (एफडीेएम) के विचार पर आधारित है, लेकिन मल्टीप्लेक्सेड स्ट्रीम एक ही मूल स्ट्रीम के सभी भाग हैं। बिट स्ट्रीम को कई समानांतर डेटा स्ट्रीम में विभाजित किया जाता है, प्रत्येक को कुछ पारंपरिक डिजिटल मॉड्यूलेशन स्कीम का उपयोग करके अपने स्वयं के उप-वाहक पर स्थानांतरित किया जाता है। मॉड्युलेटेड सब-कैरियर्स को ओएफडीएम सिग्नल बनाने के लिए सम्‍मिलित किया जाता है। यह विभाजन और पुनर्संयोजन चैनल की खराबी से निपटने में मदद करता है। ओएफडीएम को मल्टीप्लेक्स तकनीक के बजाय एक मॉडुलन तकनीक के रूप में माना जाता है क्योंकि यह तथाकथित ओएफडीएम प्रतीकों के एक अनुक्रम का उपयोग करके एक संचार चैनल पर एक बिट स्ट्रीम को स्थानांतरित करता है। ओएफडीएम को ऑर्थोगोनल फ़्रीक्वेंसी-डिवीज़न मल्टीपल एक्सेस (ओएफडीएमए) और मल्टी-कैरियर कोड-डिवीज़न मल्टीपल एक्सेस (एमसी-सीडीएमए) योजनाओं में मल्टी-यूज़र चैनल एक्सेस मेथड तक बढ़ाया जा सकता है, जिससे कई उपयोगकर्ता अलग-अलग देकर एक ही भौतिक माध्यम साझा कर सकते हैं। उप-वाहक या विभिन्न उपयोगकर्ताओं के लिए कोड फैलाना।

दो प्रकार के आरएफ पावर एम्पलीफायर में से, स्विचिंग एम्पलीफायर (कक्षा डी एम्पलीफायर) की लागत कम होती है और समान आउटपुट पावर के रैखिक एम्पलीफायरों की तुलना में कम बैटरी पावर का उपयोग करते हैं। हालांकि, वे केवल अपेक्षाकृत स्थिर-आयाम-मॉड्यूलेशन संकेतों जैसे कोण मॉड्यूलेशन (एफएसके या पीएसके) और सीडीएमए के साथ काम करते हैं, लेकिन क्यूएएम और ओएफडीएम के साथ नहीं। फिर भी, भले ही स्विचिंग एम्पलीफायर सामान्य क्यूएएम तारामंडल के लिए पूरी तरह से अनुपयुक्त हैं, अक्सर क्यूएएम मॉडुलन सिद्धांत का उपयोग इन FM और अन्य तरंगों के साथ स्विचिंग एम्पलीफायरों को चलाने के लिए किया जाता है, और कभी-कभी क्यूएएम डिमोडुलेटर का उपयोग इन स्विचिंग एम्पलीफायरों द्वारा लगाए गए संकेतों को प्राप्त करने के लिए किया जाता है।

स्वचालित डिजिटल मॉडुलन पहचान (एडीएमआर)

बुद्धिमान संचार प्रणालियों में स्वचालित डिजिटल मॉड्यूलेशन मान्यता सॉफ्टवेयर-परिभाषित रेडियो और संज्ञानात्मक रेडियो में सबसे महत्वपूर्ण मुद्दों में से एक है। बुद्धिमान रिसीवरों के बढ़ते विस्तार के अनुसार, दूरसंचार प्रणालियों और कंप्यूटर अभियांत्रिकी में स्वचालित मॉड्यूलेशन मान्यता एक चुनौतीपूर्ण विषय बन जाता है। ऐसी प्रणालियों में कई नागरिक और सैन्य अनुप्रयोग हैं। इसके अलावा, मॉडुलन प्रकार की अंधा पहचान वाणिज्यिक प्रणालियों में एक महत्वपूर्ण समस्या है, विशेष रूप से सॉफ्टवेयर-परिभाषित रेडियो में। सामान्यतः पर ऐसी प्रणालियों में, सिस्टम कॉन्फ़िगरेशन के लिए कुछ अतिरिक्त जानकारी होती है, लेकिन बुद्धिमान रिसीवरों में अंधा दृष्टिकोण को देखते हुए, हम सूचना अधिभार को कम कर सकते हैं और संचरण प्रदर्शन को बढ़ा सकते हैं। जाहिर है, प्रेषित डेटा और रिसीवर पर कई अज्ञात मापदंडों, जैसे सिग्नल पावर, वाहक आवृत्ति और चरण ऑफसेट, समय की जानकारी, आदि के ज्ञान के बिना, मॉड्यूलेशन की अंधा पहचान काफी कठिन हो जाती है। मल्टीपाथ फ़ेडिंग, आवृत्ति-चयनात्मक और समय-भिन्न चैनलों के साथ वास्तविक दुनिया के परिदृश्यों में यह और भी चुनौतीपूर्ण हो जाता है।[2] स्वचालित मॉडुलन पहचान के लिए दो मुख्य दृष्टिकोण हैं। पहला दृष्टिकोण उचित वर्ग को इनपुट सिग्नल असाइन करने के लिए संभावना-आधारित विधियों का उपयोग करता है। एक और हालिया दृष्टिकोण फीचर निष्कर्षण पर आधारित है।

डिजिटल बेसबैंड मॉडुलन

डिजिटल बेसबैंड मॉड्यूलेशन बेसबैंड सिग्नल की विशेषताओं को बदल देता है, यानी, एक उच्च आवृत्ति पर वाहक के बिना।

इसे बाद में फ़्रीक्वेंसी मिक्सर के समकक्ष सिग्नल के रूप में इस्तेमाल किया जा सकता है | आवृत्ति-एक वाहक आवृत्ति में परिवर्तित, या बेसबैंड में सीधे संचार के लिए। बाद के तरीकों में अपेक्षाकृत सरल लाइन कोड शामिल हैं, जैसा कि अक्सर स्थानीय बसों में उपयोग किया जाता है, और जटिल बेसबैंड सिग्नलिंग योजनाएं जैसे कि डिजिटल सब्सक्राइबर लाइन में उपयोग की जाती हैं।

पल्स मॉडुलन विधियाँ

पल्स मॉड्यूलेशन योजनाओं का उद्देश्य एक पल्स तरंग को संशोधित करके एक दो-स्तरीय सिग्नल के रूप में एक एनालॉग बेसबैंड चैनल पर एक नैरोबैंड एनालॉग सिग्नल को स्थानांतरित करना है। कुछ पल्स मॉड्यूलेशन योजनाएं नैरोबैंड एनालॉग सिग्नल को एक निश्चित बिट दर के साथ एक डिजिटल सिग्नल (यानी, एक मात्रात्मक असतत-समय सिग्नल के रूप में) के रूप में स्थानांतरित करने की अनुमति देती हैं, जिसे एक अंतर्निहित डिजिटल ट्रांसमिशन सिस्टम पर स्थानांतरित किया जा सकता है, उदाहरण के लिए, कुछ लाइन कोड। ये पारंपरिक अर्थों में मॉड्यूलेशन स्कीम नहीं हैं क्योंकि ये चैनल कोडिंग स्कीम नहीं हैं, लेकिन इन्हें सोर्स कोडिंग स्कीम माना जाना चाहिए, और कुछ मामलों में एनालॉग-टू-डिजिटल रूपांतरण तकनीक।

एनालॉग-ओवर-एनालॉग तरीके
  • पल्स-आयाम मॉडुलन (पीएएम)
  • पल्स-चौड़ाई मॉड्यूलेशन (PWM) और पल्स-डेप्थ मॉड्यूलेशन (PDM)
  • पल्स-फ्रीक्वेंसी मॉड्यूलेशन (पीएफएम)
  • पल्स-पोजिशन मॉड्यूलेशन (पीपीएम)
एनालॉग-ओवर-डिजिटल तरीके
  • पल्स-कोड मॉड्यूलेशन (पीसीएम)
    • डीपीसीएम (डीपीसीएम)
      • अनुकूली अंतर पल्स-कोड मॉड्यूलेशन (ADPCM)
  • डेल्टा मॉडुलन (डीएम या -मॉड्यूलेशन)
    • डेल्टा-सिग्मा मॉडुलन (ΣΔ)
    • लगातार परिवर्तनशील ढलान डेल्टा मॉड्यूलेशन (CVSDM), जिसे अनुकूली डेल्टा मॉड्यूलेशन (ADM) भी ​​कहा जाता है
  • पल्स-घनत्व मॉडुलन (पीडीएम)

विविध मॉडुलन तकनीक

  • रेडियो फ़्रीक्वेंसी पर मोर्स कोड ट्रांसमिट करने के लिए ऑन-ऑफ़ कुंजीयन के उपयोग को कंटीन्यूअस तरंग (CW) ऑपरेशन के रूप में जाना जाता है।
  • अनुकूली मॉडुलन
  • स्पेस मॉड्यूलेशन एक ऐसी विधि है जिसके द्वारा सिग्नल को एयरस्पेस के भीतर मॉड्यूलेट किया जाता है जैसे कि इंस्ट्रूमेंट लैंडिंग सिस्टम में उपयोग किया जाता है।
  • सूक्ष्म तरंग श्रवण प्रभाव को स्पंदित किया गया है, जो समझने योग्य बोलचाल की संख्याओं को उद्घाटित करने के लिए ऑडियो तरंगों के साथ संशोधित किया गया है।[3][4][5]


यह भी देखें

  • चैनल एक्सेस के तरीके
  • चैनल कोडिंग
  • कोडेक
  • संचार चैनल
  • डिमॉड्यूलेशन
  • विद्युत प्रतिध्वनि
  • हेटेरोडाइन
  • लाइन कोड
  • मोडेम
  • मॉड्यूलेशन आदेश
  • न्यूरोमॉड्यूलेशन
  • आरएफ न्यूनाधिक
  • रिंग मॉड्यूलेशन
  • दूरसंचार
  • रेडियो उत्सर्जन के प्रकार


संदर्भ

  1. "Modulation Methods | Electronics Basics | ROHM". www.rohm.com. Retrieved 2020-05-15.
  2. Dobre, Octavia A., Ali Abdi, Yeheskel Bar-Ness, and Wei Su. Communications, IET 1, no. 2 (2007): 137–156. (2007). "Survey of automatic modulation classification techniques: classical approaches and new trends" (PDF). IET Communications. 1 (2): 137–156. doi:10.1049/iet-com:20050176.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. Lin, James C. (August 20, 2021). Auditory Effects of Microwave Radiation. Chicago: Springer. p. 326. ISBN 978-3030645434.
  4. Justesen, Don (March 1, 1975). "Microwaves and Behavior" (PDF). American Psychologist. Washington, D.C.: American Psychological Association. Archived from the original (PDF) on 2016-09-10. Retrieved October 5, 2021.
  5. Justesen, Don (March 1, 1975). "Microwaves and Behavior". American Psychologist. Vol. 30, no. 3. Washington, D.C.: American Psychological Association. pp. 391–401. doi:10.1037/0003-066x.30.3.391. PMID 1137231. Retrieved October 15, 2021.


इस पृष्ठ में अनुपलब्ध आंतरिक लिंक की सूची

  • रैखिक फिल्टर
  • मूर्ति प्रोद्योगिकी
  • करणीय
  • खास समय
  • सिग्नल (इलेक्ट्रॉनिक्स)
  • लगातार कश्मीर फिल्टर
  • चरण विलंब
  • एम-व्युत्पन्न फ़िल्टर
  • स्थानांतरण प्रकार्य
  • बहुपदीय फलन
  • लो पास फिल्टर
  • अंतःप्रतीक हस्तक्षेप
  • फ़िल्टर (प्रकाशिकी)
  • युग्मित उपकरण को चार्ज करें
  • गांठदार तत्व
  • पतली फिल्म थोक ध्वनिक गुंजयमान यंत्र
  • लोहा
  • परमाणु घड़ी
  • फुरियर रूपांतरण
  • लहर (फ़िल्टर)
  • कार्तीय समन्वय प्रणाली
  • अंक शास्त्र
  • यूक्लिडियन स्पेस
  • मामला
  • ब्रम्हांड
  • कद
  • द्वि-आयामी अंतरिक्ष
  • निर्देशांक तरीका
  • अदिश (गणित)
  • शास्त्रीय हैमिल्टनियन quaternions
  • quaternions
  • पार उत्पाद
  • उत्पत्ति (गणित)
  • दो प्रतिच्छेद रेखाएँ
  • तिरछी रेखाएं
  • समानांतर पंक्ति
  • रेखीय समीकरण
  • समानांतर चतुर्भुज
  • वृत्त
  • शंकु खंड
  • विकृति (गणित)
  • निर्देशांक वेक्टर
  • लीनियर अलजेब्रा
  • सीधा
  • भौतिक विज्ञान
  • लेट बीजगणित
  • एक क्षेत्र पर बीजगणित
  • जोड़नेवाला
  • समाकृतिकता
  • कार्तीय गुणन
  • अंदरूनी प्रोडक्ट
  • आइंस्टीन योग सम्मेलन
  • इकाई वेक्टर
  • टुकड़े-टुकड़े चिकना
  • द्विभाजित
  • आंशिक व्युत्पन्न
  • आयतन तत्व
  • समारोह (गणित)
  • रेखा समाकलन का मौलिक प्रमेय
  • खंड अनुसार
  • सौम्य सतह
  • फ़ानो विमान
  • प्रक्षेप्य स्थान
  • प्रक्षेप्य ज्यामिति
  • चार आयामी अंतरिक्ष
  • विद्युत प्रवाह
  • उच्च लाभ एंटीना
  • सर्वदिशात्मक एंटीना
  • गामा किरणें
  • विद्युत संकेत
  • वाहक लहर
  • आयाम अधिमिश्रण
  • चैनल क्षमता
  • आर्थिक अच्छा
  • आधार - सामग्री संकोचन
  • शोर उन्मुक्ति
  • कॉल चिह्न
  • शिशु की देखरेख करने वाला
  • आईएसएम बैंड
  • लंबी लहर
  • एफएम प्रसारण
  • सत्य के प्रति निष्ठा
  • जमीनी लहर
  • कम आवृत्ति
  • श्रव्य विकृति
  • वह-एएसी
  • एमपीईजी-4
  • संशोधित असतत कोसाइन परिवर्तन
  • भू-स्थिर
  • प्रत्यक्ष प्रसारण उपग्रह टेलीविजन
  • माध्यमिक आवृत्ति
  • परमाणु घड़ी
  • बीपीसी (समय संकेत)
  • फुल डुप्लेक्स
  • बिट प्रति सेकंड
  • पहला प्रतिसादकर्ता
  • हवाई गलियारा
  • नागरिक बंद
  • विविधता स्वागत
  • शून्य (रेडियो)
  • बिजली का मीटर
  • जमीन (बिजली)
  • हवाई अड्डे की निगरानी रडार
  • altimeter
  • समुद्री रडार
  • देशान्तर
  • तोपखाने का खोल
  • बचाव बीकन का संकेत देने वाली आपातकालीन स्थिति
  • अंतर्राष्ट्रीय कॉस्पास-सरसैट कार्यक्रम
  • संरक्षण जीवविज्ञान
  • हवाई आलोक चित्र विद्या
  • गैराज का दरवाज़ा
  • मुख्य जेब
  • अंतरिक्ष-विज्ञान
  • ध्वनि-विज्ञान
  • निरंतर संकेत
  • मिड-रेंज स्पीकर
  • फ़िल्टर (सिग्नल प्रोसेसिंग)
  • उष्ण ऊर्जा
  • विद्युतीय प्रतिरोध
  • लंबी लाइन (दूरसंचार)
  • इलास्टेंस
  • गूंज
  • ध्वनिक प्रतिध्वनि
  • प्रत्यावर्ती धारा
  • आवृत्ति विभाजन बहुसंकेतन
  • छवि फ़िल्टर
  • वाहक लहर
  • ऊष्मा समीकरण
  • प्रतिक दर
  • विद्युत चालकता
  • आवृति का उतार - चढ़ाव
  • निरंतर कश्मीर फिल्टर
  • जटिल विमान
  • फासर (साइन तरंग्स)
  • पोर्ट (परिपथ सिद्धांत)
  • लग्रांगियन यांत्रिकी
  • जाल विश्लेषण
  • पॉइसन इंटीग्रल
  • affine परिवर्तन
  • तर्कसंगत कार्य
  • शोर अनुपात का संकेत
  • मिलान फ़िल्टर
  • रैखिक-द्विघात-गाऊसी नियंत्रण
  • राज्य स्थान (नियंत्रण)
  • ऑपरेशनल एंप्लीफायर
  • एलटीआई प्रणाली सिद्धांत
  • विशिष्ट एकीकृत परिपथ आवेदन
  • सतत समय
  • एंटी - एलियासिंग फ़िल्टर
  • भाजक
  • निश्चित बिंदु अंकगणित
  • फ्लोटिंग-पॉइंट अंकगणित
  • डिजिटल बाइकैड फ़िल्टर
  • अनुकूली फिल्टर
  • अध्यारोपण सिद्धांत
  • कदम की प्रतिक्रिया
  • राज्य स्थान (नियंत्रण)
  • नियंत्रण प्रणाली
  • वोल्टेज नियंत्रित थरथरानवाला
  • कंपंडोर
  • नमूना और पकड़
  • संगणक
  • अनेक संभावनाओं में से चुनी हूई प्रक्रिया
  • प्रायिकता वितरण
  • वर्तमान परिपथ
  • गूंज रद्दीकरण
  • सुविधा निकासी
  • छवि उन्नीतकरण
  • एक प्रकार की प्रोग्रामिंग की पर्त
  • ओ एस आई मॉडल
  • समानता (संचार)
  • आंकड़ा अधिग्रहण
  • रूपांतरण सिद्धांत
  • लीनियर अलजेब्रा
  • स्टचास्तिक प्रोसेसेज़
  • संभावना
  • गैर-स्थानीय साधन
  • घटना (सिंक्रनाइज़ेशन आदिम)
  • एंटीलोक ब्रेक
  • उद्यम प्रणाली
  • सुरक्षा-महत्वपूर्ण प्रणाली
  • डेटा सामान्य
  • आर टी -11
  • डंब टर्मिनल
  • समय बताना
  • सेब II
  • जल्द से जल्द समय सीमा पहले शेड्यूलिंग
  • अनुकूली विभाजन अनुसूचक
  • वीडियो गेम कंसोल की चौथी पीढ़ी
  • वीडियो गेम कंसोल की तीसरी पीढ़ी
  • नमूनाकरण दर
  • अंकगणित औसत
  • उच्च प्रदर्शन कंप्यूटिंग
  • भयावह विफलता
  • हुड विधि
  • प्रणाली विश्लेषण
  • समय अपरिवर्तनीय
  • औद्योगिक नियंत्रण प्रणाली
  • निर्देशयोग्य तर्क नियंत्रक
  • प्रक्रिया अभियंता)
  • नियंत्रण पाश
  • संयंत्र (नियंत्रण सिद्धांत)
  • क्रूज नियंत्रण
  • अनुक्रमिक कार्य चार्ट
  • नकारात्मक प्रतिपुष्टि
  • अन्देंप्त
  • नियंत्रण वॉल्व
  • पीआईडी ​​नियंत्रक
  • यौगिक
  • फिल्टर (सिग्नल प्रोसेसिंग)
  • वितरित कोटा पद्धति
  • महाकाव्यों
  • डूप गति नियंत्रण
  • हवाई जहाज
  • संक्षिप्त और प्रारंभिकवाद
  • मोटर गाड़ी
  • संयुक्त राज्य नौसेना
  • निर्देशित मिसाइलें
  • भूभाग-निम्नलिखित रडार
  • अवरक्त किरणे
  • प्रेसिजन-निर्देशित युद्धपोत
  • विमान भेदी युद्ध
  • शाही रूसी नौसेना
  • हस्तक्षेप हरा
  • सेंट पीटर्सबर्ग
  • योण क्षेत्र
  • आकाशीय बिजली
  • द्वितीय विश्वयुद्ध
  • संयुक्त राज्य सेना
  • डेथ रे
  • पर्ल हार्बर पर हमला
  • ओबाउ (नेविगेशन)
  • जमीन नियंत्रित दृष्टिकोण
  • भूविज्ञानी
  • आंधी तूफान
  • मौसम पूर्वानुमान
  • बहुत बुरा मौसम
  • सर्दियों का तूफान
  • संकेत पहचान
  • बिखरने
  • इलेक्ट्रिकल कंडक्टीविटी
  • पराबैगनी प्रकाश
  • खालीपन
  • भूसा (प्रतिमाप)
  • पारद्युतिक स्थिरांक
  • विद्युत चुम्बकीय विकिरण
  • विद्युतीय प्रतिरोध
  • प्रतिचुम्बकत्व
  • बहुपथ प्रसार
  • तरंग दैर्ध्य
  • अर्ध-सक्रिय रडार होमिंग
  • Nyquist आवृत्ति
  • ध्रुवीकरण (लहरें)
  • अपवर्तक सूचकांक
  • नाड़ी पुनरावृत्ति आवृत्ति
  • शोर मचाने वाला फ़र्श
  • प्रकाश गूंज
  • रेत का तूफान
  • स्वत: नियंत्रण प्राप्त करें
  • जय स्पाइक
  • घबराना
  • आयनमंडलीय परावर्तन
  • वायुमंडलीय वाहिनी
  • व्युत्क्रम वर्ग नियम
  • इलेक्ट्रानिक युद्ध
  • उड़ान का समय
  • प्रकाश कि गति
  • पूर्व चेतावनी रडार
  • रफ़्तार
  • निरंतर-लहर रडार
  • स्पेकट्रूम विशेष्यग्य
  • रेंज अस्पष्टता संकल्प
  • मिलान फ़िल्टर
  • रोटेशन
  • चरणबद्ध व्यूह रचना
  • मैमथ राडार
  • निगरानी करना
  • स्क्रीन
  • पतला सरणी अभिशाप
  • हवाई रडार प्रणाली
  • परिमाणक्रम
  • इंस्टीट्यूट ऑफ़ इलेक्ट्रिकल एंड इलेक्ट्रॉनिक्स इंजीनियर्स
  • क्षितिज राडार के ऊपर
  • पल्स बनाने वाला नेटवर्क
  • अमेरिका में प्रदूषण की रोकथाम
  • आईटी रेडियो विनियम
  • रडार संकेत विशेषताएं
  • हैस (रडार)
  • एवियोनिक्स में एक्रोनिम्स और संक्षिप्ताक्षर
  • समय की इकाई
  • गुणात्मक प्रतिलोम
  • रोशनी
  • दिल की आवाज
  • हिलाना
  • सरल आवर्त गति
  • नहीं (पत्र)
  • एसआई व्युत्पन्न इकाई
  • इंटरनेशनल इलेक्ट्रोटेक्नीकल कमीशन
  • प्रति मिनट धूर्णन
  • हवा की लहर
  • एक समारोह का तर्क
  • चरण (लहरें)
  • आयामहीन मात्रा
  • असतत समय संकेत
  • विशेष मामला
  • मध्यम (प्रकाशिकी)
  • कोई भी त्रुटि
  • ध्वनि की तरंग
  • दृश्यमान प्रतिबिम्ब
  • लय
  • सुनवाई की दहलीज
  • प्रजातियाँ
  • मुख्य विधुत
  • नाबालिग तीसरा
  • माप की इकाइयां
  • आवधिकता (बहुविकल्पी)
  • परिमाण के आदेश (आवृत्ति)
  • वर्णक्रमीय घटक
  • रैखिक समय-अपरिवर्तनीय प्रणाली
  • असतत समय फिल्टर
  • ऑटोरेग्रेसिव मॉडल
  • डिजिटल डाटा
  • डिजिटल देरी लाइन
  • बीआईबीओ स्थिरता
  • फोरियर श्रेणी
  • दोषी
  • दशमलव (सिग्नल प्रोसेसिंग)
  • असतत फूरियर रूपांतरण
  • एफआईआर ट्रांसफर फंक्शन
  • 3डी परीक्षण मॉडल
  • ब्लेंडर (सॉफ्टवेयर)
  • वैज्ञानिक दृश्य
  • प्रतिपादन (कंप्यूटर ग्राफिक्स)
  • विज्ञापन देना
  • चलचित्र
  • अनुभूति
  • निहित सतह
  • विमानन
  • भूतपूर्व छात्र
  • छिपी सतह निर्धारण
  • अंतरिक्ष आक्रमणकारी
  • लकीर खींचने की क्रिया
  • एनएमओएस तर्क
  • उच्च संकल्प
  • एमओएस मेमोरी
  • पूरक राज्य मंत्री
  • नक्षत्र-भवन
  • वैश्विक चमक
  • मैकिंटोश कंप्यूटर
  • प्रथम व्यक्ति शूटर
  • साधारण मानचित्रण
  • हिमयुग (2002 फ़िल्म)
  • मेडागास्कर (2005 फ़िल्म)
  • बायोइनफॉरमैटिक्स
  • शारीरिक रूप से आधारित प्रतिपादन
  • हीरे की थाली
  • प्रतिबिंब (कंप्यूटर ग्राफिक्स)
  • 2010 की एनिमेटेड फीचर फिल्मों की सूची
  • परिवेशी बाधा
  • वास्तविक समय (मीडिया)
  • जानकारी
  • कंकाल एनिमेशन
  • भीड़ अनुकरण
  • प्रक्रियात्मक एनिमेशन
  • अणु प्रणाली
  • कैमरा
  • माइक्रोस्कोप
  • इंजीनियरिंग के चित्र
  • रेखापुंज छवि
  • नक्शा
  • हार्डवेयर एक्सिलरेशन
  • अंधेरा
  • गैर-समान तर्कसंगत बी-तख़्ता
  • नक्शा टक्कर
  • चुम्बकीय अनुनाद इमेजिंग
  • नमूनाकरण (सिग्नल प्रोसेसिंग)
  • sculpting
  • आधुनिक कला का संग्रहालय
  • गेम डेवलपर्स कांफ्रेंस
  • शैक्षिक
  • आपूर्ती बंद करने की आवृत्ति
  • प्रतिक्रिया (इलेक्ट्रॉनिक्स)
  • अण्डाकार फिल्टर
  • सीरिज़ परिपथ)
  • मिलान जेड-ट्रांसफॉर्म विधि
  • कंघी फ़िल्टर
  • समूह देरी
  • सप्टक
  • दूसरों से अलग
  • लो पास फिल्टर
  • निर्देश प्रति सेकंड
  • अंकगणित अतिप्रवाह
  • चरण (लहरें)
  • हस्तक्षेप (लहर प्रसार)
  • बीट (ध्वनिक)
  • अण्डाकार तर्कसंगत कार्य
  • जैकोबी अण्डाकार कार्य
  • क्यू कारक
  • यूनिट सर्कल
  • फी (पत्र)
  • सुनहरा अनुपात
  • मोनोटोनिक
  • Immittance
  • ऑप एंप
  • आवेग invariance
  • बेसेल फ़ंक्शन
  • जटिल सन्युग्म
  • संकेत प्रतिबिंब
  • विद्युतीय ऊर्जा
  • इनपुट उपस्थिति
  • एकदिश धारा
  • जटिल संख्या
  • भार प्रतिबाधा
  • विद्युतचुंबकीय व्यवधान
  • बिजली की आपूर्ति
  • आम-कैथोड
  • अवमन्दन कारक
  • ध्वनिरोधन
  • गूंज (घटना)
  • फ्रेस्नेल समीकरण
  • रोड़ी
  • लोडिंग कॉइल
  • आर एस होयतो
  • लोड हो रहा है कॉइल
  • चेबीशेव बहुपद
  • एक बंदरगाह
  • सकारात्मक-वास्तविक कार्य
  • आपूर्ती बंद करने की आवृत्ति
  • उच्च मार्ग
  • रैखिक फ़िल्टर
  • प्रतिक दर
  • घेरा
  • नॉन-रिटर्न-टू-जीरो
  • अनियमित चर
  • संघ बाध्य
  • एकाधिक आवृत्ति-शिफ्ट कुंजीयन
  • COMPARATOR
  • द्विआधारी जोड़
  • असंबद्ध संचरण
  • त्रुटि समारोह
  • आपसी जानकारी
  • बिखरा हुआ1
  • डिजिटल मॉडुलन
  • डिमॉड्युलेटर
  • कंघा
  • खड़ी तरंगें
  • नमूना दर
  • प्रक्षेप
  • ऑडियो सिग्नल प्रोसेसिंग
  • खगोल-कंघी
  • खास समय
  • पोल (जटिल विश्लेषण)
  • दुर्लभ
  • आरसी परिपथ
  • अवरोध
  • स्थिर समय
  • एक घोड़ा
  • पुनरावृत्ति संबंध
  • निष्क्रिय फिल्टर
  • श्रव्य सीमा
  • मिक्सिंग कंसोल
  • एसी कपलिंग
  • क्यूएससी ऑडियो
  • संकट
  • दूसरों से अलग
  • डीएसएल मॉडम
  • फाइबर ऑप्टिक संचार
  • व्यावर्तित जोड़ी
  • बातचीत का माध्यम
  • समाक्षीय तार
  • लंबी दूरी का टेलीफोन कनेक्शन
  • डाउनस्ट्रीम (कंप्यूटर विज्ञान)
  • आवृत्ति द्वैध
  • आवृत्ति प्रतिक्रिया
  • आकड़ों की योग्यता
  • परीक्षण के अंतर्गत उपकरण
  • कंघी फिल्टर
  • निष्क्रियता (इंजीनियरिंग)
  • लाभ (इलेक्ट्रॉनिक्स)
  • कोने की आवृत्ति
  • फील्ड इफ़ेक्ट ट्रांजिस्टर
  • कम आवृत्ति दोलन
  • एकीकृत परिपथ
  • निरंतर-प्रतिरोध नेटवर्क
  • यूनिट सर्कल

अग्रिम पठन


बाहरी संबंध