आरंभिक दशा: Difference between revisions
(Created page with "{{Use American English|date=January 2019}} {{Use mdy dates|date=January 2019}} {{Short description|Parameter in differential equations and dynamical systems}}{{Multiple image...") |
No edit summary |
||
| Line 1: | Line 1: | ||
{{Multiple image | |||
| direction = vertical | | direction = vertical | ||
| image1 = Nonsmooth initial condition for vibrating string.svg | | image1 = Nonsmooth initial condition for vibrating string.svg | ||
| Line 10: | Line 8: | ||
}} | }} | ||
गणित में और विशेष रूप से गतिशील प्रणालियों में | गणित में और विशेष रूप से गतिशील प्रणालियों में प्रारंभिक स्थिति कुछ संदर्भों में बीज मान कहा जाता है,<ref>{{cite book |last=Baumol |first=William J. |authorlink=William Baumol |title=Economic Dynamics: An Introduction |url=https://archive.org/details/economicdynamics0000baum_c7i2 |url-access=registration |location=London |publisher=Collier-Macmillan |edition=3rd |year=1970 |isbn=0-02-306660-1 }}</ref>{{rp|pp. 160}} प्रारंभिक समय के रूप में निर्दिष्ट समय में किसी बिंदु पर एक विकसित [[चर (गणित)]] का मान है (सामान्यतः चिह्नित t = 0)। आदेश की एक प्रणाली के लिए ([[अंतर समीकरण]]) k (असतत समय में समय की संख्या, या [[निरंतर समय]] में सबसे बड़े व्युत्पन्न का क्रम) और [[आयाम (वेक्टर स्थान)]] n (अर्थात, n अलग-अलग विकसित चर के साथ जो एक साथ n -आयामी [[समन्वय वेक्टर]] द्वारा निरूपित किया जा सकता है), सामान्यतः समय के माध्यम से प्रणाली के चर का पता लगाने के लिए एनके प्रारंभिक स्थितियों की आवश्यकता होती है। | ||
निरंतर समय में अंतर समीकरण और असतत समय में अंतर समीकरण दोनों में, प्रारंभिक स्थितियाँ किसी भी भविष्य के समय में गतिशील चर ( | निरंतर समय में अंतर समीकरण और असतत समय में अंतर समीकरण दोनों में, प्रारंभिक स्थितियाँ किसी भी भविष्य के समय में गतिशील चर (स्थिति चर) के मान को प्रभावित करती हैं। निरंतर समय में समय और प्रारंभिक स्थितियों के एक कार्य के रूप में स्थिति चर के लिए एक बंद फॉर्म समाधान खोजने की समस्या को [[प्रारंभिक मूल्य समस्या|प्रारंभिक मान समस्या]] कहा जाता है। असतत समय स्थितियों के लिए एक संबंधित समस्या उपस्थित है। जबकि एक बंद फॉर्म समाधान सदैव प्राप्त करना संभव नहीं होता है, असतत समय प्रणाली के भविष्य के मानो को प्रति पुनरावृत्ति एक समय अवधि को आगे बढ़ाकर पाया जा सकता है, चूंकि गोल करने की त्रुटि इसे लंबे क्षितिज पर अव्यवहारिक बना सकती है। | ||
== रैखिक प्रणाली == | == रैखिक प्रणाली == | ||
| Line 18: | Line 16: | ||
=== असतत समय === | === असतत समय === | ||
सजातीय (कोई स्थिर पद नहीं) रूप | सजातीय (कोई स्थिर पद नहीं) रूप <math>X_{t+1}=AX_t</math> का एक रेखीय [[मैट्रिक्स अंतर समीकरण|आव्यूह अंतर समीकरण]] बंद रूप समाधान <math>X_t=A^tX_0</math> है वेक्टर पर समर्पित <math>X_0</math> वेक्टर में ढेर किए गए अलग-अलग चर पर प्रारंभिक स्थितियों का; <math>X_0</math> प्रारंभिक स्थितियों का वेक्टर या केवल प्रारंभिक स्थिति कहा जाता है, और इसमें जानकारी के nk टुकड़े होते हैं, n वेक्टर X का आयाम है और k = 1 प्रणाली में समय अंतराल की संख्या है। इस रेखीय प्रणाली में प्रारंभिक स्थितियाँ स्थिति चर X के भविष्य के व्यवहार की गुणात्मक प्रकृति को प्रभावित नहीं करती हैं; वह व्यवहार आव्यूह A के आइजनवैल्यूज के आधार पर [[स्थिरता (गणित)]] या अस्थिर है, किंतु प्रारंभिक स्थितियों पर आधारित नहीं है। | ||
वैकल्पिक रूप से, एकल चर x में एक गतिशील प्रक्रिया जिसमें कई समय अंतराल होते हैं | वैकल्पिक रूप से, एकल चर x में एक गतिशील प्रक्रिया जिसमें कई समय अंतराल होते हैं | ||
:<math>x_t=a_1x_{t-1} +a_2x_{t-2}+\cdots +a_kx_{t-k}.</math> | :<math>x_t=a_1x_{t-1} +a_2x_{t-2}+\cdots +a_kx_{t-k}.</math> | ||
यहां आयाम n = 1 है और क्रम k है, इसलिए समय के माध्यम से या तो पुनरावृत्त रूप से या बंद फॉर्म समाधान के माध्यम से | यहां आयाम n = 1 है और क्रम k है, इसलिए समय के माध्यम से या तो पुनरावृत्त रूप से या बंद फॉर्म समाधान के माध्यम से प्रणाली का पता लगाने के लिए प्रारंभिक स्थितियों की आवश्यक संख्या nk = k है। फिर से प्रारंभिक स्थितियां चर के दीर्घकालिक विकास की गुणात्मक प्रकृति को प्रभावित नहीं करती हैं। इस समीकरण का का हल इसके विशिष्ट समीकरण <math>\lambda^k-a_1\lambda^{k-1} -a_2\lambda^{k-2}-\cdots -a_{k-1}\lambda-a_k=0</math> '''समाधान इसके आइगेनवैल्यू और ईजेनवेक्टर या डायनेमिक समीकरणों का उपयोग करके पाया जाता है <math>\lambda^k-a_1\lambda^{k-1} -a_2\lambda^{k-2}-\cdots -a_{k-1}\lambda-a_k=0</math>''' बाद के k समाधान प्राप्त करने के लिए, जो विशेषता मान हैं <math>\lambda_1, \dots , \lambda_k,</math> उपयोग के लिए समाधान समीकरण में है | ||
:<math>x_t=c_1\lambda _1^t+\cdots + c_k\lambda _k^t.</math> | :<math>x_t=c_1\lambda _1^t+\cdots + c_k\lambda _k^t.</math> | ||
| Line 30: | Line 28: | ||
=== निरंतर समय === | === निरंतर समय === | ||
वेक्टर | वेक्टर ''X'' में स्टैक्ड एन वेरिएबल्स के साथ पहले क्रम का एक अंतर समीकरण प्रणाली है | ||
:<math>\frac{dX}{dt}=AX.</math> | :<math>\frac{dX}{dt}=AX.</math> | ||
समय के माध्यम से इसका व्यवहार एक प्रारंभिक स्थिति वेक्टर पर एक बंद फॉर्म समाधान | समय के माध्यम से इसका व्यवहार एक प्रारंभिक स्थिति वेक्टर <math>X_0</math> पर एक बंद फॉर्म समाधान नियमबद्ध के साथ पता लगाया जा सकता है . सूचना के आवश्यक आरंभिक टुकड़ों की संख्या प्रणाली के आयाम n है जो प्रणाली के क्रम k = 1, या n है। प्रारंभिक स्थितियां प्रणाली के गुणात्मक व्यवहार (स्थिर या अस्थिर) को प्रभावित नहीं करती हैं। | ||
एकल चर x में एक kवें क्रम का रैखिक समीकरण है | |||
:<math>\frac{d^{k}x}{dt^k}+a_{k-1}\frac{d^{k-1}x}{dt^{k-1}}+\cdots +a_1\frac{dx}{dt} +a_0x=0.</math> | :<math>\frac{d^{k}x}{dt^k}+a_{k-1}\frac{d^{k-1}x}{dt^{k-1}}+\cdots +a_1\frac{dx}{dt} +a_0x=0.</math> | ||
यहाँ एक बंद प्रपत्र समाधान प्राप्त करने के लिए आवश्यक प्रारंभिक | यहाँ एक बंद प्रपत्र समाधान प्राप्त करने के लिए आवश्यक प्रारंभिक नियमो की संख्या आयाम n = 1 गुणा क्रम k, या बस k है। इस स्थिति में जानकारी के प्रारंभिक टुकड़े सामान्यतः समय के विभिन्न बिंदुओं पर चर x के अलग-अलग मान नहीं होंगे, किंतु x और इसके पहले k – 1 व्युत्पत्ति के मान होंगे, सभी समय के किसी बिंदु पर जैसे समय शून्य प्रारंभिक स्थितियां प्रणाली के व्यवहार की गुणात्मक प्रकृति को प्रभावित नहीं करती हैं। इस गतिशील समीकरण का अभिलाक्षणिक समीकरण (अंतर समीकरण) है <math>\lambda^k+a_{k-1}\lambda^{k-1}+\cdots +a_1\lambda +a_0=0,</math> जिनके समाधान आइजनवैल्यूज और ईजिनवैक्टर हैं <math>\lambda_1,\dots , \lambda_k;</math> इनका उपयोग समाधान समीकरण में किया जाता है | ||
:<math>x(t)=c_1e^{\lambda_1t}+\cdots + c_ke^{\lambda_kt}.</math> | :<math>x(t)=c_1e^{\lambda_1t}+\cdots + c_ke^{\lambda_kt}.</math> | ||
यह समीकरण और इसका पहला k - 1 | यह समीकरण और इसका पहला k - 1 व्युत्पत्ति k समीकरणों की एक प्रणाली बनाता है जिसे k मापदंडों <math>c_1, \dots , c_k,</math>के लिए हल किया जा सकता है किसी समय t पर x और इसके k - 1 व्युत्पत्ति के मानो पर ज्ञात प्रारंभिक नियम दी गई हैं। | ||
== | == अरेखीय प्रणालियाँ == | ||
{{Multiple image | {{Multiple image | ||
| image1 = LF-Initial.png | | image1 = LF-Initial.png | ||
| Line 50: | Line 48: | ||
| caption2 = Evolution of this initial condition for an example PDE | | caption2 = Evolution of this initial condition for an example PDE | ||
}} | }} | ||
गैर-रैखिक प्रणालियाँ रैखिक प्रणालियों की तुलना में व्यवहार की | गैर-रैखिक प्रणालियाँ रैखिक प्रणालियों की तुलना में व्यवहार की अधिक समृद्ध विविधता प्रदर्शित कर सकती हैं। विशेष रूप से, प्रारंभिक स्थितियाँ इस बात को प्रभावित कर सकती हैं कि क्या प्रणाली अनंत तक जाती है या क्या यह [[अभिसरण (गणित)]] प्रणाली के एक या दूसरे आकर्षणकर्ता के लिए है। प्रत्येक [[अट्रैक्टर]], मानों का एक (संभावित रूप से वियोजित किया गया) क्षेत्र जो कुछ डायनेमिक पथों तक पहुंचता है किंतु कभी नहीं छोड़ता है, आकर्षण का एक (संभवतः वियोजित ) बेसिन होता है, जैसे कि उस बेसिन में प्रारंभिक स्थितियों के साथ स्थिति चर (और कहीं नहीं) उस अट्रैक्टर की ओर विकसित होंगे। आस-पास की प्रारंभिक स्थितियाँ भी विभिन्न आकर्षित करने वालों के आकर्षण के बेसिन में हो सकती हैं (उदाहरण के लिए न्यूटन की विधि या आकर्षण के बेसिन देखें)। | ||
इसके अतिरिक्त , [[अराजकता सिद्धांत]] दिखाने वाले उन अरेखीय प्रणालियों में, चर का विकास [[प्रारंभिक स्थितियों पर संवेदनशील निर्भरता]] प्रदर्शित करता है: एक ही [[अजीब आकर्षण]] पर किसी भी दो बहुत पास के बिंदुओं के पुनरावृत्त मान , जबकि प्रत्येक आकर्षित करने वाले पर शेष, एक दूसरे से अलग हो जाएंगे समय इस प्रकार एक भी आकर्षित करने वाले पर भी प्रारंभिक स्थितियों के स्पष्ट मान पुनरावृत्तियों की भविष्य की स्थिति के लिए पर्याप्त अंतर डालते हैं। यह सुविधा भविष्य के मानो के स्पष्ट अनुकरण या कंप्यूटर अनुकरण को कठिन और लंबे समय तक असंभव बना देती है, क्योंकि प्रारंभिक स्थितियों को स्पष्ट स्पष्टता के साथ बताना संभवतः ही कभी संभव होता है और क्योंकि स्पष्ट प्रारंभिक स्थिति से केवल कुछ पुनरावृत्तियों के बाद भी पूर्णन त्रुटि अपरिहार्य है। | |||
'''मय तक असंभव बना देती है, क्योंकि प्रारंभिक स्थितियों को स्पष्ट स्पष्टता के साथ बताना संभवतः ही कभी संभव होता है और क्योंकि स्पष्ट प्रारंभिक स्थिति से केवल कुछ''' | |||
== अनुभवजन्य | == अनुभवजन्य नियम और प्रारंभिक नियम == | ||
{{blockquote| | {{blockquote|1=प्रत्येक अनुभवजन्य कानून में यह परेशान करने वाला गुण होता है कि कोई उसकी सीमाओं को नहीं जानता। हमने देखा है कि हमारे आस-पास की दुनिया में होने वाली घटनाओं में नियमितताएँ होती हैं जिन्हें गणितीय अवधारणाओं के संदर्भ में एक अलौकिक सटीकता के साथ सूत्रबद्ध किया जा सकता है। दूसरी ओर, दुनिया के ऐसे पहलू हैं जिनके बारे में हम किसी स्पष्ट नियमितता के अस्तित्व में विश्वास नहीं करते हैं। हम इन प्रारंभिक स्थितियों को कहते हैं। 11 मई, 1959 को न्यूयॉर्क विश्वविद्यालय में गणितीय विज्ञान में रिचर्ड कोर्टेंट व्याख्यान दिया गया{{!}}url=https://hep.physics.utoronto.ca/~orr/wwwroot/JPH441/Wigner_Math.pdf|journal=Communications on Pure and Applied Math. {{!}}वॉल्यूम=13{{!}}इश्यू=1 {{!}}पेज=1–14{{!}}बिबकोड=1960CPAM...13....1W{{!}}doi=10.1002/cpa.3160130102{{!}}archive-url=https://web.archive.org/ वेब/20210212111540/http://www.dartmouth.edu/~matc/MathDrama/reading/Wigner.html|archive-date=2020-02-12}}</ref>}} | ||
== यह भी देखें == | == यह भी देखें == | ||
Revision as of 09:09, 1 May 2023
गणित में और विशेष रूप से गतिशील प्रणालियों में प्रारंभिक स्थिति कुछ संदर्भों में बीज मान कहा जाता है,[1]: pp. 160 प्रारंभिक समय के रूप में निर्दिष्ट समय में किसी बिंदु पर एक विकसित चर (गणित) का मान है (सामान्यतः चिह्नित t = 0)। आदेश की एक प्रणाली के लिए (अंतर समीकरण) k (असतत समय में समय की संख्या, या निरंतर समय में सबसे बड़े व्युत्पन्न का क्रम) और आयाम (वेक्टर स्थान) n (अर्थात, n अलग-अलग विकसित चर के साथ जो एक साथ n -आयामी समन्वय वेक्टर द्वारा निरूपित किया जा सकता है), सामान्यतः समय के माध्यम से प्रणाली के चर का पता लगाने के लिए एनके प्रारंभिक स्थितियों की आवश्यकता होती है।
निरंतर समय में अंतर समीकरण और असतत समय में अंतर समीकरण दोनों में, प्रारंभिक स्थितियाँ किसी भी भविष्य के समय में गतिशील चर (स्थिति चर) के मान को प्रभावित करती हैं। निरंतर समय में समय और प्रारंभिक स्थितियों के एक कार्य के रूप में स्थिति चर के लिए एक बंद फॉर्म समाधान खोजने की समस्या को प्रारंभिक मान समस्या कहा जाता है। असतत समय स्थितियों के लिए एक संबंधित समस्या उपस्थित है। जबकि एक बंद फॉर्म समाधान सदैव प्राप्त करना संभव नहीं होता है, असतत समय प्रणाली के भविष्य के मानो को प्रति पुनरावृत्ति एक समय अवधि को आगे बढ़ाकर पाया जा सकता है, चूंकि गोल करने की त्रुटि इसे लंबे क्षितिज पर अव्यवहारिक बना सकती है।
रैखिक प्रणाली
असतत समय
सजातीय (कोई स्थिर पद नहीं) रूप का एक रेखीय आव्यूह अंतर समीकरण बंद रूप समाधान है वेक्टर पर समर्पित वेक्टर में ढेर किए गए अलग-अलग चर पर प्रारंभिक स्थितियों का; प्रारंभिक स्थितियों का वेक्टर या केवल प्रारंभिक स्थिति कहा जाता है, और इसमें जानकारी के nk टुकड़े होते हैं, n वेक्टर X का आयाम है और k = 1 प्रणाली में समय अंतराल की संख्या है। इस रेखीय प्रणाली में प्रारंभिक स्थितियाँ स्थिति चर X के भविष्य के व्यवहार की गुणात्मक प्रकृति को प्रभावित नहीं करती हैं; वह व्यवहार आव्यूह A के आइजनवैल्यूज के आधार पर स्थिरता (गणित) या अस्थिर है, किंतु प्रारंभिक स्थितियों पर आधारित नहीं है।
वैकल्पिक रूप से, एकल चर x में एक गतिशील प्रक्रिया जिसमें कई समय अंतराल होते हैं
यहां आयाम n = 1 है और क्रम k है, इसलिए समय के माध्यम से या तो पुनरावृत्त रूप से या बंद फॉर्म समाधान के माध्यम से प्रणाली का पता लगाने के लिए प्रारंभिक स्थितियों की आवश्यक संख्या nk = k है। फिर से प्रारंभिक स्थितियां चर के दीर्घकालिक विकास की गुणात्मक प्रकृति को प्रभावित नहीं करती हैं। इस समीकरण का का हल इसके विशिष्ट समीकरण समाधान इसके आइगेनवैल्यू और ईजेनवेक्टर या डायनेमिक समीकरणों का उपयोग करके पाया जाता है बाद के k समाधान प्राप्त करने के लिए, जो विशेषता मान हैं उपयोग के लिए समाधान समीकरण में है
यहाँ स्थिरांक इस समीकरण के आधार पर k विभिन्न समीकरणों की एक प्रणाली को हल करके पाया जाता है, प्रत्येक t के k विभिन्न मानों में से एक का उपयोग करता है जिसके लिए विशिष्ट प्रारंभिक स्थिति ज्ञात है।
निरंतर समय
वेक्टर X में स्टैक्ड एन वेरिएबल्स के साथ पहले क्रम का एक अंतर समीकरण प्रणाली है
समय के माध्यम से इसका व्यवहार एक प्रारंभिक स्थिति वेक्टर पर एक बंद फॉर्म समाधान नियमबद्ध के साथ पता लगाया जा सकता है . सूचना के आवश्यक आरंभिक टुकड़ों की संख्या प्रणाली के आयाम n है जो प्रणाली के क्रम k = 1, या n है। प्रारंभिक स्थितियां प्रणाली के गुणात्मक व्यवहार (स्थिर या अस्थिर) को प्रभावित नहीं करती हैं।
एकल चर x में एक kवें क्रम का रैखिक समीकरण है
यहाँ एक बंद प्रपत्र समाधान प्राप्त करने के लिए आवश्यक प्रारंभिक नियमो की संख्या आयाम n = 1 गुणा क्रम k, या बस k है। इस स्थिति में जानकारी के प्रारंभिक टुकड़े सामान्यतः समय के विभिन्न बिंदुओं पर चर x के अलग-अलग मान नहीं होंगे, किंतु x और इसके पहले k – 1 व्युत्पत्ति के मान होंगे, सभी समय के किसी बिंदु पर जैसे समय शून्य प्रारंभिक स्थितियां प्रणाली के व्यवहार की गुणात्मक प्रकृति को प्रभावित नहीं करती हैं। इस गतिशील समीकरण का अभिलाक्षणिक समीकरण (अंतर समीकरण) है जिनके समाधान आइजनवैल्यूज और ईजिनवैक्टर हैं इनका उपयोग समाधान समीकरण में किया जाता है
यह समीकरण और इसका पहला k - 1 व्युत्पत्ति k समीकरणों की एक प्रणाली बनाता है जिसे k मापदंडों के लिए हल किया जा सकता है किसी समय t पर x और इसके k - 1 व्युत्पत्ति के मानो पर ज्ञात प्रारंभिक नियम दी गई हैं।
अरेखीय प्रणालियाँ
गैर-रैखिक प्रणालियाँ रैखिक प्रणालियों की तुलना में व्यवहार की अधिक समृद्ध विविधता प्रदर्शित कर सकती हैं। विशेष रूप से, प्रारंभिक स्थितियाँ इस बात को प्रभावित कर सकती हैं कि क्या प्रणाली अनंत तक जाती है या क्या यह अभिसरण (गणित) प्रणाली के एक या दूसरे आकर्षणकर्ता के लिए है। प्रत्येक अट्रैक्टर, मानों का एक (संभावित रूप से वियोजित किया गया) क्षेत्र जो कुछ डायनेमिक पथों तक पहुंचता है किंतु कभी नहीं छोड़ता है, आकर्षण का एक (संभवतः वियोजित ) बेसिन होता है, जैसे कि उस बेसिन में प्रारंभिक स्थितियों के साथ स्थिति चर (और कहीं नहीं) उस अट्रैक्टर की ओर विकसित होंगे। आस-पास की प्रारंभिक स्थितियाँ भी विभिन्न आकर्षित करने वालों के आकर्षण के बेसिन में हो सकती हैं (उदाहरण के लिए न्यूटन की विधि या आकर्षण के बेसिन देखें)।
इसके अतिरिक्त , अराजकता सिद्धांत दिखाने वाले उन अरेखीय प्रणालियों में, चर का विकास प्रारंभिक स्थितियों पर संवेदनशील निर्भरता प्रदर्शित करता है: एक ही अजीब आकर्षण पर किसी भी दो बहुत पास के बिंदुओं के पुनरावृत्त मान , जबकि प्रत्येक आकर्षित करने वाले पर शेष, एक दूसरे से अलग हो जाएंगे समय इस प्रकार एक भी आकर्षित करने वाले पर भी प्रारंभिक स्थितियों के स्पष्ट मान पुनरावृत्तियों की भविष्य की स्थिति के लिए पर्याप्त अंतर डालते हैं। यह सुविधा भविष्य के मानो के स्पष्ट अनुकरण या कंप्यूटर अनुकरण को कठिन और लंबे समय तक असंभव बना देती है, क्योंकि प्रारंभिक स्थितियों को स्पष्ट स्पष्टता के साथ बताना संभवतः ही कभी संभव होता है और क्योंकि स्पष्ट प्रारंभिक स्थिति से केवल कुछ पुनरावृत्तियों के बाद भी पूर्णन त्रुटि अपरिहार्य है।
मय तक असंभव बना देती है, क्योंकि प्रारंभिक स्थितियों को स्पष्ट स्पष्टता के साथ बताना संभवतः ही कभी संभव होता है और क्योंकि स्पष्ट प्रारंभिक स्थिति से केवल कुछ
अनुभवजन्य नियम और प्रारंभिक नियम
प्रत्येक अनुभवजन्य कानून में यह परेशान करने वाला गुण होता है कि कोई उसकी सीमाओं को नहीं जानता। हमने देखा है कि हमारे आस-पास की दुनिया में होने वाली घटनाओं में नियमितताएँ होती हैं जिन्हें गणितीय अवधारणाओं के संदर्भ में एक अलौकिक सटीकता के साथ सूत्रबद्ध किया जा सकता है। दूसरी ओर, दुनिया के ऐसे पहलू हैं जिनके बारे में हम किसी स्पष्ट नियमितता के अस्तित्व में विश्वास नहीं करते हैं। हम इन प्रारंभिक स्थितियों को कहते हैं। 11 मई, 1959 को न्यूयॉर्क विश्वविद्यालय में गणितीय विज्ञान में रिचर्ड कोर्टेंट व्याख्यान दिया गया|url=https://hep.physics.utoronto.ca/~orr/wwwroot/JPH441/Wigner_Math.pdf%7Cjournal=Communications on Pure and Applied Math. |वॉल्यूम=13|इश्यू=1 |पेज=1–14|बिबकोड=1960CPAM...13....1W|doi=10.1002/cpa.3160130102|archive-url=https://web.archive.org/ वेब/20210212111540/http://www.dartmouth.edu/~matc/MathDrama/reading/Wigner.html%7Carchive-date=2020-02-12
</ref>}}
यह भी देखें
- सीमारेखा की हालत
- प्रारंभिक वेक्टर, क्रिप्टोग्राफी में
संदर्भ
- ↑ Baumol, William J. (1970). Economic Dynamics: An Introduction (3rd ed.). London: Collier-Macmillan. ISBN 0-02-306660-1.
बाहरी संबंध
Quotations related to आरंभिक दशा at Wikiquote