ब्रैग का नियम: Difference between revisions

From Vigyanwiki
Line 1: Line 1:
{{short description|Physical law regarding scattering angles of radiation through a medium}}
{{short description|Physical law regarding scattering angles of radiation through a medium}}
भौतिकी और रसायन विज्ञान में, ब्रैग का नियम, [[जॉर्ज वुल्फ]]-ब्रैग की स्थिति या लाउ-ब्रैग हस्तक्षेप, लाउ विवर्तन का  विशेष मामला,  क्रिस्टल जाली से तरंगों के सुसंगत प्रकीर्णन के लिए कोण देता है। यह जाली विमानों द्वारा बिखरे तरंग मोर्चों के सुपरपोजिशन को शामिल करता है, जिससे तरंग दैर्ध्य और [[बिखरने]] वाले कोण के बीच सख्त संबंध होता है, या फिर क्रिस्टल जाली के संबंध में वेववेक्टर ट्रांसफर होता है। इस तरह के कानून को शुरू में क्रिस्टल पर ्स-रे के लिए तैयार किया गया था। हालांकि, यह सभी प्रकार के क्वांटम बीम पर लागू होता है, जिसमें परमाणु दूरी पर न्यूट्रॉन और इलेक्ट्रॉन तरंगों के साथ-साथ कृत्रिम आवधिक सूक्ष्म जाली पर दृश्य प्रकाश भी शामिल है।
भौतिकी और रसायन विज्ञान में, ब्रैग का नियम, [[जॉर्ज वुल्फ]]-ब्रैग की स्थिति या लाउ-ब्रैग हस्तक्षेप, लाउ विवर्तन का  विशेष स्तिथियों ,  क्रिस्टल जाली से तरंगों के सुसंगत प्रकीर्णन के लिए कोण देता है। यह जाली विमानों द्वारा बिखरे तरंग मोर्चों के सुपरपोजिशन को सम्मिलित करता है, जिससे तरंग दैर्ध्य और [[बिखरने]] वाले कोण के मध्य सख्त संबंध होता है, या फिर क्रिस्टल जाली के संबंध में वेववेक्टर ट्रांसफर होता है। इस तरह के कानून को शुरू में क्रिस्टल पर ्स-रे के लिए तैयार किया गया था। हालांकि, यह सभी प्रकार के क्वांटम बीम पर लागू होता है, जिसमें परमाणु दूरी पर न्यूट्रॉन और इलेक्ट्रॉन तरंगों के साथ-साथ कृत्रिम आवधिक सूक्ष्म जाली पर दृश्य प्रकाश भी सम्मिलित है।


== इतिहास ==
== इतिहास ==
Line 12: Line 12:
[[File:Bragg diffraction 2.svg|thumb|400px|ब्रैग विवर्तन<ref name="bragg">{{citation |last1=Bragg |first1=Henry W. |last2=Bragg |first2=Lawrence W. |date=January 1915|title=X RAYS AND CRYSTAL STRUCTURE |url=https://archive.org/details/xrayscrystalstru00braguoft/page/n5/mode/2up?ref=ol&view=theater |editor=G. Bell and sons L.T.D. London |pages=228 |access-date=2021-05-12}}</ref>{{rp|16}}
[[File:Bragg diffraction 2.svg|thumb|400px|ब्रैग विवर्तन<ref name="bragg">{{citation |last1=Bragg |first1=Henry W. |last2=Bragg |first2=Lawrence W. |date=January 1915|title=X RAYS AND CRYSTAL STRUCTURE |url=https://archive.org/details/xrayscrystalstru00braguoft/page/n5/mode/2up?ref=ol&view=theater |editor=G. Bell and sons L.T.D. London |pages=228 |access-date=2021-05-12}}</ref>{{rp|16}}
समान तरंग दैर्ध्य और चरण वाले दो बीम  क्रिस्टलीय ठोस के पास आते हैं और इसके भीतर दो अलग-अलग परमाणुओं से बिखर जाते हैं। निचला बीम 2dsinθ की  अतिरिक्त लंबाई का पता लगाता है। रचनात्मक हस्तक्षेप तब होता है जब यह लंबाई विकिरण के तरंग दैर्ध्य के  पूर्णांक गुणक के बराबर होती है।]]ब्रैग विवर्तन तब होता है जब [[तरंग दैर्ध्य]] का विकिरण होता है {{mvar|λ}} परमाणु रिक्ति के बराबर,  क्रिस्टलीय प्रणाली के परमाणुओं द्वारा  स्पेक्युलर परावर्तन फैशन (दर्पण जैसा प्रतिबिंब) में बिखरा हुआ है, और रचनात्मक हस्तक्षेप से गुजरता है।
समान तरंग दैर्ध्य और चरण वाले दो बीम  क्रिस्टलीय ठोस के पास आते हैं और इसके भीतर दो अलग-अलग परमाणुओं से बिखर जाते हैं। निचला बीम 2dsinθ की  अतिरिक्त लंबाई का पता लगाता है। रचनात्मक हस्तक्षेप तब होता है जब यह लंबाई विकिरण के तरंग दैर्ध्य के  पूर्णांक गुणक के बराबर होती है।]]ब्रैग विवर्तन तब होता है जब [[तरंग दैर्ध्य]] का विकिरण होता है {{mvar|λ}} परमाणु रिक्ति के बराबर,  क्रिस्टलीय प्रणाली के परमाणुओं द्वारा  स्पेक्युलर परावर्तन फैशन (दर्पण जैसा प्रतिबिंब) में बिखरा हुआ है, और रचनात्मक हस्तक्षेप से गुजरता है।
क्रिस्टलीय ठोस के लिए, तरंगें दूरी द्वारा अलग किए गए जालक तलों से प्रकीर्णित होती हैं {{mvar|d}} परमाणुओं की क्रमिक परतों के बीच।<ref name="moseley1913a"/>{{rp|223}} जब बिखरी हुई तरंगें [[हस्तक्षेप (लहर प्रसार)]] रचनात्मक रूप से होती हैं तो वे चरण में रहती हैं। वे तभी परावर्तित होते हैं जब वे सतह पर  निश्चित कोण, दृष्टि कोण (ऑप्टिक्स) पर प्रहार करते हैं {{mvar|θ}} (दाईं ओर की आकृति देखें, और ध्यान दें कि यह स्नेल के नियम की परंपरा से अलग है जहां {{mvar|θ}} सामान्य सतह से मापा जाता है), तरंग दैर्ध्य {{mvar|λ}}, और झंझरी स्थिरांक {{mvar|d}}
क्रिस्टलीय ठोस के लिए, तरंगें दूरी द्वारा अलग किए गए जालक तलों से प्रकीर्णित होती हैं {{mvar|d}} परमाणुओं की क्रमिक परतों के मध्य।<ref name="moseley1913a"/>{{rp|223}} जब बिखरी हुई तरंगें [[हस्तक्षेप (लहर प्रसार)]] रचनात्मक रूप से होती हैं तो वे चरण में रहती हैं। वे तभी परावर्तित होते हैं जब वे सतह पर  निश्चित कोण, दृष्टि कोण (ऑप्टिक्स) पर प्रहार करते हैं {{mvar|θ}} (दाईं ओर की आकृति देखें, और ध्यान दें कि यह स्नेल के नियम की परंपरा से अलग है जहां {{mvar|θ}} सामान्य सतह से मापा जाता है), तरंग दैर्ध्य {{mvar|λ}}, और झंझरी स्थिरांक {{mvar|d}}
क्रिस्टल के संबंध से जुड़े होने का:<ref name="Mose1913" />{{rp|1026}}
क्रिस्टल के संबंध से जुड़े होने का:<ref name="Mose1913" />{{rp|1026}}
<math display="block">n\lambda = 2 d\sin\theta</math>
<math display="block">n\lambda = 2 d\sin\theta</math>
Line 27: Line 27:
== अनुमानी व्युत्पत्ति ==
== अनुमानी व्युत्पत्ति ==
मान लीजिए कि  ल [[ एकरंगा | रंगा]] तरंग (किसी भी प्रकार की) पृथक्करण के साथ वर्गाकार जाली बिंदुओं के संरेखित तलों पर आपतित होती है <math>d</math>, कोण पर <math>\theta</math>. बिंदु A और C  तल पर हैं, और B नीचे तल पर है। बिंदु ABCC'  चतुर्भुज बनाते हैं।
मान लीजिए कि  ल [[ एकरंगा | रंगा]] तरंग (किसी भी प्रकार की) पृथक्करण के साथ वर्गाकार जाली बिंदुओं के संरेखित तलों पर आपतित होती है <math>d</math>, कोण पर <math>\theta</math>. बिंदु A और C  तल पर हैं, और B नीचे तल पर है। बिंदु ABCC'  चतुर्भुज बनाते हैं।
[[File:Bragg's law.svg|center|600px]]किरण (ऑप्टिक्स) जो AC' के साथ परावर्तित होती है और वह किरण जो AB के साथ संचरित होती है, फिर BC के साथ परावर्तित होती है, के बीच पथ अंतर होगा। यह पथ भेद है
[[File:Bragg's law.svg|center|600px]]किरण (ऑप्टिक्स) जो AC' के साथ परावर्तित होती है और वह किरण जो AB के साथ संचरित होती है, फिर BC के साथ परावर्तित होती है, के मध्य पथ अंतर होगा। यह पथ भेद है
<math display="block">(AB + BC) - \left(AC'\right) \,.</math>
<math display="block">(AB + BC) - \left(AC'\right) \,.</math>
दो अलग-अलग तरंगें  ही चरण (तरंगों) के साथ  बिंदु (इन जाली विमानों से असीम रूप से विस्थापित) पर पहुंचेंगी, और इसलिए रचनात्मक हस्तक्षेप से गुजरती हैं, अगर और केवल अगर यह पथ अंतर तरंग दैर्ध्य के किसी भी पूर्णांक मान के बराबर है, अर्थात।
दो अलग-अलग तरंगें  ही चरण (तरंगों) के साथ  बिंदु (इन जाली विमानों से असीम रूप से विस्थापित) पर पहुंचेंगी, और इसलिए रचनात्मक हस्तक्षेप से गुजरती हैं, अगर और केवल अगर यह पथ अंतर तरंग दैर्ध्य के किसी भी पूर्णांक मान के बराबर है, अर्थात।
Line 45: Line 45:


== कोलाइड्स द्वारा दृश्यमान प्रकाश का प्रकीर्णन ==
== कोलाइड्स द्वारा दृश्यमान प्रकाश का प्रकीर्णन ==
[[कोलाइडल क्रिस्टल]] कणों का  उच्च क्रम (क्रिस्टल जाली) सरणी है जो  लंबी सीमा (कुछ [[मिलीमीटर]] से लंबाई में  [[सेंटीमीटर]] तक) में बनता है; कोलाइडल क्रिस्टल में उनके परमाणु या आणविक समकक्षों के समान दिखने और गुण होते हैं।<ref name='Pieranski_1983'>{{Cite journal|title=कोलाइडल क्रिस्टल|journal=Contemporary Physics|year=1983|first=P|last=Pieranski|volume=24|pages=25–73 |doi=10.1080/00107518308227471 |bibcode = 1983ConPh..24...25P }</ref> यह कई वर्षों से ज्ञात है कि, कूलम्ब के नियम [[कूलम्बिक]] इंटरैक्शन के कारण,  [[जलीय]] वातावरण में [[विद्युत आवेशित]] [[बड़े अणुओं]] लंबी दूरी के क्रिस्टल-जैसे सहसंबंध प्रदर्शित कर सकते हैं, जिसमें इंटरपार्टिकल पृथक्करण दूरी अक्सर अलग-अलग कण से काफी अधिक होती है। व्यास। गोलाकार कणों की आवधिक सरणी [[रिक्ति दोष]] (कणों के बीच की जगह) को जन्म देती है, जो दृश्य स्पेक्ट्रम के लिए  प्राकृतिक विवर्तन झंझरी के रूप में कार्य करती है, जब अंतरालीय रिक्ति घटना के कोण (ऑप्टिक्स) प्रकाश तरंग के परिमाण के समान क्रम की होती है।<ref name='Hiltner_1969'>{{Cite journal|title=आदेशित निलंबन द्वारा प्रकाश का विवर्तन|journal=Journal of Physical Chemistry|year=1969|first=PA|last=Hiltner|author2=IM Krieger| volume=73|issue=7|pages=2386–2389 |doi=10.1021/j100727a049}}</ref><ref name='Aksay_1984'>{{Cite journal| title=कोलाइडल समेकन के माध्यम से माइक्रोस्ट्रक्चरल कंट्रोल|journal=Proceedings of the American Ceramic Society| year=1984| first=IA|last=Aksay| volume=9|pages=94 }}</ref><ref name="LuckKlier1963">{{cite journal|last1=Luck|first1=Werner|last2=Klier|first2=Manfred| last3=Wesslau|first3=Hermann|title=Über Bragg-Reflexe mit sichtbarem Licht an monodispersen Kunststofflatices. II| journal=Berichte der Bunsengesellschaft für physikalische Chemie|volume=67|issue=1|year=1963|pages=84–85| issn=0005-9021| doi=10.1002/bbpc.19630670114}}</ref> प्रकृति में इन मामलों में, क्रिस्टलीय ठोस में ्स-रे के प्रकीर्णन के समान मामले में ब्रैग के नियम के अनुसार दृश्यमान प्रकाश तरंगों के विवर्तन और रचनात्मक हस्तक्षेप के लिए ब्रिलियंट इंद्रधनुषी (या रंगों का खेल) को जिम्मेदार ठहराया जाता है। प्रभाव दृश्य तरंग दैर्ध्य पर होते हैं क्योंकि पृथक्करण पैरामीटर {{mvar|d}} सच्चे क्रिस्टल की तुलना में बहुत बड़ा है। कीमती [[ ओपीएएल ]] कोलाइडल क्रिस्टल का  उदाहरण है जो हड़ताली ऑप्टिकल प्रभाव पैदा करता है।
[[कोलाइडल क्रिस्टल]] कणों का  उच्च क्रम (क्रिस्टल जाली) सरणी है जो  लंबी सीमा (कुछ [[मिलीमीटर]] से लंबाई में  [[सेंटीमीटर]] तक) में बनता है; कोलाइडल क्रिस्टल में उनके परमाणु या आणविक समकक्षों के समान दिखने और गुण होते हैं।<ref name='Pieranski_1983'>{{Cite journal|title=कोलाइडल क्रिस्टल|journal=Contemporary Physics|year=1983|first=P|last=Pieranski|volume=24|pages=25–73 |doi=10.1080/00107518308227471 |bibcode = 1983ConPh..24...25P }</ref> यह कई वर्षों से ज्ञात है कि, कूलम्ब के नियम [[कूलम्बिक]] इंटरैक्शन के कारण,  [[जलीय]] वातावरण में [[विद्युत आवेशित]] [[बड़े अणुओं]] लंबी दूरी के क्रिस्टल-जैसे सहसंबंध प्रदर्शित कर सकते हैं, जिसमें इंटरपार्टिकल पृथक्करण दूरी अक्सर अलग-अलग कण से काफी अधिक होती है। व्यास। गोलाकार कणों की आवधिक सरणी [[रिक्ति दोष]] (कणों के मध्य की जगह) को जन्म देती है, जो दृश्य स्पेक्ट्रम के लिए  प्राकृतिक विवर्तन झंझरी के रूप में कार्य करती है, जब अंतरालीय रिक्ति घटना के कोण (ऑप्टिक्स) प्रकाश तरंग के परिमाण के समान क्रम की होती है।<ref name='Hiltner_1969'>{{Cite journal|title=आदेशित निलंबन द्वारा प्रकाश का विवर्तन|journal=Journal of Physical Chemistry|year=1969|first=PA|last=Hiltner|author2=IM Krieger| volume=73|issue=7|pages=2386–2389 |doi=10.1021/j100727a049}}</ref><ref name='Aksay_1984'>{{Cite journal| title=कोलाइडल समेकन के माध्यम से माइक्रोस्ट्रक्चरल कंट्रोल|journal=Proceedings of the American Ceramic Society| year=1984| first=IA|last=Aksay| volume=9|pages=94 }}</ref><ref name="LuckKlier1963">{{cite journal|last1=Luck|first1=Werner|last2=Klier|first2=Manfred| last3=Wesslau|first3=Hermann|title=Über Bragg-Reflexe mit sichtbarem Licht an monodispersen Kunststofflatices. II| journal=Berichte der Bunsengesellschaft für physikalische Chemie|volume=67|issue=1|year=1963|pages=84–85| issn=0005-9021| doi=10.1002/bbpc.19630670114}}</ref> प्रकृति में इन मामलों में, क्रिस्टलीय ठोस में ्स-रे के प्रकीर्णन के समान मामले में ब्रैग के नियम के अनुसार दृश्यमान प्रकाश तरंगों के विवर्तन और रचनात्मक हस्तक्षेप के लिए ब्रिलियंट इंद्रधनुषी (या रंगों का खेल) को जिम्मेदार ठहराया जाता है। प्रभाव दृश्य तरंग दैर्ध्य पर होते हैं क्योंकि पृथक्करण पैरामीटर {{mvar|d}} सच्चे क्रिस्टल की तुलना में बहुत बड़ा है। कीमती [[ ओपीएएल ]] कोलाइडल क्रिस्टल का  उदाहरण है जो हड़ताली ऑप्टिकल प्रभाव पैदा करता है।


== वॉल्यूम ब्रैग झंझरी ==
== वॉल्यूम ब्रैग झंझरी ==
Line 52: Line 52:


<math display="block">2\Lambda\sin(\theta + \varphi)=m\lambda_B \,,</math>
<math display="block">2\Lambda\sin(\theta + \varphi)=m\lambda_B \,,</math>
कहाँ {{mvar|m}} ब्रैग ऑर्डर ( सकारात्मक पूर्णांक) है, {{math|''λ''<sub>B</sub>}} विचलित तरंग दैर्ध्य, Λ झंझरी की फ्रिंज रिक्ति, {{mvar|θ}} घटना बीम और सामान्य के बीच का कोण ({{math|'''N'''}}) प्रवेश सतह की और {{mvar|φ}} सामान्य और झंझरी वेक्टर के बीच का कोण ({{math|'''K<sub>G</sub>'''}}). विकिरण जो ब्रैग के नियम से मेल नहीं खाता है, वह बिना विचलित हुए VBG से होकर गुजरेगा। घटना कोण को बदलकर कुछ सौ नैनोमीटर पर आउटपुट वेवलेंथ को ट्यून किया जा सकता है ({{mvar|θ}}). VBG का उपयोग ट्यून करने योग्य लेजर # व्यापक रूप से ट्यून करने योग्य लेजर स्रोत या वैश्विक [[हाइपरस्पेक्ट्रल इमेजिंग]] (फोटॉन आदि देखें) करने के लिए किया जा रहा है।
कहाँ {{mvar|m}} ब्रैग ऑर्डर ( सकारात्मक पूर्णांक) है, {{math|''λ''<sub>B</sub>}} विचलित तरंग दैर्ध्य, Λ झंझरी की फ्रिंज रिक्ति, {{mvar|θ}} घटना बीम और सामान्य के मध्य का कोण ({{math|'''N'''}}) प्रवेश सतह की और {{mvar|φ}} सामान्य और झंझरी वेक्टर के मध्य का कोण ({{math|'''K<sub>G</sub>'''}}). विकिरण जो ब्रैग के नियम से मेल नहीं खाता है, वह बिना विचलित हुए VBG से होकर गुजरेगा। घटना कोण को बदलकर कुछ सौ नैनोमीटर पर आउटपुट वेवलेंथ को ट्यून किया जा सकता है ({{mvar|θ}}). VBG का उपयोग ट्यून करने योग्य लेजर # व्यापक रूप से ट्यून करने योग्य लेजर स्रोत या वैश्विक [[हाइपरस्पेक्ट्रल इमेजिंग]] (फोटॉन आदि देखें) करने के लिए किया जा रहा है।


== चयन नियम और व्यावहारिक क्रिस्टलोग्राफी ==
== चयन नियम और व्यावहारिक क्रिस्टलोग्राफी ==

Revision as of 11:14, 13 April 2023

भौतिकी और रसायन विज्ञान में, ब्रैग का नियम, जॉर्ज वुल्फ-ब्रैग की स्थिति या लाउ-ब्रैग हस्तक्षेप, लाउ विवर्तन का विशेष स्तिथियों , क्रिस्टल जाली से तरंगों के सुसंगत प्रकीर्णन के लिए कोण देता है। यह जाली विमानों द्वारा बिखरे तरंग मोर्चों के सुपरपोजिशन को सम्मिलित करता है, जिससे तरंग दैर्ध्य और बिखरने वाले कोण के मध्य सख्त संबंध होता है, या फिर क्रिस्टल जाली के संबंध में वेववेक्टर ट्रांसफर होता है। इस तरह के कानून को शुरू में क्रिस्टल पर ्स-रे के लिए तैयार किया गया था। हालांकि, यह सभी प्रकार के क्वांटम बीम पर लागू होता है, जिसमें परमाणु दूरी पर न्यूट्रॉन और इलेक्ट्रॉन तरंगों के साथ-साथ कृत्रिम आवधिक सूक्ष्म जाली पर दृश्य प्रकाश भी सम्मिलित है।

इतिहास

्स-रे क्रिस्टल में परमाणुओं के साथ परस्पर क्रिया करते हैं।

ब्रैग विवर्तन (जिसे ्स-रे विवर्तन के ब्रैग सूत्रीकरण के रूप में भी जाना जाता है) को पहली बार 1913 में लॉरेंस ब्रैग और उनके पिता विलियम हेनरी ब्रैग द्वारा प्रस्तावित किया गया था।[1] उनकी खोज के जवाब में कि क्रिस्टलीय ठोस परावर्तित ्स-रे के आश्चर्यजनक पैटर्न का उत्पादन करते हैं (इसके विपरीत, कहते हैं, तरल)। उन्होंने पाया कि ये क्रिस्टल, कुछ विशिष्ट तरंग दैर्ध्य और घटना कोणों पर, परावर्तित विकिरण की तीव्र चोटियों का उत्पादन करते हैं। व्युत्पन्न ब्रैग का नियम लाउ विवर्तन की विशेष व्याख्या है, जहां ब्रैग्स ने क्रिस्टल जाली विमानों से तरंगों के प्रतिबिंब द्वारा ज्यामितीय तरीके से रचनात्मक लाउ-ब्रैग हस्तक्षेप की व्याख्या की, जैसे कि पथ-अंतर घटना तरंगदैर्ध्य का गुणक बन जाता है।

के अनुसार 2θ विचलन, चरण बदलाव रचनात्मक (बाएं आंकड़ा) या विनाशकारी (दायां आंकड़ा) हस्तक्षेप का कारण बनता है।

लॉरेंस ब्रैग ने क्रिस्टल को स्थिर पैरामीटर द्वारा अलग किए गए असतत समानांतर विमानों के सेट के रूप में मॉडलिंग करके इस परिणाम की व्याख्या की d. यह प्रस्तावित किया गया था कि घटना ्स-रे विकिरण ब्रैग चोटी का उत्पादन करेगा यदि विभिन्न विमानों से उनका प्रतिबिंब रचनात्मक रूप से हस्तक्षेप करता है। हस्तक्षेप रचनात्मक होता है जब चरण बदलाव का गुणक होता है 2π; इस स्थिति को ब्रैग के कानून द्वारा व्यक्त किया जा सकता है (नीचे ब्रैग स्थिति अनुभाग देखें) और पहली बार लॉरेंस ब्रैग द्वारा 11 नवंबर 1912 को कैम्ब्रिज फिलोसोफिकल सोसायटी को प्रस्तुत किया गया था।[2][3] हालांकि सरल, ब्रैग के कानून ने परमाणु पैमाने पर वास्तविक उप-परमाणु कणों के अस्तित्व की पुष्टि की, साथ ही ्स-रे और न्यूट्रॉन विवर्तन के रूप में क्रिस्टल का अध्ययन करने के लिए शक्तिशाली नया उपकरण प्रदान किया। लॉरेंस ब्रैग और उनके पिता, विलियम हेनरी ब्रैग को 1915 में सोडियम क्लोराइड, जिंक सल्फाइड और हीरे से शुरू होने वाली क्रिस्टल संरचनाओं के निर्धारण में उनके काम के लिए भौतिकी में नोबेल पुरस्कार से सम्मानित किया गया था। वे संयुक्त रूप से जीतने वाली मात्र पिता-पुत्र टीम हैं।

ब्रैग विवर्तन की अवधारणा न्यूट्रॉन विवर्तन और इलेक्ट्रॉन विवर्तन प्रक्रियाओं पर समान रूप से लागू होती है।[4] न्यूट्रॉन और ्स-रे दोनों तरंग दैर्ध्य अंतर-परमाणु दूरी (~ 150 pm) के साथ तुलनीय हैं और इस प्रकार इस लंबाई के पैमाने के लिए उत्कृष्ट जांच है।

डींग मारने की स्थिति

ब्रैग विवर्तन[5]: 16  समान तरंग दैर्ध्य और चरण वाले दो बीम क्रिस्टलीय ठोस के पास आते हैं और इसके भीतर दो अलग-अलग परमाणुओं से बिखर जाते हैं। निचला बीम 2dsinθ की अतिरिक्त लंबाई का पता लगाता है। रचनात्मक हस्तक्षेप तब होता है जब यह लंबाई विकिरण के तरंग दैर्ध्य के पूर्णांक गुणक के बराबर होती है।

ब्रैग विवर्तन तब होता है जब तरंग दैर्ध्य का विकिरण होता है λ परमाणु रिक्ति के बराबर, क्रिस्टलीय प्रणाली के परमाणुओं द्वारा स्पेक्युलर परावर्तन फैशन (दर्पण जैसा प्रतिबिंब) में बिखरा हुआ है, और रचनात्मक हस्तक्षेप से गुजरता है।

क्रिस्टलीय ठोस के लिए, तरंगें दूरी द्वारा अलग किए गए जालक तलों से प्रकीर्णित होती हैं d परमाणुओं की क्रमिक परतों के मध्य।[6]: 223  जब बिखरी हुई तरंगें हस्तक्षेप (लहर प्रसार) रचनात्मक रूप से होती हैं तो वे चरण में रहती हैं। वे तभी परावर्तित होते हैं जब वे सतह पर निश्चित कोण, दृष्टि कोण (ऑप्टिक्स) पर प्रहार करते हैं θ (दाईं ओर की आकृति देखें, और ध्यान दें कि यह स्नेल के नियम की परंपरा से अलग है जहां θ सामान्य सतह से मापा जाता है), तरंग दैर्ध्य λ, और झंझरी स्थिरांक d क्रिस्टल के संबंध से जुड़े होने का:[7]: 1026 

विवर्तन क्रम है ( पहला आदेश है, दूसरा क्रम है,[6]: 221  तीसरा क्रम है[7]: 1028 ). रचनात्मक या विनाशकारी हस्तक्षेप का प्रभाव क्रिस्टलीय जाली के क्रमिक क्रिस्टलोग्राफिक विमानों (एच, के, एल) में प्रतिबिंब के संचयी प्रभाव के कारण तेज हो जाता है (जैसा कि मिलर सूचकांक द्वारा वर्णित है)। यह ब्रैग के कानून की ओर जाता है, जो रचनात्मक हस्तक्षेप के सबसे मजबूत होने के लिए θ पर स्थिति का वर्णन करता है:[8] ध्यान दें कि गतिमान कणों, जिनमें इलेक्ट्रॉन, प्रोटॉन और न्यूट्रॉन शामिल हैं, की संबंधित तरंग दैर्ध्य होती है जिसे डी ब्रोगली तरंग दैर्ध्य कहा जाता है। प्रकीर्णन कोण के फलन के रूप में प्रकीर्णित तरंगों की तीव्रता को मापकर विवर्तन पैटर्न प्राप्त किया जाता है। ब्रैग चोटियों के रूप में जानी जाने वाली बहुत मजबूत तीव्रता विवर्तन पैटर्न में उन बिंदुओं पर प्राप्त की जाती है जहां प्रकीर्णन कोण ब्रैग स्थिति को संतुष्ट करते हैं। जैसा कि परिचय में उल्लेख किया गया है, यह स्थिति अधिक सामान्य लाउ समीकरणों का विशेष मामला है, और लाउ समीकरणों को अतिरिक्त धारणाओं के तहत ब्रैग की स्थिति को कम करने के लिए दिखाया जा सकता है।

क्रिस्टल जाली द्वारा ब्रैग विवर्तन की घटना पतली फिल्म हस्तक्षेप के साथ समान विशेषताओं को साझा करती है, जिसकी सीमा में समान स्थिति होती है जहां आसपास के माध्यम (जैसे हवा) और हस्तक्षेप करने वाले माध्यम (जैसे तेल) के अपवर्तक सूचकांक बराबर होते हैं।

प्रकीर्णन प्रक्रियाओं को रेखांकित करना

जब ्स-रे परमाणु पर आपतित होते हैं, तो वे इलेक्ट्रॉन को गति प्रदान करते हैं, जैसा कि कोई विद्युत चुम्बकीय तरंग करती है। इन विद्युत आवेशों की गति (भौतिकी) ही आवृत्ति के साथ तरंगों को फिर से विकीर्ण करती है, विभिन्न प्रकार के प्रभावों के कारण थोड़ा धुंधला हो जाता है; इस घटना को रेले स्कैटरिंग (या इलास्टिक स्कैटरिंग) के रूप में जाना जाता है। बिखरी हुई तरंगें स्वयं बिखर सकती हैं लेकिन यह द्वितीयक बिखराव नगण्य माना जाता है।

इसी तरह की प्रक्रिया परमाणु नाभिक से न्यूट्रॉन तरंगों को बिखेरने या अप्रकाशित इलेक्ट्रॉन के साथ जुटना (भौतिकी) स्पिन (भौतिकी) की बातचीत से होती है। ये पुन: उत्सर्जित तरंग क्षेत्र दूसरे के साथ या तो रचनात्मक या विनाशकारी रूप से हस्तक्षेप (लहर प्रसार) (अतिव्यापी तरंगें या तो मजबूत चोटियों का उत्पादन करने के लिए साथ जुड़ती हैं या दूसरे से कुछ हद तक घटाई जाती हैं), डिटेक्टर या फिल्म पर विवर्तन नमूना का निर्माण करती हैं। परिणामी तरंग हस्तक्षेप पैटर्न विवर्तन विश्लेषण का आधार है। इस विश्लेषण को ब्रैग विवर्तन कहा जाता है।

अनुमानी व्युत्पत्ति

मान लीजिए कि ल रंगा तरंग (किसी भी प्रकार की) पृथक्करण के साथ वर्गाकार जाली बिंदुओं के संरेखित तलों पर आपतित होती है , कोण पर . बिंदु A और C तल पर हैं, और B नीचे तल पर है। बिंदु ABCC' चतुर्भुज बनाते हैं।

Bragg's law.svg

किरण (ऑप्टिक्स) जो AC' के साथ परावर्तित होती है और वह किरण जो AB के साथ संचरित होती है, फिर BC के साथ परावर्तित होती है, के मध्य पथ अंतर होगा। यह पथ भेद है

दो अलग-अलग तरंगें ही चरण (तरंगों) के साथ बिंदु (इन जाली विमानों से असीम रूप से विस्थापित) पर पहुंचेंगी, और इसलिए रचनात्मक हस्तक्षेप से गुजरती हैं, अगर और केवल अगर यह पथ अंतर तरंग दैर्ध्य के किसी भी पूर्णांक मान के बराबर है, अर्थात।
कहाँ और क्रमशः पूर्णांक और घटना तरंग की तरंग दैर्ध्य हैं।

इसलिए,

जिससे यह अनुसरण करता है
सब कुछ साथ रखकर,
जो सरल करता है जो ब्रैग का नियम ऊपर दिखाया गया है।

यदि चित्रों में दिखाए गए अनुसार परमाणुओं के केवल दो विमान विवर्तन कर रहे थे, तो रचनात्मक से विनाशकारी हस्तक्षेप का संक्रमण कोण के समारोह के रूप में धीरे-धीरे होगा, ब्रैग कोणों पर कोमल मैक्सिमा और मिनिमा के साथ। हालांकि, चूंकि कई परमाणु विमान अधिकांश वास्तविक सामग्रियों में हस्तक्षेप में भाग ले रहे हैं, ज्यादातर विनाशकारी हस्तक्षेप परिणाम से घिरे बहुत तेज शिखर।[9] अधिक सामान्य लाउ समीकरणों से कठोर व्युत्पत्ति उपलब्ध है (पृष्ठ देखें: लाउ समीकरण)।

कोलाइड्स द्वारा दृश्यमान प्रकाश का प्रकीर्णन

कोलाइडल क्रिस्टल कणों का उच्च क्रम (क्रिस्टल जाली) सरणी है जो लंबी सीमा (कुछ मिलीमीटर से लंबाई में सेंटीमीटर तक) में बनता है; कोलाइडल क्रिस्टल में उनके परमाणु या आणविक समकक्षों के समान दिखने और गुण होते हैं।[10] यह कई वर्षों से ज्ञात है कि, कूलम्ब के नियम कूलम्बिक इंटरैक्शन के कारण, जलीय वातावरण में विद्युत आवेशित बड़े अणुओं लंबी दूरी के क्रिस्टल-जैसे सहसंबंध प्रदर्शित कर सकते हैं, जिसमें इंटरपार्टिकल पृथक्करण दूरी अक्सर अलग-अलग कण से काफी अधिक होती है। व्यास। गोलाकार कणों की आवधिक सरणी रिक्ति दोष (कणों के मध्य की जगह) को जन्म देती है, जो दृश्य स्पेक्ट्रम के लिए प्राकृतिक विवर्तन झंझरी के रूप में कार्य करती है, जब अंतरालीय रिक्ति घटना के कोण (ऑप्टिक्स) प्रकाश तरंग के परिमाण के समान क्रम की होती है।[11][12][13] प्रकृति में इन मामलों में, क्रिस्टलीय ठोस में ्स-रे के प्रकीर्णन के समान मामले में ब्रैग के नियम के अनुसार दृश्यमान प्रकाश तरंगों के विवर्तन और रचनात्मक हस्तक्षेप के लिए ब्रिलियंट इंद्रधनुषी (या रंगों का खेल) को जिम्मेदार ठहराया जाता है। प्रभाव दृश्य तरंग दैर्ध्य पर होते हैं क्योंकि पृथक्करण पैरामीटर d सच्चे क्रिस्टल की तुलना में बहुत बड़ा है। कीमती ओपीएएल कोलाइडल क्रिस्टल का उदाहरण है जो हड़ताली ऑप्टिकल प्रभाव पैदा करता है।

वॉल्यूम ब्रैग झंझरी

वॉल्यूम ब्रैग ग्रेटिंग्स (वीबीजी) या वॉल्यूम होलोग्राम (वीएचजी) में वॉल्यूम होता है जहां अपवर्तक सूचकांक में आवधिक परिवर्तन होता है। अपवर्तक सूचकांक के मॉड्यूलेशन के उन्मुखीकरण के आधार पर, VBG का उपयोग या तो संचरण गुणांक या परावर्तन (भौतिकी) के लिए तरंग दैर्ध्य की छोटी बैंडविड्थ के लिए किया जा सकता है।[14] ब्रैग का कानून (वॉल्यूम होलोग्राम के लिए अनुकूलित) निर्धारित करता है कि कौन सी तरंगदैर्ध्य अलग हो जाएगी:[15]

कहाँ m ब्रैग ऑर्डर ( सकारात्मक पूर्णांक) है, λB विचलित तरंग दैर्ध्य, Λ झंझरी की फ्रिंज रिक्ति, θ घटना बीम और सामान्य के मध्य का कोण (N) प्रवेश सतह की और φ सामान्य और झंझरी वेक्टर के मध्य का कोण (KG). विकिरण जो ब्रैग के नियम से मेल नहीं खाता है, वह बिना विचलित हुए VBG से होकर गुजरेगा। घटना कोण को बदलकर कुछ सौ नैनोमीटर पर आउटपुट वेवलेंथ को ट्यून किया जा सकता है (θ). VBG का उपयोग ट्यून करने योग्य लेजर # व्यापक रूप से ट्यून करने योग्य लेजर स्रोत या वैश्विक हाइपरस्पेक्ट्रल इमेजिंग (फोटॉन आदि देखें) करने के लिए किया जा रहा है।

चयन नियम और व्यावहारिक क्रिस्टलोग्राफी

जैसा कि ऊपर कहा गया है, ब्रैग के नियम का उपयोग निम्नलिखित संबंधों के माध्यम से किसी विशेष घन प्रणाली की जाली रिक्ति प्राप्त करने के लिए किया जा सकता है:

कहाँ घन क्रिस्टल की जाली रिक्ति है, और h, k, और ब्रैग प्लेन के मिलर इंडेक्स हैं। ब्रैग के नियम के साथ इस संबंध का संयोजन देता है:

मिलर सूचकांकों के लिए अलग-अलग क्यूबिक ब्राविस जाली के लिए चयन नियम प्राप्त कर सकते हैं; यहां, कई के लिए चयन नियम इस प्रकार दिए जाएंगे।

Selection rules for the Miller indices
ब्रावाइस जाली उदाहरण यौगिक अनुमत प्रतिबिंब निषिद्ध प्रतिबिंब
साधारण घन Po Any h, k, कोई नहीं
शरीर केंद्रित घन Fe, W, Ta, Cr h + k + =सम h + k + = odd
चेहरा केंद्रित घन (एफसीसी) Cu, Al, Ni, NaCl, LiH, PbS h, k, सभी विषम या सभी सम h, k, mixed odd and even
डायमंड एफसीसी Si, Ge All odd, or all even with h + k + = 4n h, k, mixed odd and even, or all even with h + k + ≠ 4n
त्रिकोणीय जाली Ti, Zr, Cd, Be even, h + 2k ≠ 3n h + 2k = 3n for odd

इन चयन नियमों का उपयोग दी गई क्रिस्टल संरचना वाले किसी भी क्रिस्टल के लिए किया जा सकता है। KCl में फलक-केन्द्रित घनीय ब्रावाइस जाली होता है। हालांकि, के+ और Cl आयन में इलेक्ट्रॉनों की संख्या समान होती है और आकार में काफी करीब होते हैं, जिससे कि विवर्तन पैटर्न अनिवार्य रूप से वैसा ही हो जाता है जैसा कि आधे लैटिस पैरामीटर के साथ साधारण क्यूबिक संरचना के लिए होता है। अन्य संरचनाओं के लिए चयन नियमों को अन्यत्र या संरचना कारक के रूप में संदर्भित किया जा सकता है। अन्य क्रिस्टल प्रणालियों के लिए जाली रिक्ति क्रिस्टल संरचना # इंटरप्लानर रिक्ति पाई जा सकती है।

यह भी देखें

संदर्भ

  1. Bragg, W. H.; Bragg, W. L. (1913). "क्रिस्टल द्वारा एक्स-रे का प्रतिबिंब". Proc. R. Soc. Lond. A. 88 (605): 428–38. Bibcode:1913RSPSA..88..428B. doi:10.1098/rspa.1913.0040.
  2. See, for example, this example calculation Archived July 10, 2011, at the Wayback Machine of interatomic spacing with Bragg's law.
  3. There are some sources, like the Academic American Encyclopedia, that attribute the discovery of the law to both W.L Bragg and his father W.H. Bragg, but the official Nobel Prize site and the biographies written about him ("Light Is a Messenger: The Life and Science of William Lawrence Bragg", Graeme K. Hunter, 2004 and "Great Solid State Physicists of the 20th Century", Julio Antonio Gonzalo, Carmen Aragó López) make a clear statement that Lawrence Bragg alone derived the law.
  4. John M. Cowley (1975) Diffraction physics (North-Holland, Amsterdam) ISBN 0-444-10791-6.
  5. Bragg, Henry W.; Bragg, Lawrence W. (January 1915), G. Bell and sons L.T.D. London (ed.), X RAYS AND CRYSTAL STRUCTURE, p. 228, retrieved 2021-05-12
  6. 6.0 6.1 Moseley, Henry H. G. J.; Darwin, Charles G. (July 1913). "एक्स-रे के प्रतिबिंब पर". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 26 (151): 210–232. doi:10.1080/14786441308634968. Retrieved 2021-04-27.
  7. 7.0 7.1 Moseley, Henry G. J. (1913). Smithsonian Libraries. "तत्वों की उच्च-आवृत्ति स्पेक्ट्रा". The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science. 6. London-Edinburgh: London : Taylor & Francis. 26: 1024–1034. doi:10.1080/14786441308635052.
  8. H. P. Myers (2002). परिचयात्मक ठोस अवस्था भौतिकी. Taylor & Francis. ISBN 0-7484-0660-3.
  9. "एक्स-रे विवर्तन, ब्रैग का नियम और लाऊ समीकरण". electrons.wikidot.com.
  10. {{Cite journal|title=कोलाइडल क्रिस्टल|journal=Contemporary Physics|year=1983|first=P|last=Pieranski|volume=24|pages=25–73 |doi=10.1080/00107518308227471 |bibcode = 1983ConPh..24...25P }
  11. Hiltner, PA; IM Krieger (1969). "आदेशित निलंबन द्वारा प्रकाश का विवर्तन". Journal of Physical Chemistry. 73 (7): 2386–2389. doi:10.1021/j100727a049.
  12. Aksay, IA (1984). "कोलाइडल समेकन के माध्यम से माइक्रोस्ट्रक्चरल कंट्रोल". Proceedings of the American Ceramic Society. 9: 94.
  13. Luck, Werner; Klier, Manfred; Wesslau, Hermann (1963). "Über Bragg-Reflexe mit sichtbarem Licht an monodispersen Kunststofflatices. II". Berichte der Bunsengesellschaft für physikalische Chemie. 67 (1): 84–85. doi:10.1002/bbpc.19630670114. ISSN 0005-9021.
  14. Barden, S.C.; Williams, J.B.; Arns, J.A.; Colburn, W.S. (2000). "Tunable Gratings: Imaging the Universe in 3-D with Volume-Phase Holographic Gratings (Review)". ASP Conf. Ser. 195: 552. Bibcode:2000ASPC..195..552B.
  15. C. Kress, Bernard (2009). Applied Digital Optics : From Micro-optics to Nanophotonics. ISBN 978-0-470-02263-4.


अग्रिम पठन

  • Neil W. Ashcroft and N. David Mermin, Solid State Physics (Harcourt: Orlando, 1976).
  • Bragg W (1913). "The Diffraction of Short Electromagnetic Waves by a Crystal". Proceedings of the Cambridge Philosophical Society. 17: 43–57.


बाहरी संबंध