पेडल त्रिकोण: Difference between revisions

From Vigyanwiki
(Created page with "File:Pedal Triangle.svg|right|thumb|एक त्रिभुज ABC काले रंग में, बिंदु P से लंबवत् नीले रंग म...")
 
No edit summary
Line 1: Line 1:
[[File:Pedal Triangle.svg|right|thumb|एक त्रिभुज ABC काले रंग में, बिंदु P से लंबवत् नीले रंग में, और प्राप्त पैडल त्रिभुज LMN लाल रंग में।]][[ज्यामिति]] में, एक [[त्रिकोण]] के किनारों पर एक [[बिंदु (ज्यामिति)]] प्रक्षेपित करके एक पेडल त्रिकोण प्राप्त किया जाता है।
[[File:Pedal Triangle.svg|right|thumb|एक त्रिभुज ABC काले रंग में, बिंदु P से लंबवत् नीले रंग में, और प्राप्त पैडल त्रिभुज LMN लाल रंग में।]][[ज्यामिति]] में, [[त्रिकोण]] के किनारों पर [[बिंदु (ज्यामिति)]] प्रक्षेपित करके पेडल त्रिकोण प्राप्त किया जाता है।


अधिक विशेष रूप से, एक त्रिभुज ''ABC'' और एक बिंदु ''P'' पर विचार करें जो कि ''A, B, C'' शीर्षों में से एक नहीं है। ''P'' से त्रिभुज की तीनों भुजाओं पर लम्ब गिराएँ (इन्हें बनाने की आवश्यकता हो सकती है, अर्थात, विस्तारित)। लेबल ''L'', ''M'', ''N'' ''P'' से लाइनों के चौराहों को ''BC'', ''AC'', ''AB'' के साथ। पेडल त्रिकोण तब '' एलएमएन '' है।
अधिक विशेष रूप से, त्रिभुज ''ABC'' और बिंदु ''P'' पर विचार करें जो कि ''A, B, C'' शीर्षों में से नहीं है। ''P'' से त्रिभुज की तीनों भुजाओं पर लम्ब गिराएँ (इन्हें बनाने की आवश्यकता हो सकती है, अर्थात, विस्तारित)। लेबल ''L'', ''M'', ''N'' ''P'' से लाइनों के चौराहों को ''BC'', ''AC'', ''AB'' के साथ। पेडल त्रिकोण तब ''एलएमएन'' है।


यदि ABC एक अधिक त्रिभुज नहीं है, P लंबकेंद्र है तो LMN के कोण 180°-2A, 180°-2B और 180°-2C हैं।<ref>{{Cite web|title=Trigonometry/Circles and Triangles/The Pedal Triangle - Wikibooks, open books for an open world|url=https://en.wikibooks.org/wiki/Trigonometry/Circles_and_Triangles/The_Pedal_Triangle#:~:text=As%20already%20noted,%20the%20altitudes,ABC%20is%20its%20excentral%20triangle.&text=If%20ABC%20is%20not%20an,and%20its%20sides%20are%20a.|access-date=2020-10-31|website=en.wikibooks.org}}</ref>
यदि ABC अधिक त्रिभुज नहीं है, P लंबकेंद्र है तो LMN के कोण 180°-2A, 180°-2B और 180°-2C हैं।<ref>{{Cite web|title=Trigonometry/Circles and Triangles/The Pedal Triangle - Wikibooks, open books for an open world|url=https://en.wikibooks.org/wiki/Trigonometry/Circles_and_Triangles/The_Pedal_Triangle#:~:text=As%20already%20noted,%20the%20altitudes,ABC%20is%20its%20excentral%20triangle.&text=If%20ABC%20is%20not%20an,and%20its%20sides%20are%20a.|access-date=2020-10-31|website=en.wikibooks.org}}</ref>
चुने हुए त्रिकोण एबीसी के सापेक्ष चुने गए बिंदु पी का स्थान कुछ विशेष मामलों को जन्म देता है:
चुने हुए त्रिकोण एबीसी के सापेक्ष चुने गए बिंदु पी का स्थान कुछ विशेष मामलों को जन्म देता है:


Line 10: Line 10:
* यदि P = परिकेंद्र, तो LMN = औसत दर्जे का त्रिभुज।
* यदि P = परिकेंद्र, तो LMN = औसत दर्जे का त्रिभुज।


[[File:Pedal Line.svg|right|thumb|मामला जब पी परिवृत्त पर है, और पेडल त्रिकोण एक रेखा (लाल) में पतित हो जाता है।]]यदि P त्रिभुज के [[परिवृत्त]] पर है, तो LMN एक रेखा में सिमट जाता है। [[रॉबर्ट सिमसन]] के बाद इसे 'पेडल लाइन' या कभी-कभी '[[सिमसन लाइन]]' कहा जाता है।
[[File:Pedal Line.svg|right|thumb|मामला जब पी परिवृत्त पर है, और पेडल त्रिकोण रेखा (लाल) में पतित हो जाता है।]]यदि P त्रिभुज के [[परिवृत्त]] पर है, तो LMN रेखा में सिमट जाता है। [[रॉबर्ट सिमसन]] के बाद इसे 'पेडल लाइन' या कभी-कभी '[[सिमसन लाइन]]' कहा जाता है।


एक आंतरिक बिंदु P के पैडल त्रिकोण के शीर्ष, जैसा कि शीर्ष आरेख में दिखाया गया है, मूल त्रिभुज की भुजाओं को इस तरह से विभाजित करते हैं जैसे कि कार्नोट के प्रमेय (लंबवत) को संतुष्ट करने के लिए। कार्नोट का प्रमेय:<ref>{{Cite book|title=ज्यामिति में चुनौतीपूर्ण समस्याएं|url=https://archive.org/details/challengingprobl00posa|url-access=limited|author1=Alfred S. Posamentier|author-link=Alfred S. Posamentier|author2=Charles T. Salkind|isbn=9780486134864|location=New York|oclc=829151719|publisher=Dover|year=1996|pages=[https://archive.org/details/challengingprobl00posa/page/n95 85]-86}}</ref>
एक आंतरिक बिंदु P के पैडल त्रिकोण के शीर्ष, जैसा कि शीर्ष आरेख में दिखाया गया है, मूल त्रिभुज की भुजाओं को इस तरह से विभाजित करते हैं जैसे कि कार्नोट के प्रमेय (लंबवत) को संतुष्ट करने के लिए। कार्नोट का प्रमेय:<ref>{{Cite book|title=ज्यामिति में चुनौतीपूर्ण समस्याएं|url=https://archive.org/details/challengingprobl00posa|url-access=limited|author1=Alfred S. Posamentier|author-link=Alfred S. Posamentier|author2=Charles T. Salkind|isbn=9780486134864|location=New York|oclc=829151719|publisher=Dover|year=1996|pages=[https://archive.org/details/challengingprobl00posa/page/n95 85]-86}}</ref>
Line 24: Line 24:
== एंटीपेडल त्रिकोण ==
== एंटीपेडल त्रिकोण ==


P के 'प्रतिपाद त्रिभुज' का एक शीर्ष, L', B से होकर BP पर लंब और C से होकर CP पर लंब का प्रतिच्छेदन बिंदु है। इसके अन्य शीर्ष, M 'और N', समान रूप से बनाए गए हैं। ट्रिलिनियर निर्देशांक किसके द्वारा दिए जाते हैं
P के 'प्रतिपाद त्रिभुज' का शीर्ष, L', B से होकर BP पर लंब और C से होकर CP पर लंब का प्रतिच्छेदन बिंदु है। इसके अन्य शीर्ष, M 'और N', समान रूप से बनाए गए हैं। ट्रिलिनियर निर्देशांक किसके द्वारा दिए जाते हैं
*L' = - (q + p cos C)(r + p cos B) : (r + p cos B)(p + q cos C) : (q + p cos C)(p + r cos B)
*L' = - (q + p cos C)(r + p cos B) : (r + p cos B)(p + q cos C) : (q + p cos C)(p + r cos B)
*M' = (r + q cos A)(q + p cos C): − (r + q cos A)(p + q cos C) : (p + q cos C)(q + r cos A)
*M' = (r + q cos A)(q + p cos C): − (r + q cos A)(p + q cos C) : (p + q cos C)(q + r cos A)
Line 31: Line 31:
उदाहरण के लिए, [[बाह्य त्रिकोण]] इनसेंटर का एंटीपेडल ट्राइएंगल है।
उदाहरण के लिए, [[बाह्य त्रिकोण]] इनसेंटर का एंटीपेडल ट्राइएंगल है।


मान लीजिए कि P किसी भी विस्तारित भुजा BC, CA, AB और P पर स्थित नहीं है<sup>−1</sup> P के समकोणीय संयुग्म को दर्शाता है। P का पैडल त्रिकोण, P के एंटीपेडल त्रिकोण के लिए [[होमोथेटिक परिवर्तन]] है।<sup>-1</sup>. समरूप केंद्र (जो एक त्रिकोण केंद्र है यदि और केवल यदि P एक त्रिभुज केंद्र है) त्रिरेखीय निर्देशांक में दिया गया बिंदु है
मान लीजिए कि P किसी भी विस्तारित भुजा BC, CA, AB और P पर स्थित नहीं है<sup>−1</sup> P के समकोणीय संयुग्म को दर्शाता है। P का पैडल त्रिकोण, P के एंटीपेडल त्रिकोण के लिए [[होमोथेटिक परिवर्तन]] है।<sup>-1</sup>. समरूप केंद्र (जो त्रिकोण केंद्र है यदि और केवल यदि P त्रिभुज केंद्र है) त्रिरेखीय निर्देशांक में दिया गया बिंदु है


: एपी (पी + क्यू कॉस सी) (पी + आर कॉस बी): बीक्यू (क्यू + आर कॉस ए) (क्यू + पी कॉस सी): सीआर (आर + पी कॉस बी) (आर + क्यू कॉस ए)।
: एपी (पी + क्यू कॉस सी) (पी + आर कॉस बी): बीक्यू (क्यू + आर कॉस ए) (क्यू + पी कॉस सी): सीआर (आर + पी कॉस बी) (आर + क्यू कॉस ए)।
Line 41: Line 41:


=== आइसोगोनल संयुग्मों का पेडल सर्कल ===
=== आइसोगोनल संयुग्मों का पेडल सर्कल ===
किसी भी बिंदु के लिए <math>P</math> त्रिभुज के परिवृत्त पर स्थित नहीं है, यह ज्ञात है कि <math>P</math> और इसके आइसोगोनल संयुग्म <math>P^\star</math> एक सामान्य पेडल सर्कल है, जिसका केंद्र इन दो बिंदुओं का मध्य बिंदु है।<ref>{{Cite book|last=Honsberger|first=Ross|url=http://dx.doi.org/10.5948/upo9780883859513|title=उन्नीसवीं और बीसवीं सदी के यूक्लिडियन ज्यामिति में एपिसोड|date=1995-01-01|publisher=The Mathematical Association of America|isbn=978-0-88385-951-3}}</ref>
किसी भी बिंदु के लिए <math>P</math> त्रिभुज के परिवृत्त पर स्थित नहीं है, यह ज्ञात है कि <math>P</math> और इसके आइसोगोनल संयुग्म <math>P^\star</math> सामान्य पेडल सर्कल है, जिसका केंद्र इन दो बिंदुओं का मध्य बिंदु है।<ref>{{Cite book|last=Honsberger|first=Ross|url=http://dx.doi.org/10.5948/upo9780883859513|title=उन्नीसवीं और बीसवीं सदी के यूक्लिडियन ज्यामिति में एपिसोड|date=1995-01-01|publisher=The Mathematical Association of America|isbn=978-0-88385-951-3}}</ref>





Revision as of 20:46, 29 April 2023

File:Pedal Triangle.svg
एक त्रिभुज ABC काले रंग में, बिंदु P से लंबवत् नीले रंग में, और प्राप्त पैडल त्रिभुज LMN लाल रंग में।

ज्यामिति में, त्रिकोण के किनारों पर बिंदु (ज्यामिति) प्रक्षेपित करके पेडल त्रिकोण प्राप्त किया जाता है।

अधिक विशेष रूप से, त्रिभुज ABC और बिंदु P पर विचार करें जो कि A, B, C शीर्षों में से नहीं है। P से त्रिभुज की तीनों भुजाओं पर लम्ब गिराएँ (इन्हें बनाने की आवश्यकता हो सकती है, अर्थात, विस्तारित)। लेबल L, M, N P से लाइनों के चौराहों को BC, AC, AB के साथ। पेडल त्रिकोण तब एलएमएन है।

यदि ABC अधिक त्रिभुज नहीं है, P लंबकेंद्र है तो LMN के कोण 180°-2A, 180°-2B और 180°-2C हैं।[1] चुने हुए त्रिकोण एबीसी के सापेक्ष चुने गए बिंदु पी का स्थान कुछ विशेष मामलों को जन्म देता है:

  • यदि P = लंबकेन्द्र, तो LMN = लंब त्रिभुज।
  • यदि P = अंतःकेन्द्र, तो LMN = अंतःस्पर्श त्रिभुज।
  • यदि P = परिकेंद्र, तो LMN = औसत दर्जे का त्रिभुज।
File:Pedal Line.svg
मामला जब पी परिवृत्त पर है, और पेडल त्रिकोण रेखा (लाल) में पतित हो जाता है।

यदि P त्रिभुज के परिवृत्त पर है, तो LMN रेखा में सिमट जाता है। रॉबर्ट सिमसन के बाद इसे 'पेडल लाइन' या कभी-कभी 'सिमसन लाइन' कहा जाता है।

एक आंतरिक बिंदु P के पैडल त्रिकोण के शीर्ष, जैसा कि शीर्ष आरेख में दिखाया गया है, मूल त्रिभुज की भुजाओं को इस तरह से विभाजित करते हैं जैसे कि कार्नोट के प्रमेय (लंबवत) को संतुष्ट करने के लिए। कार्नोट का प्रमेय:[2]


ट्रिलिनियर निर्देशांक

यदि P के त्रिरेखीय निर्देशांक p : q : r हैं, तो P के पेडल त्रिभुज के शीर्ष L,M,N द्वारा दिए गए हैं

  • L = 0 : q + p cos C : r + p cos B
  • M = p + q cos C : 0 : r + q cos A
  • N = p + r cos B : q + r cos A : 0

एंटीपेडल त्रिकोण

P के 'प्रतिपाद त्रिभुज' का शीर्ष, L', B से होकर BP पर लंब और C से होकर CP पर लंब का प्रतिच्छेदन बिंदु है। इसके अन्य शीर्ष, M 'और N', समान रूप से बनाए गए हैं। ट्रिलिनियर निर्देशांक किसके द्वारा दिए जाते हैं

  • L' = - (q + p cos C)(r + p cos B) : (r + p cos B)(p + q cos C) : (q + p cos C)(p + r cos B)
  • M' = (r + q cos A)(q + p cos C): − (r + q cos A)(p + q cos C) : (p + q cos C)(q + r cos A)
  • N' = (q + r cos A)(r + p cos B): (p + r cos B)(r + q cos A): − (p + r cos B)(q + r cos A)

उदाहरण के लिए, बाह्य त्रिकोण इनसेंटर का एंटीपेडल ट्राइएंगल है।

मान लीजिए कि P किसी भी विस्तारित भुजा BC, CA, AB और P पर स्थित नहीं है−1 P के समकोणीय संयुग्म को दर्शाता है। P का पैडल त्रिकोण, P के एंटीपेडल त्रिकोण के लिए होमोथेटिक परिवर्तन है।-1. समरूप केंद्र (जो त्रिकोण केंद्र है यदि और केवल यदि P त्रिभुज केंद्र है) त्रिरेखीय निर्देशांक में दिया गया बिंदु है

एपी (पी + क्यू कॉस सी) (पी + आर कॉस बी): बीक्यू (क्यू + आर कॉस ए) (क्यू + पी कॉस सी): सीआर (आर + पी कॉस बी) (आर + क्यू कॉस ए)।

पी के पेडल त्रिकोण और पी के एंटीपेडल त्रिकोण के क्षेत्रों का उत्पाद−1 त्रिभुज ABC के क्षेत्रफल के वर्ग के बराबर है।

पेडल सर्कल

File:Pedal circle of isogonal conjugate.jpg
बिंदु का पेडल सर्कल और इसके आइसोगोनल संयुग्म समान हैं।

पेडल सर्कल को पेडल त्रिकोण के परिधि के रूप में परिभाषित किया गया है। ध्यान दें कि पैडल सर्कल को त्रिभुज के परिवृत्त पर स्थित बिंदुओं के लिए परिभाषित नहीं किया गया है।

आइसोगोनल संयुग्मों का पेडल सर्कल

किसी भी बिंदु के लिए त्रिभुज के परिवृत्त पर स्थित नहीं है, यह ज्ञात है कि और इसके आइसोगोनल संयुग्म सामान्य पेडल सर्कल है, जिसका केंद्र इन दो बिंदुओं का मध्य बिंदु है।[3]


संदर्भ

  1. "Trigonometry/Circles and Triangles/The Pedal Triangle - Wikibooks, open books for an open world". en.wikibooks.org. Retrieved 2020-10-31.
  2. Alfred S. Posamentier; Charles T. Salkind (1996). ज्यामिति में चुनौतीपूर्ण समस्याएं. New York: Dover. pp. 85-86. ISBN 9780486134864. OCLC 829151719.
  3. Honsberger, Ross (1995-01-01). उन्नीसवीं और बीसवीं सदी के यूक्लिडियन ज्यामिति में एपिसोड. The Mathematical Association of America. ISBN 978-0-88385-951-3.


बाहरी संबंध